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Preface

Wireless communications technologies have seen a remarkably fast evolution in the past
two decades. Each new generation of wireless devices has brought notable improve-
ments in terms of communication reliability, data rates, device sizes, battery life, and
network connectivity. In addition, the increase homogenization of traffic transports
using Internet Protocols is translating into network topologies that are less and less
centralized. In recent years, ad-hoc and sensor networks have emerged with many new
applications, where a source has to rely on the assistance from other nodes to forward
or relay information to a desired destination.

Such a need of cooperation among nodes or users has inspired new thinking and
ideas for the design of communications and networking systems by asking whether
cooperation can be used to improve system performance. Certainly it means we have
to answer what and how performance can be improved by cooperative communications
and networking. As a result, a new communication paradigm arose, which had an impact
far beyond its original applications to ad-hoc and sensor networks.

First of all, why are cooperative communications in wireless networks possible?
Note that the wireless channel is broadcast by nature. Even directional transmission
is in fact a kind of broadcast with fewer recipients limited to a certain region. This
implies that many nodes or users can “hear” and receive transmissions from a source
and can help relay information if needed. The broadcast nature, long considered as a
significant waste of energy causing interference to others, is now regarded as a poten-
tial resource for possible assistance. For instance, it is well known that the wireless
channel is quite bursty, i.e., when a channel is in a severe fading state, it is likely to
stay in the state for a while. Therefore, when a source cannot reach its destination due
to severe fading, it will not be of much help to keep trying by leveraging repeating-
transmission protocols such as ARQ. If a third party that receives the information from
the source could help via a channel that is independent from the source–destination link,
the chances for a successful transmission would be better, thus improving the overall
performance.

Then how to develop cooperative schemes to improve performance? The key lies
in the recent advances in MIMO (multiple-input multiple-output) communication tech-
nologies. In the soon-to-be-deployed fourth-generation (4G) wireless networks, very
high data rates can only be expected for full-rank MIMO users. More specifically, full-
rank MIMO users must be equipped multiple transceiver antennas. In practice, most
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users either do not have multiple antennas installed on small-size devices, or the propa-
gation environment cannot support MIMO requirements. To overcome the limitations of
achieving MIMO gains in future wireless networks, one must think of new techniques
beyond traditional point-to-point communications.

A wireless network system is traditionally viewed as a set of nodes trying to commu-
nicate with each other. However, from another point of view, because of the broadcast
nature of wireless channels, one may think of those nodes as a set of antennas distributed
in the wireless system. Adopting this point of view, nodes in the network may cooper-
ate together for distributed transmission and processing of information. A cooperating
node can act as a relay node for a source node. As such, cooperative communications
can generate independent MIMO-like channel links between a source and a destination
via the introduction of relay channels.

Indeed, cooperative communications can be thought of as a generalized MIMO con-
cept with different reliabilities in antenna array elements. It is a new paradigm that
draws from the ideas of using the broadcast nature of the wireless channels to make
communicating nodes help each other, of implementing the communication process in
a distribution fashion, and of gaining the same advantages as those found in MIMO sys-
tems. Such a new viewpoint has brought various new communication techniques that
improve communication capacity, speed, and performance; reduce battery consumption
and extend network lifetime; increase the throughput and stability region for multi-
ple access schemes; expand the transmission coverage area; and provide cooperation
tradeoff beyond source–channel coding for multimedia communications.

The main goals of this textbook are to introduce the concepts of space, time,
frequency diversity, and MIMO techniques that form the foundation of coopera-
tive communications, to present the basic principles of cooperative communications
and networking, and to cover a broad range of fundamental topics where signifi-
cant improvements can be obtained by use of cooperative communications. The book
includes three main parts:

• Part I: Background and MIMO systems In this part, the focus is on building
the foundation of MIMO concepts that will be used extensively in cooperative com-
munications and networking. Chapter 1 reviews of fundamental material on wireless
communications to be used in the rest of the book. Chapter 2 introduces the con-
cept of space–time diversity and the development of space–time coding, including
cyclic codes, orthogonal codes, unitary codes, and diagonal codes. The last chapter in
this part, Chapter 3, concerns the maximum achievable space–time–frequency diver-
sity available in broadband wireless communications and the design of broadband
space–frequency and space–time–frequency codes.

• Part II: Cooperative communications This part considers mostly the physical
layer issues of cooperative communications to illustrate the differences and improve-
ments under the cooperative paradigm. Chapter 4 introduces the concepts of relay
channels and various relay protocols and schemes. A hierarchical scheme that can
achieve linear capacity scaling is also considered to give the fundamental reason
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for the adoption of cooperation. Chapter 5 studies the basic issues of cooperation
in the physical layer with a single relay, including symbol error rate analysis for
decode-and-forward and amply-and-forward protocols, performance upper bounds,
and optimum power control. Chapter 6 analyses multi-node scenarios. Chapter 7
presents distributed space–time and space–frequency coding, a concept similar to
the conventional space–time and space–frequency coding but different in that it is
now in a distributed setting where assumptions and conditions vary significantly.
Chapter 8 concerns the issue of minimizing the inherent bandwidth loss of coop-
erative communications by considering when to cooperate and whom to cooperate
with. The main issue is on devising a scheme for relay selection and maximizing the
code rate for cooperative communications while maintaining significant performance
improvement. Chapter 9 develops differential schemes for cooperative communi-
cations to reduce transceiver complexity. Finally, Chapter 10 studies the issues of
energy efficiency in cooperative communications by taking into account the practical
transmission, processing, and receiving power consumption and illustrates the trade-
off between the gains in the transmit power and the losses due to the receive and
processing powers when applying cooperation.

• Part III: Cooperative networking This part presents impacts of cooperative com-
munications beyond physical layer, including MAC, networking, and application
layers. Chapter 11 considers the effect of cooperation on the capacity and stability
region improvement for multiple access. Chapter 12 studies how special properties in
speech content can be leveraged to efficiently assign resources for cooperation and
further improve the network performance. Chapter 13 discusses cooperative routing
with cooperation as an option. Chapter 14 develops the concept of source–channel–
cooperation to consider the tradeoff of source coding, channel coding, and diversity
for multimedia content. Chapter 15 focuses on studying how source coding diver-
sity and channel coding diversity interact with cooperative diversity, and the system
behavior is characterized and compared in terms of the asymptotic performance of the
distortion exponent. Chapter 16 presents the coverage area expansion with the help
of cooperation. Chapter 17 considers the various effects of cooperation on OFDM
broadband wireless communications. Finally, Chapter 18 discusses network lifetime
maximization via the leverage of cooperation.

This textbook primarily targets courses in the general field of cooperative communi-
cations and networking where readers have a basic background in digital communica-
tions and wireless networking. An instructor could select Chapters 1, 2, 4, 5, 6, 7.1, 8,
10, 11, 13, 14, and 16 to form the core of the material, making use of the other chapters
depending on the focus of the course.

It can also be used for courses on wireless communications that partially cover the
basic concepts of MIMO and/or cooperative communications which can be considered
as generalized MIMO scenarios. A possible syllabus may include selective chapters
from Parts I and II. If it is a course on wireless networking, then material can be drawn
from Chapter 4 and the chapters in Part III.
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This book comes with presentation slides for each chapter to aid instructors with the
preparation of classes. A solution manual is also available to instructors upon request.
Both can be obtained from the publisher via the proper channels.

This book could not have been made possible without the contributions of the fol-
lowing people: Amr El-Sherif, T. Kee Himsoon, Ahmed Ibrahim, Zoltan Safar, Karim
Seddik, and W. Pam Siriwongpairat. We also would like to thank them for their technical
assistance during the preparation of this book.
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Background and MIMO systems





1 Introduction

Wireless communications have seen a remarkably fast technological evolution.
Although separated by only a few years, each new generation of wireless devices has
brought significant improvements in terms of link communication speed, device size,
battery life, applications, etc. In recent years the technological evolution has reached
a point where researchers have begun to develop wireless network architectures that
depart from the traditional idea of communicating on an individual point-to-point basis
with a central controlling base station. Such is the case with ad-hoc and wireless sen-
sor networks, where the traditional hierarchy of a network has been relaxed to allow
any node to help forward information from other nodes, thus establishing communica-
tion paths that involve multiple wireless hops. One of the most appealing ideas within
these new research paths is the implicit recognition that, contrary to being a point-to-
point link, the wireless channel is broadcast by nature. This implies that any wireless
transmission from an end-user, rather than being considered as interference, can be
received and processed at other nodes for a performance gain. This recognition facili-
tates the development of new concepts on distributed communications and networking
via cooperation.

The technological progress seen with wireless communications follows that of many
underlying technologies such as integrated circuits, energy storage, antennas, etc. Digi-
tal signal processing is one of these underlying technologies contributing to the progress
of wireless communications. Perhaps one of the most important contributions to the
progress in recent years has been the advent of MIMO (multiple-input multiple-output)
technologies. In a very general way, MIMO technologies improve the received signal
quality and increase the data communication speed by using digital signal processing
techniques to shape and combine the transmitted signals from multiple wireless paths
created by the use of multiple receive and transmit antennas.

Cooperative communications is a new paradigm that draws from the ideas of using
the broadcast nature of the wireless channel to make communicating nodes help each
other, of implementing the communication process in a distribution fashion and of
gaining the same advantages as those found in MIMO systems. The end result is
a set of new tools that improve communication capacity, speed, and performance;
reduce battery consumption and extend network lifetime; increase the throughput
and stability region for multiple access schemes; expand the transmission coverage
area; and provide cooperation tradeoff beyond source–channel coding for multimedia
communications.
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In this chapter we begin with the study of basic communication systems and concepts
that are highly related to user cooperation, by reviewing a number of concepts that will
be useful throughout this book. The chapter starts with a brief description of the relevant
characteristics of wireless channels. It then follows by discussing orthogonal frequency
division multiplexing followed by the different concepts of channel capacity. After this,
we describe the basic ideas and concepts of MIMO systems. The chapter concludes by
describing the new paradigm of user cooperative communications.

1.1 Wireless channels

Communication through a wireless channel is a challenging task because the medium
introduces much impairment to the signal. Wireless transmitted signals are affected by
effects such as noise, attenuation, distortion and interference. It is then useful to briefly
summarize the main impairments that affect the signals.

1.1.1 Additive white Gaussian noise

Some impairments are additive in nature, meaning that they affect the transmitted signal
by adding noise. Additive white Gaussian noise (AWGN) and interference of different
nature and origin are good examples of additive impairments. The additive white Gaus-
sian channel is perhaps the simplest of all channels to model. The relation between the
output y(t) and the input x(t) signal is given by

y(t) = x(t)/
√
� + n(t), (1.1)

where � is the loss in power of the transmitted signal x(t) and n(t) is noise. The additive
noise n(t) is a random process with each realization modeled as a random variable
with a Gaussian distribution. This noise term is generally used to model background
noise in the channel as well as noise introduced at the receiver front end. Also, the
additive Gaussian term is frequently used to model some types of inter-user interference
although, in general, these processes do not strictly follow a Gaussian distribution.

1.1.2 Large-scale propagation effects

The path loss is an important effect that contributes to signal impairment by reducing
its power. The path loss is the attenuation suffered by a signal as it propagates from the
transmitter to the receiver. The path loss is measured as the value in decibels (dB) of
the ratio between the transmitted and received signal power. The value of the path loss
is highly dependent on many factors related to the entire transmission setup. In general,
the path loss is characterized by a function of the form

�dB = 10ν log(d/d0)+ c, (1.2)

where �dB is the path loss � measured in dB, d is the distance between transmitter
and receiver, ν is the path exponent, c is a constant, and d0 is the distance to a power
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measurement reference point (sometimes embedded within the constant c). In many
practical scenarios this expression is not an exact characterization of the path loss, but
is still used as a sufficiently good and simple approximation. The path loss exponent ν
characterizes the rate of decay of the signal power with the distance, taking values in the
range of 2 (corresponding to signal propagation in free space) to 6. Typical values for
the path loss exponent are 4 for an urban macro cell environment and 3 for urban micro
cell. The constant c includes parameter related to the physical setup of the transmission
such as signal wavelength, antennas height, etc.

Equation (1.2) shows the relation between the path loss and the distance between the
transmit and the receive antenna. In practice, the path losses of two receive antennas
situated at the same distance from the transmit antenna are not the same. This is, in
part, because the transmitted signal is obstructed by different objects as it travels to the
receive antennas. Consequently, this type of impairment has been named shadow loss
or shadow fading. Since the nature and location of the obstructions causing shadow loss
cannot be known in advance, the path loss introduced by this effect is a random variable.
Denoting by S the value of the shadow loss, this effect can be added to (1.2) by writing

�dB = 10ν log(d/d0)+ S + c. (1.3)

It has been found through experimental measurements that S when measured in dB can
be characterized as a zero-mean Gaussian distributed random variable with standard
deviation σ (also measured in dB). Because of this, the shadow loss value is a random
value that follows a log-normal distribution and its effect is frequently referred as log-
normal fading.

1.1.3 Small-scale propagation effects

From the explanation of path loss and shadow fading it should be clear that the reason
why they are classified as large-scale propagation effects is because their effects are
noticeable over relatively long distances. There are other effects that are noticeable at
distances in the order of the signal wavelength; thus being classified as small-scale prop-
agation effects. We now review the main concepts associated with these propagation
effects.

In wireless communications, a single transmitted signal encounters random reflec-
tors, scatterers, and attenuators during propagation, resulting in multiple copies of the
signal arriving at the receiver after each has traveled through different paths. Such a
channel where a transmitted signal arrives at the receiver with multiple copies is known
as a multipath channel. Several factors influence the behavior of a multipath channel.
One is the already mentioned random presence of reflectors, scatterers and attenuators.
In addition, the speed of the mobile terminal, the speed of surrounding objects and the
transmission bandwidth of the signal are other factors determining the behavior of the
channel. Furthermore, due to the presence of motion at the transmitter, receiver, or sur-
rounding objects, the multipath channel changes over time. The multiple copies of the
transmitted signal, each having a different amplitude, phase, and delay, are added at
the receiver creating either constructive or destructive interference with each other. This
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results in a received signal whose shape changes over time. Therefore, if we denote the
transmitted signal by x(t) and the received signal by y(t), we can write their relation as

y(t) =
L∑

i=1

hi (t)x(t − τi (t)), (1.4)

where hi (t) is the attenuation of the i-th path at time t , τi (t) is the corresponding path
delay, and L is the number of resolvable paths at the receiver. This relation implicitly
assumes that the channel is linear, for which y(t) is equal to the convolution of x(t)
and the channel response at time t to an impulse sent at time τ , h(t, τ ). From (1.4), this
impulse response can be written as

h(t, τ ) =
L∑

i=1

hi (t)δ(t − τi (t)), (1.5)

Furthermore, if it is safe to assume that the channel does not change over time, the
received signal can be simplified as

y(t) =
L∑

i=1

hi x(t − τi ),

and the channel impulse response as

h(t) =
L∑

i=1

hiδ(t − τi ). (1.6)

In many situations it is convenient to consider the discrete-time baseband-equivalent
model of the channel, for which the input–output relation derived from (1.4) for sample
m can be written as

y[m] =
L∑

k=l

hk[m]x[m − k], (1.7)

where hk[m] represents the channel coefficients. In this relation it is implicit that there is
a sampling operation at the receiver and that all signals are considered as in the baseband
equivalent model. The conversion to a discrete-time model combines all the paths with
arrival time within one sampling period into a single channel response coefficient hl [m].
Also, note that the model in (1.7) is nothing more than a time-varying FIR digital filter.
In fact, it is quite common to call the channel model based on the impulse response
as the tapped-delay model. Since the nature of each path, its length, and the presence
of reflectors, scatterers, and attenuators are all random, the channel coefficients hk of
a time-invariant channel are random variables (and note that the redundant time index
needs not be specified). If, in addition, the channel changes randomly over time, then the
channel coefficients hk[m] are random processes. Such an effect needs to be taken into
consideration with functions that depend on the coefficients, since now they become
random functions.
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1.1.4 Power delay profile

The function determined by the average power associated with each path is called the
power delay profile of the multipath channel. Figure 1.1 shows the power delay profile
for a typical wireless channel slightly modified from the ITU reference channel model
called “Vehicular B” [87]. Several parameters are derived from the power delay profile
or its spectral response (Fourier transform of the power delay profile), which are used
to both characterize and classify different multipath channels:

• The channel delay spread is the time difference between the arrival of the first mea-
sured path and the last. If the duration of the symbols used for signaling over the
channel exceeds the delay spread, then the symbols will suffer from inter-symbol
interference. Note that, in principle, there may be several signals arriving through
very attenuated paths, which may not be measured due to sensitivity of the receiver.
This makes the concept of delay spread tied to the sensitivity of the receiver.

• The coherence bandwidth is the range of frequencies over which the amplitude of
two spectral components of the channel response are correlated. The coherence band-
width provides a measurement of the range of frequencies over which the channel
shows a flat frequency response, in the sense that all the spectral components have
approximately the same amplitude and a linear change of phase. This means that if
the transmitted signal bandwidth is less than the channel coherence bandwidth, then
all the spectral components of the signal will be affected by the same attenuation and
by a linear change of phase. In this case, the channel is said to be a flat fading channel.
In another way, since the signal sees a channel with flat frequency response, the chan-
nel is often called a narrowband channel. If on the contrary, the transmitted signal
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Fig. 1.1 The power delay profile of a typical wireless channel.
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bandwidth is more than the channel coherence bandwidth, then the spectral compo-
nents of the signal will be affected by different attenuations. In this case, the channel
is said to be a frequency selective channel or a broadband channel.

Example 1.1 There are a large number of different channel models that have been used
over time for evaluation of communications systems. The large number is due to the
different settings found in the plethora of communication systems already in the mar-
ket or under development. In Tables 1.1 through 1.4 we summarize the parameters of
the power delay profile for some of the channels defined in the ITU recommendation
M.1225, which is intended for a system operating at a carrier frequency of 2 GHz. In the
ITU recommendation, several channel models are discussed so as to account for typi-
cally large variability of wireless channels. In this example, Tables 1.1 and 1.2 show the
parameters for channels corresponding to a pedestrian setting. As its names indicates,
this environment is designed to model pedestrian users, either outside on a street or
inside a residence, with small cells, low transmit power and outside base stations with
low antenna heights. Tables 1.3 and 1.4 show the parameters for channels correspond-
ing to a vehicular setting. In contrast with the pedestrian environment, the vehicular case
models larger cell sizes and transmit power. Also to account for the large variability of
wireless channels, two types of channel models are specified for both the pedestrian and
vehicular cases. The two types of channels are called “type A” and “type B”, where the
channel type A is defined as that of a low delay spread case that occurs frequently and
channel type B is defined as that of the median delay spread case.

Table 1.1 ITU-R M.1225 Pedestrian A channel parameters.

Tap Relative delay [ns] Average power [dB]

1 0 0
2 110 −9.7
3 190 −19.2
4 410 −22.8

Table 1.2 ITU-R M.1225 Pedestrian B channel parameters.

Tap Relative delay [ns] Average power [dB]

1 0 0
2 200 −0.9
3 800 −4.9
4 1200 −8.0
4 2300 −7.8
4 3700 −23.9
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Table 1.3 ITU-R M.1225 Vehicular A channel parameters.

Tap Relative delay [ns] Average power [dB]

1 0 0
2 310 −1.0
3 710 −9.0
4 1090 −10.0
4 1730 −15.0
4 2510 −20.0

Table 1.4 ITU-R M.1225 Vehicular B channel parameters.

Tap Relative delay [ns] Average power [dB]

1 0 −2.5
2 300 0
3 8900 −12.8
4 12900 −10.0
4 17100 −25.2
4 20000 −16.0

Figures 1.2 and 1.3 show in the time and frequency domain, respectively, the impulse
response in Tables 1.1 through 1.4. The figures illustrate the typical variability of chan-
nel models, both in terms of delay spread and coherence bandwidth. Also note how,
within the same type A or type B channels, the vehicular channels exhibit a larger delay
spread. �

Whether a particular channel will appear as flat fading or frequency selective depends,
of course, on the channel delay spread, but it also depends on the characteristics of
the signal being sent through the channel. Figure 1.4 shows a section of the spectral
response of the channel with power delay profile shown in Figure 1.1. We can see that
if the transmitted signal has a bandwidth larger than a few tens of kilohertz, then the
channel will affect differently those spectral components of the transmitted signal that
are sufficiently apart.

This can be seen in Figure 1.5, which shows the time and frequency domain input and
output signals to the channel in Figures 1.1 and 1.2. In Figure 1.5, the input signal is a
raised cosine pulse with roll off factor 0.25 and symbol period 0.05 μs. For this pulse,
the bandwidth is approximately 2 MHz. This makes the channel behave like a frequency
selective channel. As can be seen in the frequency domain representation of the output
pulse in Figure 1.5, the typical result of the frequency selectivity is that there are large
differences in how each spatial component is affected. In the time domain, it can be
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Fig. 1.2 The amplitude of the different paths for the channels in Tables 1.1 through 1.4. The amplitudes
of each path are shown relative to the value of the path with larger gain.

seen that the single pulse at the input of the channel appears repeated at the output with
different delays corresponding to each path.

Such a phenomenon can also be seen in detail in Figure 1.6, which shows the output
pulse and each of the pulses arriving through a different path, with their corresponding
delay. Since the delay associated with some path is larger than the symbol period, the
multipath, frequency selective channel is suffering from intersymbol interference (ISI).
The fact that a time domain phenomenon such as instances of a signal arriving with
different delays, translate into a frequency domain effect, such as frequency selectivity,
can be understood in the following way. When the signals with different delays from
the multipath get superimposed at the receive antenna, the different delay translates
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Fig. 1.5 The input and output pulses to a frequency selective channel.

into different phases. Depending on the phase difference between the spectral compo-
nents, their superposition may result into destructive or constructive interference. Even
more, because the relation between phase and path delay for each spectral component of
the arriving signal varies with the frequency of the spectral component, the signal will
undergo destructive or constructive interference of different magnitude for each spectral
component, resulting in the frequency response of the channel not appearing of constant
amplitude.

Figures 1.7 and 1.8 show the time and frequency domains input and output signals to
the channel in Figures 1.1 and 1.4 when the input pulse have a transmission period long
enough that the channel behaves as non frequency selective. In this case, the input pulse
has a bandwidth of approximately 2 KHz, for which the frequency response of the chan-
nel appears roughly flat. Consequently, the transmitted pulse suffers little alterations in
both time and frequency domains. Also, note that now with the longer duration of the
pulse, the delays associated with different channel paths can be practically neglected
and there is no ISI.

In addition to power delay profile and channel delay spread, there are other para-
meters related to time-varying characteristics of the wireless channel. As we have said,
the motions of the transmitter, the receiver or the reflectors along the signal propagation
path creates a change of the channel transfer characteristics over time. Such motions also
introduce frequency shifts due to the Doppler shift effect. To characterize the channel in
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Fig. 1.6 The pulse at the output of a frequency selective channel and each of the component pulses
due to multipath.

terms of Doppler shift it is necessary to look at the variation of the channel power profile
over time. In other words, instead of considering the statistics of the channel between
two frequencies at a fixed time instant, we now look at the same frequency component
as it changes over time. The parameters usually considered in these cases are:

• For a time-invariant channel, the coefficient of the channel impulse response cor-
responding to one path is a random variable (generally a complex-valued Gaussian
random variable). When the channel changes over time, the coefficient becomes a ran-
dom process, with each realization at different time instants being a random variable.
These random variables may or may not be correlated. The channel coherence time is
the time difference that makes the correlation between two realizations of the chan-
nel impulse response be approximately zero. The Fourier transform of the correlation
function between the realizations of a channel coefficient is known as the channel
Doppler power spectrum, or simply the Doppler spectrum. The Doppler spectrum
characterizes in a statistical sense how the channel response widens an input signal
spectrum due to Doppler shift, i.e., if a single tone of frequency fc is sent through a
channel with a Doppler shift fd, the Doppler spectrum will have components in the
range from fc − fd to fc + fd.
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Fig. 1.7 The input and output pulses to a frequency non-selective channel.

• The Doppler spread is defined as the range of frequencies over which the Doppler
power spectrum is nonzero. The Doppler spread is the inverse of the channel coher-
ence time and, as such, provides information on how fast the channel changes over
time. Here, again, the notion on how fast the channel is changing depends also on the
input signal. If the channel coherence time is larger than the transmitted signal symbol
period; or equivalently, if the Doppler spread is smaller than the signal bandwidth, the
channel will be changing over a period of time longer than the input symbol dura-
tion. In this case, the channel is said to have slow fading. If the converse applies, the
channel is said to have fast fading.

1.1.5 Uniform scattering environment models

As previously mentioned, the channel coefficients are complex-valued random variables
or processes. This raises the important question of what are the statistical properties
of the coefficients and what kind of mathematical model can characterize this behav-
ior. One of the most common models for the random channel coefficients is based on
an environment known as the “uniform scattering environment.” Since this model was
introduced by R. H. Clarke and later developed by W. C. Jakes, the model is also known
as Clarke’s model or Jakes’ model. In the model, it is assumed that a waveform arrives
at a receiver after being scattered on a very large number of scatterers. These scatterers
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Fig. 1.9 The uniform scattering environment.

are assumed to be randomly located on a circle centered on the receiver (see Figure 1.9).
In the environment it is assumed that there is no line-of-sight (LOS) signal with a power
notably larger than the rest. Consequently, the received waveform is made of the super-
position of many waveforms arriving from the scatterers at an angle that is uniformly
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distributed between 0 and 2π . For the purpose of this study, let us first introduce the
complex baseband representation of the transmitted bandpass signals s(t),

s(t) = �
{

x(t)ej2π fct
}
,

where fc is the carrier frequency. Expanding this expression, we get

s(t) = �{x(t)} cos (2π fct)+ �{x(t)} sin (2π fct)

= sI(t) cos (2π fct)+ sQ(t) sin (2π fct),

where sI(t) and sQ(t) are the in-phase and quadrature components of s(t), respectively.
When this signal is transmitted through a channel with baseband impulse response h(t),
the resulting received signal is

y(t) = �
{(

x(t) ∗ h(t)
)
ej2π fct

}
.

If the channel has L paths, with path n having amplitude hn(t), an associated delay
τn(t), and a Doppler phase shift ϕn (which accounts for the Doppler shift due to the
motion of the receiver of each received wave), the received signal can be written as

y(t) = �
{ L∑

n=1

hn(t)x
(
t − τn(t)

)
ej [2π fc(t−τn(t))+ϕn]

}
.

If, for the purpose of this characterization, we assume that the transmitted signal is
a single tone with the same frequency as the carrier frequency, the received signal
becomes

y(t) = �
{ L∑

n=1

[
hn(t)e

−j(2π fcτn(t)−ϕn)
]
ej2π fct

}
= yI(t) cos (2π fct)+ yQ(t) sin (2π fct), (1.8)

where

yI(t) =
L∑

n=1

hn(t) cos (2π fcτn(t)− ϕn), (1.9)

yQ(t) =
L∑

n=1

hn(t) sin (2π fcτn(t)− ϕn). (1.10)

This result shows that both the in-phase and the quadrature components of the received
signal are actually composed of the superposition of multiple copies of the signal arriv-
ing with a change of amplitude and phase as determined by the characteristics of each
of the channel paths.

Next, as part of the settings associated with the uniform scattering environment, we
assume that all the received signals arrive with the same amplitude. This is a reasonable
assumption because, given the geometry of the uniform scattering environment, in the
absence of a direct LOS path, each signal arriving at the receiver would experience sim-
ilar attenuations. Furthermore, in the uniform scattering environment, it is reasonable



1.1 Wireless channels 17

to assume that the number of paths L is very large. Therefore, resorting to the Central
Limit Theorem, it follows that each coefficient can be modeled as a circularly symmetric
complex Gaussian random variable with zero mean (i.e., as a random variable made of
two quadrature components, with each component being a zero mean Gaussian random
variable with the same variance as the other component σ 2). We denote this observation
as yI ∼ N (0, σ 2), yQ ∼ N (0, σ 2).

To better understand the channel behavior, it is important to find the statistics (in
terms of probability density function (pdf)) of the envelope and phase of the channel
coefficients. To get this, it is necessary to consider the transformation of those random
variables representing a channel coefficient in Cartesian coordinates into those repre-
senting the coefficient in polar coordinates. This means that, if we write the coefficient
as h = hI+jhQ (hI and hQ represent the in-phase and the quadrature phase components,
respectively), we want to find the pdf of the random variables r and θ , obtained through
the transformations

r =
√

h2
I + h2

Q,

θ = arctan(hQ/hI), (1.11)

which represent a channel coefficient as h = r ejθ . Equivalently, we may consider the
inverse transform

hI = r cos θ,

hQ = r sin θ. (1.12)

For the general case of transforming random variables V = t1(X, Y ) and W =
t2(X, Y ), the transformation of the joint pdf fX,Y of the random variables X and Y
into the joint pdf fV,W of the random variables V and W , is given by the expression
[112]

fV,W (v,w) = fX,Y
(
s1(v,w), s2(v,w)

)
|J (x, y)| ,

J (x, y) = det

[
∂v
∂x

∂v
∂y

∂w
∂x

∂w
∂y

]
,

where J (x, y) is the Jacobian of the transformation and where x = s1(v,w) and y =
s2(v,w) are the inverse transformations of t1 and t2, respectively. Applying this relation
to the transformation (1.12) results in the Jacobian J (r, θ) = r/σ 2, which leads to the
joint pdf

f (r, θ) = r

2πσ 2
e−r2/(2σ 2), r ≥ 0, 0 ≤ θ ≤ 2π,
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where we have used for easier readability a slightly modified notation for the pdf. From
the joint pdf it is possible to find the marginal pdfs

f (r) =
∫ 2π

0
f (r, θ)dθ = r

σ 2
e−r2/(2σ 2), r ≥ 0,

f (θ) =
∫ ∞

0
f (r, θ)dr = 1

2π
, 0 ≤ θ ≤ 2π.

This result shows that the magnitude of the channel coefficients is a random variable
with a Rayleigh distribution and the phase is also a random variable with a uniform
distribution in the range [0, 2π ]. Because the magnitude of the channel coefficients
follow a Rayleigh distribution, this model is frequently called a Rayleigh fading model.

Also, for the case of two nonnegative random variables related by the transformation
Y = X2, using similar random variables transformation techniques yields the relation
between pdfs

fY (y) = fX (x)

dy/dx
.

With this relation it can be shown that a random variable X that is defined as the
squared magnitude of a Rayleigh-distributed channel coefficient (X = |h|2) follows
an exponential distribution, with pdf

fX (x) = 1

σ 2
e−x/σ 2

, x ≥ 0. (1.13)

In addition, the sum of the squared magnitude of channel coefficient,
∑

i |hi |2, where
each is the sum of two real i.i.d. Gaussian random variables representing the in-phase
and quadrature components (i.e., hi = hIi + jhQi ), results in a Chi-square random
variable with 2L (L being the number of channel coefficients in the sum) degrees of
freedom. The pdf of this distribution is

f (x) = x L−1

(L − 1)!e
−x , x ≥ 0. (1.14)

To consider the statistics of the received signal and the channel as they change over
time, the two most important results are the time correlation and its Fourier transform,
the power spectral density (PSD). Using as a starting point (1.8), (1.9), and (1.10), the
time correlation of the received signal is

Cy(τ ) = E[y(t)y(t + τ)]
= CyI(τ ) cos(2π fcτ)+ CyI,yQ(τ ) sin(2π fcτ), (1.15)

where E[·] is the expectation operator. The autocorrelation of yI , CyI(τ ) equals

CyI(τ ) = E[yI(t)yI(t + τ)].
Considering the expression for yI(t) in (1.9), the magnitude of the Doppler phase shift,
ϕn , depends on the velocity of the receiver relative to the scatterer from where the wave
comes from. This relative velocity is equal to v cosαk , where v is the absolute velocity
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of the receiver. If we denote the angle associated with the k-th wave as αk , the Doppler
shift for waveform k equals

ϕk = 2π
v

λ
t cosαk = 2π fDt cosαk,

where λ is the wavelength and fD = v/λ is the Doppler frequency. Now we can write
(1.9) as

yI(t) =
L∑

n=1

hn(t) cos (2π fcτn(t)− 2π
v

λ
t cosαn). (1.16)

In the uniform scattering environment the phase 2π fcτn(t) changes more rapidly than
the Doppler phase shift. In addition, since the distance from the scatterers to the mobile
is much larger than the signal wavelength, it is possible to assume that the angle asso-
ciated with the k-th wave, αk , is a random variable uniformly distributed in [0, 2π ]
and independent of the angle associated with other paths. Under these conditions, the
autocorrelation of yI, CyI(τ ) equals

CyI(τ ) =
Pr

2π

∫ 2π

0
cos(πvτ cosα/λ)dα

= Pr J0(2π fcvτ/c),

where c is the speed of light, Pr is the received power, and J0(·) is the Bessel function
of the first kind and zeroth order, defined as

J0(x) = 1

π

∫ π

0
e−jx cos θdθ.

Using similar reasoning, the cross-correlation between the in-phase and quadrature
components of the received signal, CyI,yQ(τ ), can be found to equal zero. Therefore,
using (1.15), the time correlation of the received signal is

Cy(τ ) = Pr J0(2π fcvτ/c) cos(2π fcτ). (1.17)

In this result, the cos(2π fcτ) component indicates the correlation of the received signal
to a complete period shift due to being a single tone of frequency fc. Taking the Fourier
transform of (1.17) yields the power spectral density of the received signal

Sy( f ) =
⎧⎨⎩

Pr
4π fD

1√
1−
( | f− fc |

fD

)2
if | f − fc| ≤ fD

0 else.
(1.18)

Note here that the frequency shift f − fc is a consequence of the cos(2π fcτ) component
in (1.17) and the frequency shift property of Fourier transforms. Since the input signal
is a single tone, ignoring the frequency shift in the power spectral density of the channel
effects, which consequently has a time correlation equal to

Ch(τ ) = Pr J0(2π fcvτ/c). (1.19)
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Example 1.2 In this example we show typical cases of the cross-correlation and the
power spectral density functions we just have discussed. We assume a system setup
where fc = 1 GHz, v = 30 km/h, and Pr = 1. Figure 1.10 shows the power spectral
density as obtained from (1.18). For the settings in this example, fD ≈ 27 Hz, so in the
figure the rapid increase of PSD at frequencies near f = fc± fD can be observed. Since
the uniform scattering environment is nothing more than a model to represent physical
channel behaviors, the PSD in (1.18) could become infinite at frequencies f = fc± fD.
This cannot happen in practice, but (1.18) tells us that the PSD will be maximum at
these frequencies. Next, Figure 1.11 shows the time correlation as given by (1.19). Note
that there are values of τ for which the correlation is 0, which means that the channel
will decorrelate signals arriving with these delays. �

1.1.6 Other channel coefficients models

The Rayleigh fading model is not the only model for the channel coefficients. In fact,
when we derived the Rayleigh fading for the uniform scattering environment from
(1.8)–(1.10), we assumed that all the received signals arrive with the same amplitude
due to the absence of a direct LOS path and the symmetric geometry of the environ-
ment. When there is one line-of-sight path, then it can no longer be assumed that both
the in-phase and quadrature components can be approximated as a zero mean Gaussian
random variable. Now, the two components are Gaussian random variables but one has
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Fig. 1.10 Power spectral density of a received tone of frequency fc = 1 GHz for a mobile in a uniform
scattering environment moving at v = 30 km/h.
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Fig. 1.11 Time correlation for a signal in a uniform scattering environment over a channel with central
frequency fc = 1 GHz and for a mobile speed of v = 30 km/h.

mean A, which is the peak amplitude of the signal from the line-of-sight path, and the
other still has zero mean. In this case, we can still use the useful transformations (1.11),
for which the cumulative distribution function (CDF) of r is

Fr (z) = Pr[r ≤ z]
= 1

2πσ 2

∫∫
√

h2
I+h2

Q≤z
exp
[
− 1

2

([hI − A

σ

]2 + [hQ

σ

]2)]
dx dy

= e−
1
2

(
A
σ

)2
2πσ 2

∫ z

0
e−

1
2 (

r
σ
)2
(∫ 2π

0
er A cos

θ

σ 2
dθ

)
u(z)r dr, (1.20)

where u(z) is the unit step function so that (1.20) is valid only for z ≥ 0. Next, the
integral in θ in (1.20) can be written in terms of the modified Bessel function of the first
kind and zeroth order, defined as

I0(x) = J0(jx) = 1

2π

∫ 2π

0
ex cos θdθ, (1.21)

to get

Fr (z) = e−
1
2

(
A
σ

)2
σ 2

∫ z

0
r I0

(
r A

σ 2

)
e−

1
2 (

z−A
σ
)2u(z)dr. (1.22)

From this result, the pdf is obtained by differentiating with respect to z, resulting in

fr (z) = z

σ 2
e
−
(

z2

2σ2+K
)
I0

(
2K x

A

)
, z ≥ 0. (1.23)
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Fig. 1.12 Different probability density functions used to model random fading.

This is the pdf of a Rician distribution. In (1.23), K is a parameter of the Ricean dis-
tribution defined as K = A2/(2σ 2). Note that, when K = 0, the Rician pdf becomes
equal to the Rayleigh pdf, which is consistent with the fact that K = 0 means there is
no LOS path.

In some cases, it is convenient to model the channel by taking samples of channel
realizations and then matching them to a mathematical model. For this it is useful to
have a probability density function that can be easily matched to the data samples. This
function is provided by the Nakagami fading distribution, which is given by

f (x) = 2mm x2m−1

�(m)σ 2m
e−mx2/σ 2

, m ≥ 1/2, (1.24)

where �(·) is the Gamma function and m is a parameter used to adjust the pdf of the
Nakagami distribution to the data samples. For example, if m = 1, then the Nakagami
distribution becomes equal to the Rayleigh distribution. One advantage of the Nakagami
distribution is that it matches empirical data better than other distributions. In fact, the
Nakagami distribution was originally proposed due to this reason.

Figure 1.12 shows the different probability density functions that were discussed in
this section.

1.2 Characterizing performance through channel capacity

In this book we will be studying different communication schemes. One important way
of characterizing their achievable performance is through the use of information theory
concepts, most notably through the use of concepts such as mutual information and the
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characterization of performance limits through system capacity. At its core, information
theory deals with the information provided by the outcome of a random variable. The
information provided by the outcome x of a discrete random variable X is defined as

IX (x) = log
1

Pr[X = x] = − log Pr[X = x], (1.25)

where Pr[X = x] is the probability of the outcome X = x and the logarithm can be,
in principle, of any base but is most frequently taken with base 2, followed by base e
in some fewer cases. Intuitively, the rarer an event is, the more information it provides.
Since the communication process is inherently a process relating more than one random
variable (e.g. the input and output of a channel, an uncompressed and a compressed
representation of a signal, etc.), it is also important to define a magnitude relating the
information shared by two random variables. This magnitude is the mutual information,
which for two discrete random variables X and Y is defined as

I (X; Y ) =
∑
x∈X

∑
y∈Y

Pr[X = x, Y = y] log
Pr[X = x, Y = y]

Pr[X = x]Pr[Y = y] ,

where Pr[X = x, Y = y] is the joint probability mass function and Pr[X = x] and
Pr[Y = y] are marginal probability mass functions. Following Bayes theorem (Pr[X =
x, Y = y] = Pr[X = x |Y = y]Pr[Y = y], with Pr[X = x |Y = y] being the conditional
probability mass function of X given that Y = y), the mutual information can also be
written as

I (X; Y ) =
∑
x∈X

∑
y∈Y

Pr[X = x, Y = y] log
Pr[X = x |Y = y]

Pr[X = x] .

Furthermore, we can write

I (X; Y ) = −
∑
x∈X

log Pr[X = x]
∑
y∈Y

Pr[X = x, Y = y]

+
∑
x∈X

∑
y∈Y

Pr[X = x, Y = y] log Pr[X = x |Y = y]

= −
∑
x∈X

Pr[X = x] log Pr[X = x]

+
∑
x∈X

∑
y∈Y

Pr[X = x, Y = y] log Pr[X = x |Y = y]. (1.26)

The first term in this result is called the entropy of the random variable X ,

H(X) = −
∑
x∈X

Pr[X = x] log Pr[X = x],

and the second term can be written in terms of the conditional entropy of X ,

H(X |Y ) = −
∑
x∈X

Pr[X = x, Y = y] log Pr[X = x |Y = y].

Considering (1.25), the entropy of the random variable can also be read as the mean
value of the information provided by all its outcomes. Likewise, the conditional entropy
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can be regarded as the mean value of the information provided by all the outcomes
of a random variable (X ) given than the outcome of a second random variable (Y ) is
known, or how much uncertainty about a random variable (X ) remains after knowing
the outcome of a second random variable (Y ). Therefore, the mutual information as in
(1.26) can now be written as

I (X; Y ) = H(X)− H(X |Y ),

and intuitively be interpreted as the mean amount of uncertainty about one random
variable (X ) that is resolved after learning about the outcome of another random variable
(Y ), or the average amount of information shared by the two random variables. Finally,
we note here that although the concepts we have been introducing were tailored to
discrete random variables, the same concepts apply to continuous random variables
with the only differences that the sums are replaced by integrals and the probability
mass functions by probability density functions.

In information theory, one of the main measures of performance is system capacity.
Nevertheless, due to the fact that the calculation of capacity always involves a number
of assumptions and simplifications, the measurement of capacity does not come in a
“one size fits all” solution. In particular, the notion of capacity is influenced by how
much the channel changes over the duration of a coding interval and the properties of
the random process associated with the channel fluctuations.

When the random variations of the channel are a stationary and ergodic process it is
possible to consider the traditional notion of capacity as introduced by Claude Shan-
non [181]. In this case, coding is assumed to be done using arbitrary long blocks. Also,
the random process driving the channel changes needs to be stationary and ergodic.
Because of this, this notion of capacity is known as ergodic capacity or Shannon capac-
ity. The capacity of an AWGN channel with fast flat fading, when only the receiver has
knowledge of the channel state,

C = E
[

log
(
1+ |h|

2 P

N0

)]
, (1.27)

where E[·] is the expectation operator (operating on the random channel attenuation), P
is the power of the transmitted signal (assumed i.i.d. Gaussian, with zero mean so as to
achieve capacity), N0 is the variance of the background noise, and |h|2 is the envelope
of the channel attenuation.

Although the notion of Shannon capacity is quite useful, there are also many design
settings where the assumptions of using arbitrary long codes or that the channel is a sta-
tionary and ergodic random process do not hold. In these cases, Shannon capacity may
not yield useful results. For example, in the case of a non-ergodic slowly fading channel
following a Rayleigh distribution, the Shannon capacity is arbitrary small or zero. This
is because the result is affected by those realizations of the channel corresponding to
deep fades. Nevertheless, an arbitrary small capacity is not the true depiction of many
realizations of the fading process (which is confirmed by the many communications
taking place every day under these conditions!). Therefore, for these cases it is more
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appropriate to consider the notion of outage capacity. This notion is tied to the concept
of an outage event.

There are many ways of defining an outage event but, from an information theory
point of view, an outage event is defined as the set of channel realizations that cannot
support reliable transmission at a rate R. In other words, the outage event is the set of
channel realizations with an associated capacity less than a transmit rate R. Considering
now that the setup that led to (1.27) corresponds to a non-ergodic channel, the outage
condition for a realization of the fading can be written as

log
(
1+ |h|

2 P

N0

)
< R. (1.28)

From here, the outage probability is calculated as the one associated with the outage
event,

Pout = Pr
[

log
(
1+ |h|

2 P

N0

)
< R

]
, (1.29)

where Pr[·] is the probability operator (once again on the random channel attenuation).
Once we have introduced the concepts of outage event and outage probability,

the Prout outage capacity, Cout, is defied as the information rate that can be reliably
communicated with a probability 1− Prout, that is

Pr
[
C ≤ Cout

]
= Prout, (1.30)

where C is the Shannon capacity associated with the channel.
We finally note here that, as mentioned above, the outage probability may be defined

differently from (1.29). Another way of defining the outage probability is by considering
the event that the received signal to noise ratio is below a threshold. This definition can
be related to (1.29) by simple algebraic operations that expose the received signal-to-
noise ratio as the random variable, i.e., for the signal-to-noise ratio (SNR) γ and SNR
threshold γT,

Pout = Pr
[
γ < 2R − 1

]
= Pr[γ < γT].

1.3 Orthogonal frequency division multiplexing (OFDM)

In Section 1.1.3 we discussed that when the signal bandwidth is much larger than the
channel coherence bandwidth, the channel is frequency selective. We also explained that
these channels present such impairments as intersymbol interference, which deform the
shape of the transmitted pulse, risking the introduction of detection errors at the receiver.
This impairment can be addressed with different techniques. One of these techniques is
multicarrier modulation. In multicarrier modulation, the high bandwidth signal to be
transmitted is divided over multiple mutually orthogonal signals of a bandwidth small
enough such that the channel appears to be non-frequency selective. Different multicar-
rier modulation techniques may differ based on the choice of orthogonal signals. Among
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the many possible multicarrier modulation techniques, orthogonal frequency division
multiplexing (OFDM) is the one that has gained more acceptance as the modulation
technique for high-speed wireless networks and 4G mobile broadband standards. In
OFDM, the orthogonal signals used for multicarrier modulation are truncated complex
exponentials. Assume an OFDM transmitter where the high rate serial input stream is
split into N parallel substreams. Assume also that, at some instant of time, the sequence
{dk}N−1

k=0 represents the N complex symbols that are input to the OFDM modulator for
transmission as a single OFDM symbol of duration Ts. This translates in practice into an
operation where the input stream to the OFDM modulator is divided and organized into
blocks of N symbols, which are modulated into a single OFDM symbol. The resulting
OFDM modulated symbol is, for 0 ≤ t ≤ Ts,

s(t) =
N−1∑
k=0

dkφk(t) =
N−1∑
k=0

dkej2π fk t , (1.31)

where fk = f0 + k� f and � f = 1/Ts. In (1.31) the signals φk(t), which are defined
as

φk(t) =
{

ej2π fk t if 0 ≤ t ≤ Ts

0 else,
(1.32)

form an orthonormal set that are used as the carrier signal of each subcarrier in this
multicarrier modulation technique. Because these signals are truncated complex expo-
nential, in frequency domain they are of the form sin(x)/x . These signals are shown in
Figure 1.13, which also illustrates how OFDM splits a carrier with large bandwidth into
multiple orthogonal subcarriers of much smaller bandwidth.

N = 18

subcarriersΔf

f

Fig. 1.13 The OFDM orthonormal set of modulation signals in the frequency domain.
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Assume, next, that the OFDM symbol in (1.31) is sampled with a period Tsa = Ts/N .
Then, we can write the resulting sampled signal s[n] as

s[n] = s(nTsa) =
N−1∑
k=0

dkej2π fknTs/N , 0 ≤ n ≤ N − 1.

If we assume, without loss of generality, that f0 = 0 we get fk = k� f = k/Ts,
leading to

s[n] =
N−1∑
k=0

dkej2πnk/N . (1.33)

This result can be read as s[n] being the inverse Fourier transform of dk , which is a
simple way of generating an OFDM symbol and one of its main advantages.

In practice, the OFDM symbol as defined in (1.33) is extended with the addition of a
cyclic prefix. To understand the construction of the prefix, assume a multipath channel
with L taps defined through the coefficients h[0], h[1], . . . , h[L−1]. With this in mind,
the original channel input sequence s[0], s[1], . . . , s[N−L], s[N−L+1], . . . , s[N−1],
becomes s[N−L+1], . . . , s[N−1], s[0], s[1], . . . s[N−L], s[N−L+1], . . . , s[N−1]
after adding the cyclic prefix. Note that the prefix is built by just copying the last L − 1
elements of the original channel input sequence at the beginning of it. This operation
does not affect the OFDM signal or its properties, such as the orthogonality between
the multicarrier modulated signals, because it is simply a reaffirmation of the periodic-
ity of the OFDM symbol (period equal to N ), as follows from (1.33). Also note that,
following the assumption of a multipath channel with delay spread L , the samples cor-
responding to the cyclic prefix will be affected by intersymbol interference from the
previous OFDM symbol. To combat this interference, the prefix can be eliminated at
the receiver without any loss of information in the original sequence and without inter-
symbol interference affecting the original sequence. Next, let us illustrate the effect of
adding the cyclic prefix on transforming a frequency selective fading channel into a set
of parallel flat fading channels.

Let us call the channel input sequence, after adding the cyclic prefix, as x where

x = [s[N − L + 1], . . . , s[N − 1], s[0], s[1], . . . , s[N − L] ,
s[N − L + 1], . . . , s[N − 1]] . (1.34)

The output of the channel can be written as

y[n] =
L−1∑
l=0

h[l]x[n − l] + v[n], n = 1, 2, . . . , N + L − 1, (1.35)

where v[n] is additive white Gaussian noise.
The multipath channel affects the first L − 1 symbols and therefore the receiver

ignores these symbol. The received sequence is then given by

y = [y[L], y[L + 1], . . . , y[N + L − 1]] . (1.36)
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Equivalently, one can write the received signal in terms of the original channel input as

y[n] =
L−1∑
l=0

h[l]s [(n − l − L)modN ]+ v[n]. (1.37)

This can be also written in terms of cyclic convolution as follows:

y = h⊗ s+ v, (1.38)

where ⊗ denotes cyclic convolution. At the receiver, after taking the discrete Fourier
transform (DFT) of the received signal and after removing the cyclic prefix, we get

Yn = Hn Sn + Vn, (1.39)

where Yn , Hn , Sn , and Vn are the n-th point of the N -point DFT of the received signal,
channel response, channel input, and noise vector, respectively.

From (1.39), at the receiver side the frequency selective fading channel has been
transformed to a set of parallel flat fading channels. Therefore, one can see the benefit
of OFDM and how it reduces the complexities associated with time equalization.

Finally, Figure 1.14 summarizes the operations involved in the OFDM communi-
cation link by showing a block diagram of a transmitter and a receiver. It is worth
highlighting here that an OFDM symbol is made of a block of N input symbols. At
the OFDM transmitter the N input symbols are converted into an OFDM symbol with

Constellation
mapper {dk 

} k = 0
N – 1

{dk 
} k = 0

N – 1

S

P

Data

. . . IFFT

. . .
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Add
cyclic
prefix

Radio
module
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Constellation
de-mapper

S
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. . . FFT

. . .
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Radio
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data

Fig. 1.14 Block diagram of an OFDM transmitter and a receiver.
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N subcarriers. If we now consider the successive transmission of several OFDM sym-
bols, the data organization on the channel can be conceptually pictured as a grid in a
frequency × time plane with a width of N subcarriers (in the frequency dimension) and
a depth equal to the number of transmitted OFDM symbols (in the time dimension).

1.4 Diversity in wireless channels

As we have explained, fading wireless channels present the challenge of being chang-
ing over time. In communication systems designed around a single signal path between
source and destination, a crippling fade on this path is a likely event that needs to be
addressed with such techniques as increasing the error correcting capability of the chan-
nel coding block, reducing the transmission rate, using more elaborate detectors, etc.
Nevertheless, these solutions may still fall short for many practical channel realizations.

Viewing the problem of communication through a fading channel with a different
perspective, the overall reliability of the link can be significantly improved by provid-
ing more than one signal path between source and destination, each exhibiting a fading
process as much independent from the others as possible. In this way, the chance that
there is at least one sufficiently strong path is improved. Those techniques that aim at
providing multiple, ideally independent, signal paths are collectively known as diver-
sity techniques. In its simplest form, akin to repetition coding (where signal redundancy
is achieved by simply repeating the signal symbols multiple times), the multiple paths
may carry multiple distorted copies of the original message. Nevertheless, better perfor-
mance may be achieved by applying some kind of coding across the signals sent over
the multiple paths and by combining in a constructive way the signals received through
the multiple paths.

Also important is the processing performed at the receiver, where the signals arriving
through the multiple paths are constructively combined. The goal in combining is to
process the multiple received signals so as to obtain a resulting signal of better quality
or with better probability of successful reception than each of the received ones. The
nature of the processing that is applied to each signal during combining is a function
of the particular design goals. If the goal is to linearly combine the signals so that
the signal-to-noise ratio (SNR) is maximized at the resulting signal, then the resulting
mechanism is called a maximal ratio combiner (MRC). Suppose that at the input of
the MRC there are L signal samples, y0, y1, . . . , yL−1, that are to be combined into a
signal sample yM . Each of the received signals correspond to a unit-energy transmited
signal that have been received through the corresponding L different paths characterized
as h0ejφ0 , h1ejφ1 , . . . , hL−1ejφL−1 . Since the MRC is a linear combiner, the input and
output are related through the relation

yM =
L−1∑
k=0

cke−jφk yk, (1.40)
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where ck are the coefficients of the MRC combiner and the complex exponential is used
for equalizing the phases of each term (cophasing). Assuming that the signals to be
combined are equally affected by noise at the receiver with power density N0, the SNR
at the output of the MRC, γM is

γM =

(
L−1∑
k=0

ckhk

)2

N0

L−1∑
k=0

c2
k

, (1.41)

because the noise is also processed as part of the received signal samples. The MRC
coefficients that maximize (1.41) also maximize its numerator. Then, the maximizing
coefficients can be found by using the Cauchy–Schwarz inequality,(

L−1∑
k=0

ckhk

)2

≤
(

L−1∑
k=0

c2
k

)(
L−1∑
k=0

h2
k

)
. (1.42)

The SNR in (1.41) is maximized when (1.42) is an equality. This is achieved by letting

ck = hk√
N0
.

The resulting maximized SNR at the output of the MRC is

γM =

(
L−1∑
k=0

h2
k

)
N0

. (1.43)

Intuitively, the MRC combines multiple signals by first cophasing them, followed by
weighting each sample proportionally to the corresponding path SNR and finally adding
them. The resulting signal at the output of the MRC will have an SNR equal to the sum
of the SNRs corresponding to each path.

As mentioned earlier, the MRC is not the only known combiner. Other cases are
the selection combiner, where the output is the input with best SNR, and the threshold
combiner, which sequentially scans the received signals and outputs the first one with
SNR exceeding a threshold.

For any diversity technique, the performance improvement is manifested by the
communication error probability decreasing at a much larger rate at a high channel
signal-to-noise ratio (SNR) than systems with less or no diversity. When using log–log
scales, this rate of decrease in the communication error probability becomes the slope
of the line representing the communication error probability at high SNR and is known
as the diversity gain. Strictly speaking, the diversity gain is defined as [239]

m = − lim
γ→∞

log PSER

log γ
, (1.44)

where γ is the SNR and PSER is the probability of symbol error (a function of the
SNR). This definition establishes an implicit behavior at high SNR for the probability
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of symbol error as being a linear function of the SNR when seen in a plot with log–log
scales. Then it can be seen that, as previously stated, in these conditions the diversity
gain is the slope of the linear relation. It is better to have as large a diversity gain as
possible, since it means that the probability of symbol error is reduced at a faster rate.

For MIMO systems, as will be shown in Chapters 2 and 3, it is possible to achieve a
diversity gain equal to the product between the number of transmit and receive antennas.
Also, it is important to note that, depending on the particular diversity scheme and
the system setup, other measures of probability of error can be used. For example, the
outage probability is used in some cases, instead of the probability of symbol error.

There are many different forms of diversity in addition to the spatial diversity men-
tioned above. For example, in time diversity, multiple (possibly coded) copies of a
symbol are sent at different time instants, and in frequency diversity, multiple (pos-
sibly coded) copies of a symbol are sent through channels of different carrier frequency.
Furthermore, multiple diversity techniques can be combined to provide even greater per-
formance improvement. Next, a succinct introduction to time, frequency, and antenna
diversity systems is provided. Some of the following chapters will consider techniques
that are derived from or that combine these forms of diversity.

1.4.1 Time diversity

It is quite common to find communication scenarios where the channel coherence time
equals or exceeds several symbol transmission periods. This implies that two symbols
transmitted with a separation in time longer than the coherence time will experience
channel realizations that are highly uncorrelated and can be used to obtain diversity.
The simplest way to achieve this is to form the two symbols by using a repetition coding
scheme. Also, to guarantee that the repeated symbols will be transmitted over uncorre-
lated channel realization, an appropriate interleaver is applied to the stream of symbols
to be transmitted.

At the receiver, the copies of the symbol will have to be combined together.
As explained above, if the transmission of each symbol can be represented by an
input–output expression of the form

yi = hi x + ni , (1.45)

where x is the unit-energy transmitted symbol, yi is the symbol received over path i , ni

is the background noise modeled as a circularly symmetric Gaussian random variable
with zero mean and variance N0, and hi is the channel realization over path i , assumed
to be following a Rayleigh fading, optimal combining that maximizes the received SNR
is achieved with a maximal ratio combiner. Recall that the SNR at the output of an
MRC equals the sum of the SNRs of the branches at the input of the MRC. From the
explanation above on Rayleigh fading, the MRC output SNR will have a Chi-squared
distribution as in (1.14).

If, for example, we assume BPSK modulation, and M copies of the transmitted sym-
bol being combined with path channel gains, h1, h2, . . . , hM , the error probability that
can be obtained using MRC combiner is
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Q

⎛⎝
√√√√ 2

N0

M∑
n=1

|hn|2
⎞⎠ .

From here, the average probability of symbol error is [45]

PSER =
∫ ∞

0
Q(
√

2γ ) f (γ )dγ (1.46)

=

⎛⎜⎜⎜⎜⎝
1−

√
γ̄

1+ γ̄
2

⎞⎟⎟⎟⎟⎠
M

M−1∑
m=0

(
M + m − 1

m

)⎛⎜⎜⎜⎜⎝
1+

√
γ̄

1+ γ̄
2

⎞⎟⎟⎟⎟⎠
m

, (1.47)

where γ = (1/N0)
∑M

n=1 |hn|2 is the SNR at the output of the MRC, f (γ ) is the
probability density function of the Chi-squared distribution, as in (1.14), and γ̄ is the
mean SNR at the output of the MRC.

Example 1.3 Although it is possible to derive useful results from (1.47), in the study
of systems with some form of diversity (and, in fact, in many other communication sys-
tems also), it is sometimes better to work with upper bounds derived from the Chernoff
bound. The Chernoff bound is a useful inequality in applications of probability and ran-
dom processes to signal processing problems that establishes an upper bound on the tail
probability of a random variable X ,

Pr[X ≥ a] ≤ min
t
{e−atE[et X ]}, (1.48)

where a is a constant. When X is a standard Gaussian random variable N (0, 1) (zero
mean, unit variance), the Chernoff bound becomes

Pr[X ≥ a] ≤ min
t
{e(−at+t2/2)} = e−a2/2, (1.49)

where the minimization is done by simply equating the derivative of e(−at+t2/2) to zero.
When applying the Chernoff bound to the Q function in (1.46), we obtain the upper
bound on average probability [45]

PSER ≤
M∏

m=1

1

1+ γ̄i
2

. (1.50)

At large SNR, this upper bound becomes tighter, leading to the approximation

PSER ≈
(
γ̄

2

)−M

. (1.51)

�

The result (1.51) is revealing in presenting the physical meaning of diversity gain. If
now, we look at this expression using log–log scales we get

log(PSER) ≈ −M log(γ̄ ), (1.52)
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which is the equation of a linear function. Furthermore, notice that by applying
the definition of diversity gain (1.44), it can be seen not only that the diversity gain
equals −M (the number of repetitions of the symbol), but also that the diversity gain
represents the slope of the approximately linear relation (1.52). Since the diversity
gain equals the number of repetitions of the symbol, we may say that the time-diversity
system with repetition coding achieves full diversity gain. Nevertheless, the use of rep-
etition coding sacrifices the total bit rate. This drawback can be addressed through other
coding schemes as will be seen in later chapters.

1.4.2 Frequency diversity

Analogous to time diversity, in those wideband systems where the available bandwidth
exceeds the channel coherence bandwidth, it is possible to realize diversity by using
channels that are a partition of the available bandwidth and that are separated by more
than the channel coherence bandwidth.

Realizing frequency diversity as a partition of the whole system bandwidth into chan-
nels with smaller bandwidth and independent frequency response is perhaps the most
intuitively natural approach. This approach is applicable in multicarrier systems, where
transmission is implemented by dividing the wideband channel into non-overlapping
narrowband subchannels. The symbol used for transmission in each subchannel has a
transmission period long enough for the subchannel to appear as a flat fading channel.
Different subchannels are used together to achieve frequency diversity by ensuring that
each is separated in the frequency domain from the rest of the subchannels in the trans-
mission by more than the coherence bandwidth. In this way, the fading processes among
the subchannels will show a small cross-correlation. As will be seen in later chapters,
an example of these systems are those using orthogonal frequency division multiplexing
(OFDM).

Although not as intuitively natural, frequency diversity can also be achieved through
processing based on a time-domain phenomenon. Recall that the frequency response of
multipath channels is not of constant amplitude and linear phase because each spectral
component of the signal undergoes destructive or constructive interference of different
magnitude depending on the delay of each path and the frequency of the spectral com-
ponent. These multipath channels provide diversity through each of the copies of the
signal arriving through each path. Because of this, the overall channel appears as fre-
quency selective (see Figures 1.5 and 1.6). It is then possible to achieve diversity of an
order equal to the number of independent paths.

1.4.3 MIMO systems

By using multiple antennas at the transmitter side and/or the receiver side as shown in
Figure 1.15, we may exploit diversity in the spatial domain which is called spatial diver-
sity (also called antenna diversity). This configuration of deploying multiple antennas is
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Fig. 1.15 A four-transmit, four-receive MIMO system.

often referred as multiple-input-single-output (MISO) systems if only a single antenna
is deployed at the receiver side, single-input-multiple-output (SIMO) systems if a single
transmit antenna is used, or, in general, multiple-input-multiple-output (MIMO) sys-
tems with multiple transmit antennas and multiple receive antennas. With more than one
transmit/receive antenna, different channels are established between each pair of trans-
mit and receive antennas. With such a configuration, the transmitted information can go
through different channels to arrive at the receiver side. As long as one of the channels is
strong enough, the receiver should be able to recover the transmitted information. If we
assume that different channels are independent or correlated with a low correlation, then
the chance that all channel links fail is low. The greater the number of antenna pairs, the
greater the redundancy (diversity) of the received signals, i.e., the higher the reliability
of the transceiver detection. The assumption of low-correlated or independent channel
links can be achieved by appropriate separation of the antennas at both the transceiver
sides. The necessary antenna separation at each side depends on the scattering in the
neighborhood of the antenna and on the signal carrier frequency. For a mobile, the typi-
cal separation is between half to one carrier wavelength, for base stations the necessary
separation is in the order of tens of wavelengths, which can be easily satisfied.

1.4.3.1 Two motivated examples
Note that, in a MISO system, the signal present at the receive antenna is the combination
of signals from all transmit antennas after having traveled through the different fading
channels established from each transmit antenna to the receive antenna. The redun-
dancy is also termed as transmit diversity, which depends on the number of transmit
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antennas. While in a SIMO system, a transmitted signal goes through different channels
and is received at each receive antenna. Signals from each receive antenna are com-
bined and jointly detected at the receiver side. The corresponding redundancy is often
called receive diversity, which is related to the number of receive antennas. In general,
in a MIMO system, both transmit and receive diversities are realized. As we will dis-
cuss in Chapter 2, the overall signal redundancy, or diversity order, is in this case the
product of the numbers of transmit and receive antennas. The MIMO configuration can
be exploited through different designs that differ, among other factors, in the antenna
configuration at the receiver and the transmitter, as well as the particular form of per-
formance improvement that it is intended to obtain. For better understanding the spatial
diversity, we consider the following two motivated examples.

Example 1.4 Consider a system that implements receive diversity by using one antenna
at the transmitter and Mr antennas at the receiver (i.e., a SIMO system). There are
Mr paths between transmitter and receiver. The signal arriving from all paths need
to be combined at the receiver. If the additive background noise is complex-valued,
zero-mean circularly symmetric Gaussian, and independent from each path, then the
optimal combiner is the maximal ratio combiner (MRC) (a fact that can be accepted
after realizing the similarity of the combining problem here and the one in diversity
from repetition coding over time, with the diversity branches now over space instead of
over time). Assuming BPSK modulation, and conditioning on the Mr channel gains of
the paths, h1, h2, . . . , hMr , the error probability that can be obtained using MRC com-

biner is Q
(√

2γ
∑Mr

j=1 |h j |2
)
. This error probability can be written in the following

form, which provides more insight into the achievable gains,

Pe = Q

⎛⎜⎝
√√√√2(Mrγ )

(∑Mr
j=1 |h j |2

Mr

)⎞⎟⎠ .
In this expression, the factor Mrγ shows that the use of the MRC results in a linear
increase of SNR with the number of paths. This gain is called the array gain. Also,
the factor (1/Mr)

∑Mr
j=1 |h j |2 shows an averaging effect on the paths gain where the

paths in deeper fade are compensated by those in a good condition, thus resulting in a
lower probability that the overall link attenuation will be too large. This effect is the
materialization of the diversity gain in this scheme. To see this more clearly, consider
that each h j is the sum of two i.i.d. real Gaussian random variables, and recall from
Section 1.1.3 that

∑Mr
j=1 |h j |2 follows a Chi-square distribution with 2Mr degrees of

freedom (see (1.14)). Integrating over this distribution to obtain the average probability
of symbol error results in

PSER =

⎛⎜⎜⎝1−
√

γ

1+ γ
2

⎞⎟⎟⎠
Mr

Mr−1∑
m=0

(
Mr + m − 1

m

)⎛⎜⎜⎝1+
√

γ

1+ γ
2

⎞⎟⎟⎠
m

. (1.53)
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Unsurprisingly, this expression is very similar to (1.47). This is due to the analogy
between achieving diversity by transmitting at different time instants and by transmit-
ting through different paths. The essence of this similarity resides in the common use
of an MRC combiner, which results in a similar expression for the probability of error.
Furthermore, we can now draw on this similarly and apply the Chernoff bound to derive
expressions similar to (1.50) and (1.51) to get

PSER ≈ αMr

(
βMrγ

2

)−Mr

,

which shows the diversity order Mr, since the SNR decays as γ−Mr . �

Example 1.5 (Alamouti scheme) Consider now a system that implements transmit
diversity, with two antennas at the transmitter and one antenna at the receiver. Trans-
mission is done by sending two symbols, s1 and s2, over the duration of two symbols
periods. We assume a flat fading channel, i.e., the channel does not change during the
two symbol periods. Instead of sending the symbol s1 during the first symbol period and
the symbol s2 during the second period, the Alamouti scheme treats the two symbols
as a block and applies a form of precoding to the symbols. Specifically, during the first
transmission period, s1 is sent from antenna 1 and s2 is sent from antenna 2; and during
the second transmission period,−s∗2 is sent from antenna 1 and s∗1 from antenna 2 (here
s∗1 denotes the complex conjugate of s1).

At the receiver, we denote by y1 and y2 the signals received during the first and second
symbol periods, respectively. The two received signals are processed as a vector given
by [

y1

y2

]
=
[

s1 s2

−s∗2 s∗1

] [
h1

h2

]
+
[

z1

z2

]
The above transceiver signals can be rearranged as[

y1

y∗2

]
=
[

h1 h2

h∗2 −h∗1

] [
s1

s2

]
+
[

z1

z∗2

]
.

Denote y = [y1 y∗2 ]T and

H =
[

h1 h2

h∗2 −h∗1

]
.

Then the receiver processes the received vector y by taking ỹ = HHy, resulting in

ỹ =
[ |h1|2 + |h2|2 0

0 |h2
1| + |h2

2|
] [

s1

s2

]
+HH

[
z1

z∗2

]
.

Since the processed noise vector is still complex Gaussian with zero mean, but now with
a covariance matrix equal to the diagonal matrix diag(|h2

1| + |h2
2|, |h2

1| + |h2
2|) times the

received noise power, the received SNR for a symbol detected with z is



1.4 Diversity in wireless channels 37

γ = |h2
1| + |h2

2|
2

γS,

where γS is the SNR of a symbol transmitted without the Alamouti scheme and the
factor 2 is due to the fact that each si is transmitted at half γS. We finally note here
that this result shows in a fashion similar to Example 1.4 that the Alamouti scheme can
achieve a diversity order 2. �

1.4.3.2 MIMO capacity
In this subsection, we address advantages of MIMO systems from an information the-
ory aspect by reviewing a fundamental capacity result indicating that the capacity of
a MIMO system increases at least linearly with the minimum number of transmit or
receive antennas.

We consider a MIMO system with Mt transmit antennas and Mr receive antennas.
The channel coefficient between transmit antenna i, 1 ≤ i ≤ Mt, and receive antenna
j, 1 ≤ j ≤ Mr, is denoted by hi, j . These coefficients are modeled as independent
circularly symmetric complex Gaussian random variables with zero mean and variance
one. The MIMO transceiver can be modeled as

Y =
√
ρ

Mt
X H + Z , (1.54)

where X = [x1 x2 . . . xMt ] is a signal vector transmitted by the Mt antennas, Y =
[y1 y2 . . . yMr ] is a signal vector received by the Mr receive antennas, and Z =
[z1 z2 . . . zMr ] is a noise vector whose elements are modeled as independent circu-
larly symmetric complex Gaussian random variables with zero mean and variance one.
The channel coefficient matrix H = {hi, j : 1 ≤ i ≤ Mt, 1 ≤ j ≤ Mr} is assumed to
be known at the receiver side, but unknown at the transmitter side. The signal vector is
assumed to satisfy the energy constraint E ||X ||2F = Mt, where ||X ||F is the Frobenius
norm of X , defined as

||X ||2F =
Mt∑

i=1

|xi |2.

In (1.54), the factor
√
ρ/Mt ensures that ρ is the average signal to noise ratio (SNR) at

each receive antenna, and it is independent of the number of transmit antennas.
If the input signal X is a circularly symmetric complex Gaussian random vector

with zero mean and variance E{XH X} = Q, then the output signal is also a circularly
symmetric complex Gaussian random vector with zero mean and variance

E{Y HY } = ρ

Mt
HHQH + IMr ,

in which IMr is an identity matrix of size Mr by Mr. So, for any given channel H , the
mutual information between the input X and the output Y is

I (X; Y |H) = log2 det

(
IMr +

ρ

Mt
HHQH

)
. (1.55)



38 Introduction

Since E ||X ||2F = Mt, trace(Q) = trace
(
E{XH X}) = Mt. Next, we would like to

maximize the mutual information I (X; Y |H) as in (1.55) over the choice of nonnegative
Q with the constraint trace(Q) = Mt. Since we can write Q as Q = UHQ0U , where
U is unitary and Q0 is diagonal, so

log2 det

(
IMr +

ρ

Mt
HHQH

)
= log2 det

(
IMr +

ρ

Mt
H̃HQ0 H̃

)
, (1.56)

in which H̃ = U H . Note that H̃ has the same distribution as that of H since U is
unitary. So we just need to maximize

log2 det

(
IMr +

ρ

Mt
H̃HQ0 H̃

)
over the nonnegative diagonal matrix Q0 with the constraint trace(Q0) = Mt. It has
been shown in [215] that

log2 det

(
IMr +

ρ

Mt
H̃HQ0 H̃

)
is maximized when Q0 has equal diagonal elements, i.e., Q0 = IMt . Intuitively, it is
easy to understand that if the transmitter has no prior information about the channel,
each transmit antenna should be treated equally and allocated the same weight, i.e.,
the variance of the input signal vector over Mt transmit antennas should be an identity
matrix. Therefore, the maximal mutual information is

log2 det

(
IMr +

ρ

Mt
H̃H H̃

)
.

Finally, we assume that the channel is memoryless, i.e., the channel H changes inde-
pendently from each use of the channel to another. Thus the average capacity of the
MIMO system is given by

C = EH

{
log2 det

(
IMr +

ρ

Mt
HH H

)}
, (1.57)

in which the expectation is taken over the fading channel H . We can see that when
Mt = Mr = 1, the above result reduces to the capacity in (1.27) for a conventional
single-input-single-output (SISO) system.

In the following, we further interpret the capacity result in (1.57) for SIMO, MISO,
and MIMO systems, respectively. For a SIMO system, i.e., Mt = 1 and Mr > 1, the
channel H is a vector as H = [h1,1 h1,2 . . . h1,Mr]. Since

det
(

IMr + ρHH H
)
= det

(
IMt + ρH HH

)
= 1+ ρ

Mr∑
j=1

|h1, j |2,

in which the first equality follows from the determinant identity det(Im + AB) =
det(In+B A) for any matrices A and B of sizes m×n and n×m respectively. Therefore,
the capacity of the SIMO system is
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C = EH

⎧⎨⎩log2

⎛⎝1+ ρ
Mr∑
j=1

|h1, j |2
⎞⎠⎫⎬⎭ , (1.58)

in which
∑Mr

j=1 |h1, j |2 is a Chi-square random variable with 2Mr degrees of freedom,

compared with the SISO case where C = Eh
{
log2

(
1+ ρ|h|2)} and |h|2 is a Chi-

square random variable with two degrees of freedom.
For a MISO system, i.e., Mr = 1 and Mt > 1, the channel H is a column vector as

H = [h1,1 h1,2 . . . hMt,1]T. In this case,

det

(
IMr +

ρ

Mt
HH H

)
= 1+ ρ

Mt

Mt∑
i=1

|hi,1|2.

So the corresponding capacity can be specified as

C = EH

{
log2

(
1+ ρ

∑Mt
i=1 |hi,1|2

Mt

)}
. (1.59)

We can see that when Mt is large,
(∑Mt

i=1 |hi,1|2
)
/Mt ≈ E{|h|2}, in which |h|2 is a

Chi-square random variable with two degrees of freedom. Thus, the capacity in (1.59)
is almost the same as that of the SISO system.

For a MIMO system, without loss of generality, we assume Mt = Mr > 1. Note that

HH H =

⎡⎢⎢⎢⎢⎣
∑Mt

i=1 |hi,1|2 ∑Mt
i=1 h∗i,1hi,2 · · · ∑Mt

i=1 h∗i,1hi,Mr

h∗i,2hi,1
∑Mt

i=1 |hi,2|2 · · · ∑Mt
i=1 h∗i,2hi,Mr

...
...

. . .
...

h∗i,Mr
hi,1

∑Mt
i=1 h∗i,Mr

hi,2 · · · ∑Mt
i=1 |hi,Mr |2

⎤⎥⎥⎥⎥⎦ .
Since hi, j are i.i.d. complex Gaussian random variables with zero mean and vari-

ance one, so for large Mt,
(∑Mt

i=1 |hi, j |2
)
/Mt → 1 for each 1 ≤ j ≤ Mr and(∑Mt

i=1 h∗i, j1hi, j2

)
/Mt → 0 for any 1 ≤ j1 �= j2 ≤ Mr. Thus, for large Mt,

(1/Mt) HH H → IMr . Therefore, for large Mt , the capacity in (1.57) is

C → log2 det
(
IMr + ρ IMr

)
= Mr log2(1+ ρ), (1.60)

which increases linearly with the number of receive antennas. Note that the above dis-
cussion is also true for any Mt ≥ Mr. Based on the above discussion for SIMO, MISO,
and MIMO systems, we can see that the capacity of a multiple-antenna system increases
at least linearly with the minimum number of transmit or receive antennas.

1.4.3.3 Diversity–multiplexing tradeoff
In MIMO systems, the multiple paths created between any pair of transmit-receive
antennas can be used to obtain diversity gain. On the other hand, these paths can also
be used to transmit independent messages from each transmit antenna, in which case
it is possible to achieve an increase in transmit bit rate given by a multiplexing gain.
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At the receiver, the MIMO configuration allows for separation of each data stream. It
is readily apparent that there should be a tradeoff between diversity and multiplexing
gains because the later is achieved at the expense of signal paths that otherwise could
be used to increase the former.

The diversity–multiplexing tradeoff is specified through the choice of an achiev-
able combination of diversity and multiplexing gains, or, in other words, by specifying
the achievable diversity gain as a function of the multiplexing gain. Let d∗(r) be the
diversity–multiplexing tradeoff curve for the slow fading channel. A point on this curve,
a diversity gain d∗(r), is achieved at multiplexing gain r if

d∗(r) = − lim
γ→∞

log Pout(r log γ )

log γ
. (1.61)

This definition means that when communicating at a rate R = r log γ , the achievable
diversity gain is that for which the outage probability decays as Pout(r log γ ) ≈ γ−d∗(r)

at arbitrary large SNR. Also, this formulation can be extended to any type of fading
channel, beyond the slow fading channel, by replacing the outage probability with the
probability of error, i.e.,

d∗(r) = − lim
γ→∞

log Pe(r log γ )

log γ
. (1.62)

Example 1.6 Consider a system that transmits a single symbol using QAM modulation
at SNR γ over a channel with unit-average power Rayleigh fading and complex-valued,
circularly symmetric additive Gaussian background noise with zero mean and unit
power. At the receiver, the detection performance is driven by the minimum distance
between constellation points dmin, which at high SNR is approximately given by [219]

dmin ≈
√
γ

2R/2
.

This leads to an error probability at high SNR approximately equal to

Pe ≈ 1

d2
min

= 2R

γ
,

which results in the diversity–multiplexing tradeoff

d(r) = 1− r,

for r between 0 and 1. �

1.5 Cooperation diversity

The proliferation of wireless communication applications in the last few years is
unprecedented. Voice communication is no longer the only application people need.
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High data rate applications, wireless broadband Internet, gaming, and many other appli-
cations have emerged recently. Most future wireless systems such as ultra mobile
broadband (UMB), Long Term Evolution (LTE), and IEEE 802.16e (WiMAX) promise
very high data rates per user over high bandwidth channels (5, 10, and 20 MHz). For
example, in the fourth generation wireless networks to be deployed in the next couple
of years, namely, mobile broadband wireless access (MBWA) or IEEE 802.20, peak
date rates of 260 Mbps can be achieved on the downlink, and 60 Mbps on the uplink
[80]. These data rates can, however, only be achieved for full-rank MIMO users. More
specifically, full-rank MIMO users must have multiple antennas at the mobile terminal,
and these antennas must see independent channel fades to the multiple antennas located
at the base station. In practice, not all users can guarantee such high rates because they
either do not have multiple antennas installed on their small-size devices, or the prop-
agation environment cannot support MIMO because, for example, there is not enough
scattering. In the later case, even if the user has multiple antennas installed, full-rank
MIMO is not achieved because the paths between several antenna elements are highly
correlated.

To overcome the above limitations of achieving MIMO gains in future wireless
networks, we must think of new techniques beyond traditional point-to-point commu-
nications. The traditional view of a wireless system is that it is a set of nodes trying
to communicate with each other. From another point of view, however, because of the
broadcast nature of the wireless channel, we can think of those nodes as a set of anten-
nas distributed in the wireless system. Adopting this point of view, nodes in the network
can cooperate together for distributed transmission and processing of information. The
cooperating node acts as a relay node for the source node.

Cooperative communications is a new communication paradigm which generates
independent paths between the user and the base station by introducing a relay chan-
nel. The relay channel can be thought of as an auxiliary channel to the direct channel
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Fig. 1.16 Two transmitters associated in a user-cooperative configuration.
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between the source and destination. Since the relay node is usually several wavelengths
distant from the source, the relay channel is guaranteed to fade independently from the
direct channel, which introduces a full-rank MIMO channel between the source and the
destination. In the cooperative communications setup, there are a-priori few constraints
to different nodes receiving useful energy that has been emitted by another transmitting
node. The new paradigm in user cooperation is that, by implementing the appropriate
signal processing algorithms at the nodes, multiple terminals can process the transmis-
sions overheard from other nodes and be made to collaborate by relaying information
for each other (Figure 1.16). The relayed information is subsequently combined at a
destination node so as to create spatial diversity. This creates a network that can be
regarded as a system implementing a distributed multiple antenna where collaborating
nodes create diverse signal paths for each other.

Hence, cooperative communications is a new paradigm shift for the fourth generation
wireless system that will guarantee high data rates to all users in the network, and we
anticipate that it will be the key technology aspect in fifth generation wireless networks.

In terms of research “ascendance,” cooperative communications can be seen as
related to research in relay channel and MIMO systems. The concept of user coop-
eration itself was introduced in two-part series of papers [179, 180]. In these works,
Sendonaris et al. proposed a two user cooperation system, in which pairs of terminals in
the wireless network are coupled to help each other forming a distributed two-antenna
system. Parts II and III of this book will study in detail the design and analysis of
cooperative communications, so we defer further explanation until then.

1.6 Bibliographical notes

Because this is an introductory chapter, we have not covered in detail any of the topics
studied here. Nevertheless, there are plenty of excellent textbooks and research papers
that complement our presentation. On the topic of wireless channels, the reader can find
more information in the books by Proakis [146], Rappaport [150], Tse and Viswanath
[219], and Goldsmith [45]. For a practical presentation, the description of channel mod-
els used in different standards such as [87] are always a good reference. The books by
Tse and Viswanath [219] and by Goldsmith [45] were the main sources for most of the
topics covered in this introduction and are where further explanations can be found. The
book by Cover and Thomas [26] presents very good in-depth study of many topics in
information theory. Also, in-depth study of the concept of outage capacity can be found
in [141]. Extra coverage on the topic of diversity can be found in books such as [91],
tutorial papers such as [144], or books covering communications over fading channels
[189]. Finally, the topic of diversity–multiplexing tradeoff has been studied in [239] and
related papers.



2 Space–time diversity and coding

The idea of using multiple transmit and receive antennas in wireless communication
systems has attracted considerable attention with the aim of increasing data transmission
rate and system capacity. A key issue is how to develop proper transmission techniques
to exploit all of the diversities available in the space, time, and frequency domains.
In the case of narrow-band wireless communications, the channel fading is frequency
non-selective (flat) and diversities are available only in the space and time domains. The
modulation and coding approach that is developed for this scenario is termed space–time
(ST) coding, exploiting available spatial and temporal diversity.

In this chapter, we first describe the MIMO communication system architecture with
frequency-non-selective fading channels, which are often termed as narrow-band wire-
less channels, and discuss design criteria in achieving the full space–time diversity.
Then, we introduce several well-known ST coding techniques that can be guaranteed to
achieve full space–time diversity.

2.1 System model and performance criteria

Assume that the MIMO systems have Mt transmit and Mr receive antennas. Channel
state information (CSI) is assumed to be known at the receiver, but not at the transmit-
ter. In narrowband transmission scenario, the fading channel is frequency-non-selective
or flat, and is assumed to be quasi-static, i.e., the channel stays constant during one code-
word transmission and it may change independently from one codeword transmission
to another. In this case, diversity is available only in the space and time domains.

An ST-coded MIMO system is shown in Figure 2.1. The ST encoder divides input
data stream into b bit long blocks and, for each block, selects one ST codeword from
the codeword set of size L = 2b. The selected codeword is then transmitted through
the channel over the Mt transmit antennas and T time slots. Each codeword can be
represented as a T × Mt matrix

C =

⎡⎢⎢⎢⎢⎣
c1

1 c2
1 · · · cMt

1
c1

2 c2
2 · · · cMt

2
...

...
. . .

...

c1
T c2

T · · · cMt
T

⎤⎥⎥⎥⎥⎦ �= {ci
t : i = 1, 2, . . . ,Mt}, (2.1)
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Fig. 2.1 MIMO communication system with Mt transmit and Mr receive antennas

where ci
t denotes the channel symbol transmitted by transmit antenna i, i =1, 2, . . . ,Mt,

at discrete time t, t = 1, 2, . . . , T . The codewords are assumed to satisfy the energy
constraint E ||C ||2F = MtT , where E stands for the expectation and ||C ||F is the
Frobenius norm of C , defined as

||C ||2F = tr(CHC) = tr(CCH) =
T∑

t=1

Mt∑
i=1

|ci
t |2.

The channel coefficient between transmit antenna i and receive antenna j is denoted
by hi, j . These coefficients are modeled as zero-mean, complex Gaussian random vari-

ables with unit variance. The received signal y j
t at receive antenna j at time t can be

expressed as

y j
t =

√
ρ

Mt

Mt∑
i=1

ci
t hi, j + z j

t , t = 1, 2, . . . , T, (2.2)

where z j
t is the complex Gaussian noise component at receive antenna j at time t with

zero mean and unit variance. The factor
√
ρ/Mt in (2.2) ensures that ρ is the average

signal-to-noise ratio (SNR) at each receive antenna, and it is independent of the number
of transmit antennas. The received signal (2.2) can be rewritten in a more compact
form as

Y =
√
ρ

Mt
C H + Z , (2.3)

where Y = {y j
t : 1 ≤ t ≤ T, 1 ≤ j ≤ Mr} is the received signal matrix of size T × Mr,

H = {hi, j : 1 ≤ i ≤ Mt, 1 ≤ j ≤ Mr} is the channel coefficient matrix of size Mt×Mr,

Z = {z j
t : 1 ≤ t ≤ T, 1 ≤ j ≤ Mr} is the noise matrix of size T × Mr, and C is the

space–time codeword, as defined in (2.1).
Assume that the perfect channel information is available at the receiver, then the

maximum-likelihood (ML) decoding of the transmitted matrix is

Ĉ = arg min
C
||Y −

√
ρ

Mt
C H ||2F.
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Suppose that codeword C is transmitted and the receiver erroneously in favor of code-
word C̃ . Since the noise term is a zero-mean Gaussian random variable, the pairwise
error probability (PEP) for a fixed channel realization can be determined as (leave the
proof as an exercise)

P(C → C̃ |H) = Q

(√
ρ

2Mt
||(C − C̃)H ||F

)
= 1

π

∫ π/2

0
exp

(
− ρ

4Mt sin2 θ
||(C − C̃)H ||2F

)
dθ, (2.4)

where Q(x) = 1/
√

2π
∫∞

x exp
(−t2/2

)
dt is the Gaussian error function, and the

second equality comes from the Craig expression

Q(x) = 1

π

∫ π/2

0
exp

(
− x2

2 sin2 θ

)
dθ.

Averaging over the Rayleigh fading channel H , the PEP can be determined as follows
(leave the proof as an exercise):

P(C → C̃) = 1

π

∫ π/2

0

γ∏
i=1

(
1+ ρλi

4Mt sin2 θ

)−Mr

dθ, (2.5)

where γ = rank(C − C̃), and λ1, λ2, . . . , λγ are the non-zero eigenvalues of
(C − C̃)(C − C̃)H. The superscript H stands for the complex conjugate and transpose
of a matrix. By taking θ = π/2 in (2.5), we have the well known upper bound

P(C → C̃) ≤ 1

2

γ∏
i=1

(
1+ ρλi

4Mt

)−Mr

(2.6)

≤ 1

2

(
ρ

4Mt

)−γMr
(
γ∏

i=1

λi

)−Mr

. (2.7)

On the other hand, for high enough SNR, it is easy to see that the exact PEP in (2.5) can
be upper bounded as

P(C → C̃) ≤ 1

π

∫ π/2

0

γ∏
i=1

(
ρλi

4Mt sin2 θ

)−Mr

dθ

=
(

2γMr − 1
γMr − 1

)(
ρ

Mt

)−γMr
(
γ∏

i=1

λi

)−Mr

, (2.8)

where the equality comes from

1

π

∫ π/2

0
(sin θ)2γMrdθ = 22γMr

(
2γMr − 1
γMr − 1

)
.

Let us compare the three upper bounds in (2.6–2.8) with the exact PEP (2.5) in
Figure 2.2. We can see that, at high SNR, the upper bound (2.8) is much tighter than
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Fig. 2.2 Comparison between the exact PEP and the three upper bounds. Assume that there are Mt = 2
transmit and Mr = 1 receive antennas, γ = 2 and λ1 = λ2 = 1.

that in (2.7). Note that they share the same term on the product of the nonzero eigenval-
ues and the order of SNR, and the difference between them is a constant. We observe
that the term (ρ/Mt)

−γMr in the upper bounds is a dominant term when the SNR ρ

is high, thus for a given SNR, the rank γ should be maximized in order to minimize
the PEP error rate. Two ST code design criteria can be developed based on the upper
bound (2.7):

• Rank criterion or diversity criterion: The minimum rank of the code difference matrix
C− C̃ overall distinct codewords C and C̃ should be as large as possible. If the matrix
C − C̃ is always of full rank for a specific ST code, we say that this ST code achieves
full diversity.

• Product criterion: The minimum value of the product
∏γ

i=1 λi over all distinct code-
words C and C̃ , which is often termed as coding gain, should be as large as possible.
This quantity is referred to as the coding advantage achieved by the ST code.

The diversity criterion is the more important of the two since it determines the slope
of the performance curve. In order to achieve the maximum diversity, the difference
matrix C − C̃ has to be full rank for any pair of distinct codewords C and C̃ . The
product criterion is of secondary importance and should be optimized if the full diversity
is achieved. If (C − C̃)(C − C̃)H is of full rank, then the product λ1λ2 . . . λn is equal
to the determinant of (C − C̃)(C − C̃)H. In this case, which implies Mt ≥ T , a helpful
quantity ζ called diversity product is given by

ζ = 1

2
√

Mt
min
C �=C̃

∣∣∣det
[
(C − C̃)(C − C̃)H

]∣∣∣1/(2T )
, (2.9)
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which is a normalized coding gain. The factor 1/(2
√

Mt) guarantees that 0 ≤ ζ ≤ 1.
When all codewords are square matrices, i.e., T = Mt, the diversity product can be
simplified as

ζ = 1

2
√

Mt
min
C �=C̃

∣∣∣det(C − C̃)
∣∣∣1/Mt

, (2.10)

which is often used as a benchmark in designing ST codes.

2.2 Space–time coding

In the previous section, we analyzed the performance of the ST-coded MIMO systems
and obtained ST code design criteria in achieving the spatial and temporal diversity. In
this section, we introduce several well-known ST coding techniques that can guarantee
to achieve the full space–time diversity.

2.2.1 Cyclic and unitary ST codes

A simple and effective coding scheme achieving full space–time diversity is the cyclic
ST coding approach which follows the following code structure:

Cl =
√

Mt diag{eju1θl , eju2θl , . . . , ejuMt θl }, l = 0, 1, . . . , L − 1, (2.11)

where diag{eju1θl , eju2θl , . . . , ejuMt θl } is a diagonal matrix with diagonal entries
eju1θl , eju2θl , . . . , and ejuMt θl , in which θl = (l/L)2π and u1, u2, . . . , uMt

∈{0, 1, . . . , L − 1} are some integers to be optimized. We observe that if we denote

V1 = diag{eju1
2π
L , eju2

2π
L , . . . , ejuMt

2π
L }, (2.12)

then Cl = √Mt V l
1 for l = 0, 1, . . . , L − 1, and V L

1 = V 0
1 , which has a cyclic structure,

hence the term cyclic ST codes.
In the following, we discuss how the cyclic structure can guarantee the full diver-

sity and we will also optimize the parameters u1, u2, . . . , uMt . For any two distinct
codewords Cl and Cl ′ , l �= l ′, we have

Cl − Cl ′ =
√

Mt diag{eju1θl − eju1θl′ , eju2θl − eju2θl′ , . . . , ejuMt θl − ejuMt θl′ }
= √

Mt diag{eju1θl′ , eju2θl′ , . . . , ejuMt θl′ }
× diag{eju1θl−l′ − 1, eju2θl−l′ − 1, . . . , ejuMt θl−l′ − 1}

= Cl ′ diag{eju1θl−l′ − 1, eju2θl−l′ − 1, . . . , ejuMt θl−l′ − 1},
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in which θl−l ′ = l−l ′
L 2π . So the determinant of the difference matrix is

|det(Cl − Cl ′)| = |det(Cl ′)| ·
∣∣∣det(diag{eju1θl−l′ − 1,

eju2θl−l′ − 1, . . . , ejuMt θl−l′ − 1})
∣∣∣

= M
Mt
2

t

Mt∏
i=1

∣∣∣ejui θl−l′ − 1
∣∣∣

= M
Mt
2

t

Mt∏
i=1

∣∣∣∣2 sin
ui (l − l ′)π

L

∣∣∣∣ . (2.13)

From (2.13), we can see that if sin ui (l−l ′)
L �= 0 for u1, u2, . . . , uMt and for any l �= l ′,

then the cyclic code achieves the full diversity according to the rank criterion discussed
in the previous section.

From (2.13), we can calculate the diversity product of the cyclic code as follows:

ζ = 1

2
√

Mt
min
l �=l ′

|det(Cl − Cl ′)|1/Mt

= min
l �=l ′

∣∣∣∣∣
Mt∏

i=1

sin
ui (l − l ′)π

L

∣∣∣∣∣
1/Mt

= min
1≤l≤L−1

∣∣∣∣∣
Mt∏

i=1

sin
ui lπ

L

∣∣∣∣∣
1/Mt

. (2.14)

Thus, the parameters ui ∈ {0, 1, . . . , L − 1} should be chosen such that the diver-
sity product ζ is maximized. For small L and Mt, exhaustive computer search can be
performed to find the optimum parameters u1, u2, . . . , uMt ∈ {0, 1, . . . , L − 1}.

Example 2.1 For Mt = 2 and L = 4 (i.e., R = 1 bit/s/Hz), by exhaustive computer
search, the optimum parameters in this case are [u1 u2] = [1 1]. The corresponding
cyclic ST codes are given by:

C0 =
√

2

[
1 0
0 1

]
, C1 =

√
2

[
j 0
0 j

]
,

C2 =
√

2

[ −1 0
0 −1

]
, C3 =

√
2

[ −j 0
0 −j

]
.

The diversity product ζ = min1≤l≤3

∣∣∣∏2
i=1 sin ui lπ

4

∣∣∣1/2 = √
2

2 . �

Example 2.2 For Mt = 2 and L = 16 (i.e., R = 2 bits/s/Hz), by exhaustive computer
search, the optimum parameters in this case are [u1 u2] = [1 7]. The corresponding
cyclic ST codes are given by:
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Cl =
√

2

[
ejθl 0
0 ejθl

]
, θl = lπ

8
, l = 0, 1, . . . , 15.

�

Cyclic ST codes are special unitary codes in which all off-diagonal entries are zero. In
general, unitary matrices with nonzero diagonal entries can also be used to achieve the
full space–time diversity and provide a larger diversity product. Unitary ST codes with
codewords C0, C1, . . . , CL−1 satisfy(

1√
Mt

Cl

)H ( 1√
Mt

Cl

)
= IMt×Mt , or CH

l Cl = Mt IMt×Mt , (2.15)

for l = 0, 1, . . . , L − 1. Unitary ST codes can be designed through Fourier trans-
forms or by using unitary matrices with some special structures. For example, the
following unitary ST code has a larger diversity product than the cyclic code shown
in Example 2.1.

Example 2.3 For Mt = 2 and L = 4 (i.e., R = 1 bit/s/Hz), there are four unitary
matrices with size 2× 2 that can guarantee the full space–time diversity:

C0 =
√

2

3

[
j 1− j

−1− j −j

]
, C1 =

√
2

3

[ −j −1− j
1− j j

]
,

C2 =
√

2

3

[ −j 1+ j
−1+ j j

]
, C3 =

√
2

3

[
j −1+ j

1+ j −j

]
.

The diversity product of this unitary ST code is ζ =
√

2
3 ≈ 0.8165. �

2.2.2 ST codes from orthogonal designs

ST codes from orthogonal designs have received considerable attention in MIMO wire-
less communications. Such codes can guarantee to achieve the full space–time diversity
and also provide simple fast ML decoding algorithms. Some codes have been adopted
in the WLAN standard IEEE 802.11n.

A motivated example: Alamouti scheme
Alamouti proposed in 1998 [5] a simple scheme for MIMO systems with two transmit
antennas as follows:

G2(x1, x2) =
[

x1 x2

−x∗2 x∗1

]
, (2.16)

in which x1 and x2 are arbitrary complex symbols and an energy constraint is
E ||G2||2F = 4. The proposed scheme in (2.16) has an interesting property that for
arbitrary complex x1 and x2, the columns of G2 are orthogonal to each other, i.e.,
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GHG = (|x1|2 + |x2|2)I2. (2.17)

Due to the special structure, the Alamouti scheme can guarantee to achieve the full
space–time diversity. In fact, for any two distinct codewords G2(x1, x2) and G2(x̃1, x̃2)

with (x1, x2) �= (x̃1, x̃2), the difference matrix is

�G
�= G2(x1, x2)− G2(x̃1, x̃2) =

[
x1 − x̃1 x2 − x̃2

−(x2 − x̃2)
∗ (x1 − x̃1)

∗
]
.

Since

(�G)H(�G) = (|x1 − x̃1|2 + |x2 − x̃2|2)I2,

so

det
[
(�G)H(�G)

]
= (|x1 − x̃1|2 + |x2 − x̃2|2)2,

which means

det(�G) = |x1 − x̃1|2 + |x2 − x̃2|2. (2.18)

We observe that if (x1, x2) �= (x̃1, x̃2), det(�G) �= 0, which implies that the Alamouti
scheme can achieve full diversity. Based on (2.18), we can easily calculate the diversity
product of the Alamouti scheme as follows:

ζ = 1

2
√

2
min

(x1,x2)�=(x̃1,x̃2)
|det(�G)|1/2

= 1

2
√

2
min

(x1,x2)�=(x̃1,x̃2)

(
|x1 − x̃1|2 + |x2 − x̃2|2

)
= 1

2
√

2
min

x1 �=x̃1

|x1 − x̃1|. (2.19)

Example 2.4 If x1 and x2 are chosen from QPSK symbols {±1,± j}, in this case the
spectrum efficiency of the Alamouti scheme is 2 bits/s/Hz. The corresponding diversity
product is ζ = 1/2. �

In the following, we show that the Alamouti scheme has a simple fast ML decod-
ing algorithm. Assuming that the MIMO fading channel is quasi-static, the MIMO
transceiver signal model in (2.3) can be specified as

Y =
√
ρ

2
G2(x1, x2)H + Z , (2.20)

where Y, H , and Z have a size of 2 × Mr. The ML decoding of x1 and x2 at the
receiver is(

x̂1, x̂2
) = arg min

x1,x2
||Y −

√
ρ

2
G2(x1, x2)H ||2F

= arg min
x1,x2

(
||Y ||2F −

√
2ρ Re

{
tr
(
Y HG2 H

)}
+ ρ

2
tr
(

HHGH
2 G2 H

))
= arg min

x1,x2

(
−√2ρ Re{tr

(
G2 HY H

)
} + ρ

2

(
|x1|2 + |x2|2

)
||H ||2F

)
.
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Note that the size of HY H is 2× 2. Denote

HY H �=
[

a b
c d

]
,

then

tr(G2 HY H) = (ax1 + dx∗1 )+ (cx2 + bx∗2 ).

So, the ML decoding of x1 and x2 can be further specified as(
x̂1, x̂2

) = arg min
x1,x2

(
−√2ρ Re{(ax1 + dx∗1 )+ (cx2 + bx∗2 )}

+ ρ
2
(|x1|2 + |x2|2)||H ||2F

)
= arg min

x1,x2
f1(x1)+ f2(x2)

=
(

arg min
x1

f1(x1), arg min
x2

f2(x2)

)
, (2.21)

in which

f1(x1) = −
√

2ρ Re(ax1 + dx∗1 )+
ρ

2
|x1|2||H ||2F,

f2(x2) = −
√

2ρ Re(cx2 + bx∗2 )+
ρ

2
|x2|2||H ||2F.

We can see that x1 and x2 can be decoded separately, not jointly. Suppose that x1, x2 ∈
A, then the decoding complexity of the above algorithm is 2|A|, while the complexity of
the original ML decoding is |A|2. For example, if x1, x2 ∈ 16−QAM, then 2|A| = 32,
while |A|2 = 256.

2.2.2.1 ST codes from orthogonal designs
The Alamouti scheme was proposed only for MIMO systems with Mt = 2 transmit
antennas. A natural question is: for MIMO systems with a higher number of transmit
antennas (Mt ≥ 3), do there exist similar structures like G2 that can guarantee the full
diversity and have a fast ML decoding algorithm? The answer is positive and they are
related to the orthogonal designs.

An orthogonal design in variables x1, x2, . . . , xk is a p × n matrix G such that:

(i) the entries of G are complex linear combinations of x1, x2, . . . , xk and their
complex conjugates x∗1 , x∗2 , · · · , x∗k ;

(ii) the columns of G are orthogonal to each other, i.e.,

GHG = (|x1|2 + |x2|2 + · · · + |xk |2)In . (2.22)

Each of such orthogonal designs is ready to be used to form a ST code that can guarantee
to achieve the full diversity and have a simple fast ML decoding algorithm, in which n
is related to the number of transmit antennas, Mt, and p is related to the time delay of
each code, T . The rate of an orthogonal design G is defined as R = k/p, which means
that the resulting ST code with block length p carries k information symbols.
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The first ST code from orthogonal design was proposed by Alamouti for systems with
Mt = 2 transmit antennas, which is specified in (2.16). Clearly, the rate of G2(x1, x2)

is 1. For three and four transmit antennas, ST codes from orthogonal designs with rate
R = 3/4 are given by

G3(x1, x2, x3) =

⎡⎢⎢⎣
x1 x2 x3

−x∗2 x∗1 0
−x∗3 0 x∗1

0 −x∗3 x∗2

⎤⎥⎥⎦ , (2.23)

G4(x1, x2, x3) =

⎡⎢⎢⎣
x1 x2 x3 0

−x∗2 x∗1 0 x3

−x∗3 0 x∗1 −x2

0 −x∗3 x∗2 x1

⎤⎥⎥⎦ . (2.24)

In fact, G3 is obtained by taking the first three columns of G4.
For Mt = 2k (k = 1, 2, 3, . . .), a recursive expression for orthogonal designs can be

given as follows. Let

G1(x1) = x1 I1,

and

G2k (x1, . . . , xk+1) =
[

G2k−1(x1, . . . , xk) xk+1 I2k−1

−x∗k+1 I2k−1 GH
2k−1(x1, . . . , xk)

]
, (2.25)

for k = 1, 2, 3, . . .. Then, G2k (x1, x2, . . . , xk+1) is an orthogonal design of size 2k ×2k

with complex variables x1, x2, . . . , xk+1. The rate of G2k is (k + 1)/2k , which is the
maximum rate for orthogonal designs of square size. If the number of transmit antennas
is not a power of two, a ST code can be obtained by deleting some columns from a
larger ST code with a number of transmit antennas that is a power of two.

Example 2.5 According to the recursive method, ST codes from orthogonal designs
are illustrated for Mt = 2, 4, 8 as follows:

G2(x1, x2) =
[

G1(x1) x2

−x∗2 GH
1 (x1)

]
=
[

x1 x2

−x∗2 x∗1

]
;

G4(x1, x2, x3) =
[

G2(x1, x2) x3 I2

−x∗3 I2 GH
2 (x1, x2)

]
=

⎡⎢⎢⎣
x1 x2 x3 0

−x∗2 x∗1 0 x3

−x∗3 0 x∗1 −x2

0 −x∗3 x∗2 x1

⎤⎥⎥⎦ ;
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G8(x1, x2, x3, x4) =
[

G4(x1, x2, x3) x4 I4

−x∗4 I4 GH
4 (x1, x2, x3)

]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 x2 x3 0 x4 0 0 0
−x∗2 x∗1 0 x3 0 x4 0 0
−x∗3 0 x∗1 −x2 0 0 x4 0

0 −x∗3 x∗2 x1 0 0 0 x4

−x∗4 0 0 0 x∗1 −x2 −x3 0
0 −x∗4 0 0 x∗2 x1 0 −x3

0 0 −x∗4 0 x∗3 0 x1 x2

0 0 0 −x∗4 0 x∗3 −x∗2 x∗1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

�

For ST codes from orthogonal designs with non-square size (p �= n), a systematic
design method can provide higher rates which are (n0 + 1)/(2n0) if the number of
transmit antennas is n = 2n0 or n = 2n0 − 1. For example, for n = 4 transmitter
antennas, an orthogonal ST code with non-square size is given by

G6 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s1 s2 s3 0
−s∗2 s∗1 0 s∗4
−s∗3 0 s∗1 s∗5

0 −s∗3 s∗2 s∗6
0 −s4 −s5 s1

s4 0 −s6 s2

s5 s6 0 s3

−s∗6 s∗5 −s∗4 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

2.2.2.2 ST Codes from quasi-orthogonal designs
ST codes from orthogonal designs have advantages of achieving full diversity and have
fast ML decoding algorithms. However, the maximum rate of an orthogonal design is
only 3/4 for three and four transmit antennas, and it is difficult to construct orthogonal
designs with rates higher than 1/2 for more than four transmit antennas. To improve the
symbol transmission rate, one natural way is to relax the requirement of the orthogonal-
ity, i.e., to consider ST codes from quasi-orthogonal designs. With the quasi-orthogonal
structure, the ML decoding at the receiver can be done by searching pairs of symbols,
similar to the codes from orthogonal designs where the ML decoding can be done by
searching single symbols.

For four transmit antennas, a quasi-orthogonal ST code with a symbol transmission
rate of one can be constructed from the Alamouti scheme as follows:

C =
[

A B
−B A

]
=

⎡⎢⎢⎢⎣
x1 x2 x3 x4

−x∗2 x∗1 −x∗4 x∗3
−x∗3 −x∗4 x∗1 x∗2

x4 −x3 −x2 x1

⎤⎥⎥⎥⎦ , (2.26)
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where

A =
[

x1 x2

−x∗2 x∗1

]
, B =

[
x3 x4

−x∗4 x∗3

]
, (2.27)

and A and B are the complex conjugates of A and B, respectively. One can check that

CHC =

⎡⎢⎢⎣
a 0 0 b
0 a −b 0
0 −b a 0
b 0 0 a

⎤⎥⎥⎦ , (2.28)

where a = |x1|2 + |x2|2 + |x3|2 + |x4|2, and b = x1x∗4 + x4x∗1 − x2x∗3 − x3x∗2 . We
can see that the ML decision metric of this code can be written as the sum of two terms
f1(s1, s4)+ f2(s2, s3), where f1 depends only on s1 and s4, and f2 depends only on s2

and s3. Thus, the minimization can be done separately on these two terms, i.e., symbol
pairs (s1, s4) and (s2, s3) can be decoded separately, which leads to a fast ML decoding.
However, according to (2.28), the minimum rank of the difference matrix between two
distinct codewords is 2, which means that the code (2.26) does not have the full diversity.

A similar quasi-orthogonal STBC for four transmit antennas has the following
structure:

C =
[

A B
B A

]
=

⎡⎢⎢⎣
x1 x2 x3 x4

−x∗2 x∗1 −x∗4 x∗3
x3 x4 x1 x2

−x∗4 x∗3 −x∗2 x∗1

⎤⎥⎥⎦ , (2.29)

where A and B are the same as those in (2.27). Similarly,

CHC =

⎡⎢⎢⎣
a 0 b 0
0 a 0 b
b 0 a 0
0 b 0 a

⎤⎥⎥⎦ ,
where a = |x1|2 + |x2|2 + |x3|2 + |x4|2, and b = x1x∗3 + x3x∗1 − x2x∗4 − x4x∗2 . The
behaviors of (2.29) are similar to those of (2.26).

The performance of the quasi-orthogonal ST codes in (2.26) and (2.29) is better than
that of the codes from orthogonal designs at low SNR due to the higher rate, but worse
at high SNR since it does not guarantee full diversity. In fact, in both (2.26) and (2.29),
the symbols are chosen from the same signal constellation arbitrarily and the resulting
ST codes cannot guarantee the full diversity. A method of optimum signal rotation can
be developed for the quasi-orthogonal ST codes to achieve full diversity.

The main idea of the optimum signal rotation is to choose the signal constellations
properly to ensure that the resulting codes achieve the full diversity. In the following, we
focus on the code structure in (2.29). The discussion with the code structure in (2.26)
is similar. Assume that G p(x1, x2, . . . , xk) is a p × p orthogonal design in complex
variables x1, x2, . . . , xk . A quasi-orthogonal design Q2p(x1, x2, . . . , x2k) of size 2p ×
2p in complex variables x1, x2, . . . , x2k is defined as
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Q2p =
[

A B
B A

]
, (2.30)

where A = G p(x1, x2, . . . , xk) and B = G p(xk+1, xk+2, . . . , x2k). Since both A and B
are orthogonal designs, we have

QH
2p Q2p =

[
AH A + BH B AH B + BH A
BH A + AH B BH B + AH A

]
=
[

aIp bIp

bIp a Ip

]
, (2.31)

where a =∑2k
i=1 |xi |2, and b =∑k

i=1(xi x∗k+i + xk+i x∗i ).
For each i, 1 ≤ i ≤ k, let Ai denote a signal constellation with average energy

1, and Ak+i denote the signal constellation generated by rotating Ai with an angle of
φi , i.e., Ak+i = {ejφi s : s ∈ Ai }, denoted as ejφiAi . Furthermore, let |Ai | denote
the number of elements in Ai . For any information sequence of log2(

∏2k
i=1 |Ai |) bits,

it chooses 2k symbols s1 ∈ A1, s2 ∈ A2, . . . , s2k ∈ A2k . In Q2p(x1, x2, . . . , x2k),
if we replace x1, x2, . . . , x2k by s1, s2, . . . , s2k , respectively, we have a new matrix
Q2p(s1, s2, . . . , s2k). Consequently, an ST code from a quasi-orthogonal design can
be formed as

C = √γ Q2p(s1, s2, . . . , s2k). (2.32)

The factor
√
γ ensures that the transmitted signal in (2.32) obeys the energy constraint.

According to (2.31), the ML decoding of (2.32) can be done separately on each pair of
symbols si and sk+i .

For any pair of distinct transmitted signals C = √
γ Q2p(s1, s2, . . . , s2k) and C̃ =√

γ Q2p(s̃1, s̃2, . . . , s̃2k), the difference matrix is
√
γ Q2p(s1−s̃1, s2−s̃2, . . . , s2k−s̃2k),

denoted as �C for simplicity. Then, from (2.31), we have

(�C)H(�C) = γ
[
(�a)Ip (�b)Ip

(�b)Ip (�a)Ip

]
, (2.33)

where �a =
2k∑

i=1

|si − s̃i |2, and

�b =
k∑

i=1

[
(si − s̃i )(sk+i − s̃k+i )

∗ + (sk+i − s̃k+i )(si − s̃i )
∗] .

The determinant of (2.33) can be calculated as

det
[
(�C)H(�C)

]
= γ 2p

[
(�a)2 − (�b)2

]p
. (2.34)

Note that for both codes in (2.26) and (2.29), φi = 0 for all i , therefore the determinant
in (2.34) can be zero, for example when si − s̃i = sk+i − s̃k+i , which means that
the space–time signals do not have the full diversity. Now we can properly choose the
rotation angle φi to ensure that the determinant in (2.34) is nonzero.

Example 2.6 If all of Ai , 1 ≤ i ≤ k, are BPSK, i.e., Ai = {1,−1}, then we choose
the rotation angle as π/2, i.e., φi = π/2. The resulting signal constellation Ak+i =
ejπ/2Ai = {j,−j}. Therefore, for any two symbols si and s̃i in Ai , the difference si − s̃i
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belongs to set {0, 2,−2}; and for any two symbols sk+i and s̃k+i in Ak+i , the difference
sk+i − s̃k+i belongs to the set {0, 2j,−2j}. It is easy to check that �b in (2.33) is zero.
Thus, the determinant of (�C)H(�C) is nonzero, which means that the space–time
signals achieve the full diversity. �

According to (2.34), the diversity product of the quasi-orthogonal ST codes with signal
rotation can be calculated as

ζ = 1

2
√

2p
min
�C �=0

∣∣∣det
[
(�C)H(�C)

]∣∣∣1/(4p)

= 1

2

√
γ

2p
min

1≤i≤k
min

u, ũ ∈ Ai ; v, ṽ ∈ Ak+i

(u, v) �= (ũ, ṽ)

∣∣∣(u − ũ)2 − (v − ṽ)2
∣∣∣1/2 .

(2.35)

For convenience, let us define the minimum ζ -distance between two signal constella-
tions A and B as follows:

dmin,ζ (A,B)
�= min
(s1,s2)�=(s̃1,s̃2)

∣∣∣(s1 − s̃1)
2 − (s2 − s̃2)

2
∣∣∣1/2 , (2.36)

where s1, s̃1 and s2, s̃2 are understood as s1, s̃1 ∈ A, and s2, s̃2 ∈ B. Obviously, we have

dmin,ζ (A,B) ≤ min {dmin(A), dmin(B)} , (2.37)

where dmin(A) and dmin(B) are the minimum Euclidean distances of the signal
constellations A and B, respectively. Thus, we have

dmin,ζ (A, e jφA) ≤ dmin(A). (2.38)

We now go back to (2.35). The diversity product can be rewritten as

ζ = 1

2

√
γ

2p
min

1≤i≤k
dmin,ζ (Ai ,Ak+i )

≤ 1

2

√
γ

2p
min

1≤i≤k
dmin(Ai ). (2.39)

We observe that the diversity product is determined by the minimumζ -distance of each
pair of signal constellationsAi andAk+i , and the minimum ζ -distance is upper bounded
by the minimum Euclidean distance of each signal constellation.

In the example we discussed before, where the signal constellations Ai are BPSK and
the rotation angle is chosen as π/2, the minimum ζ -distance between Ai and ejπ/2Ai

is equal to the minimum Euclidean distance of Ai . However, for a general signal con-
stellation, dmin(A) is not always achieved by dmin,ζ (A, ejφA). We will show later that
if A is 8-PSK, then the minimum ζ -distance dmin,ζ (A, e jφA) cannot be greater than
(2 sinπ/8)1/2dmin(A), which is strictly less than dmin(A).

In the following, we determine an optimum rotation angle φ for a given signal con-
stellation A such that the minimum ζ -distance between A and ejφA is maximized. First,
let us derive a necessary condition for the minimum ζ -distance to reach the minimum
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Euclidean distance. Specifically, for a fixed signal constellation A, assume sb and se are
two signals in A such that the Euclidean distance between sb and se is the minimum
Euclidean distance of A, i.e., |sb − se| = dmin. From (2.36), we have

dmin,ζ (A, ejφA) ≤
∣∣∣(sb − se)

2 − (ejφsb − ejφse)
2
∣∣∣1/2

= |1− ej2φ |1/2 · |sb − se|
= |2 sinφ|1/2dmin.

Thus, we can conclude that the minimum ζ -distance between A and ejφA cannot be
greater than |2 sinφ|1/2dmin, i.e.,

dmin,ζ (A, ejφA) ≤ |2 sinφ|1/2dmin. (2.40)

A necessary condition for the minimum ζ -distance to reach the minimum Euclidean
distance is |2 sinφ|1/2 ≥ 1, i.e., | sinφ| ≥ 1/2 or π/6 ≤ |φ| ≤ 5π/6. If the
signal constellation A is r -PSK, then the effective rotation angle is in the interval
[−π/r, π/r ] from the symmetry of signals in r -PSK. According to (2.40), we have
dmin,ζ (A, ejφA) ≤ |2 sin(π/r)|1/2dmin. Thus, for r -PSK with r > 6, the minimum
ζ -distance is strictly less than dmin. Note that for different signal constellations, the
corresponding optimum rotation angles may be different.

Example 2.7 Assume that A is a signal constellation drawn from a square lattice (grid),
where the side length of the squares is equal to dmin(A). Then, the minimum ζ -distance
between A and ejπ/4A is dmin(A), i.e.,

dmin,ζ (A, ejπ/4A) = dmin(A).

The signal constellation A can be of any arbitrary subset of the square lattice. The only
requirement is that the side length of the squares in the lattice is equal to dmin(A). Thus,
for the commonly used QAM1 constellations, the optimum rotation angle is φ = π/4.

�

Example 2.8 Assume that A is a signal constellation drawn from an equilaterally trian-
gular lattice, where the side length of the equilateral triangles is equal to dmin(A). Then,
the minimum ζ -distance between A and ejπ/6A is dmin(A), i.e.,

dmin,ζ (A, ejπ/6A) = dmin(A).

The signal constellation A could be of any subset of the lattice of equilateral triangles
with the requirement that the side length of the equilateral triangles is equal to dmin(A).
For such a signal constellation A, φ = π/6 is an optimum rotation angle. �

1 Strictly, QAM stands for a constellation drawn from a square lattice, where the side length of the squares in
the lattice is equal to the minimum Euclidean distance of the constellation.
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2.2.3 Diagonal algebraic ST codes

Another approach to design full-diversity ST codes is to apply transforms (such as
Hadamard transforms and Vandermonde transforms) over input data symbols and feed
the output to different transmit antennas at different times [28, 122]. Specifically, for
K information symbols, s1 s2 · · · sK (from arbitrary signal constellations such as PSK,
QAM, and so on), let

[x1 x2 · · · xK ] = [s1 s2 · · · sK ] · V (θ1, θ2, . . . , θK ), (2.41)

where V (θ1, θ2, . . . , θK ) is a Vandermonde matrix with variables θ1, θ2, . . . , θK , which
is a K × K matrix:

V (θ1, θ2, . . . , θK )
�=

⎡⎢⎢⎢⎣
1 1 · · · 1
θ1 θ2 · · · θK
...

...
. . .

...

θK−1
1 θK−1

2 · · · θK−1
K

⎤⎥⎥⎥⎦ . (2.42)

The variables θ1, θ2, . . . , θK should be optimized for different signal constellations.
With [x1 x2 · · · xK ], a diagonal ST codeword can be formed as follows:

C = diag{x1, x2, . . . , xK }, (2.43)

which can be sent out by K transmit antennas.
The ST code in (2.43) satisfies the energy constraint of E ||C ||2F = K 2, which can be

verified as follows:

E ||C ||2F =
K∑

i=1

E |xi |2 =
K∑

i=1

E

∣∣∣∣∣∣∣∣∣[s1 s2 · · · sK ] ·

⎡⎢⎢⎢⎣
1
θi
...

θK−1
i

⎤⎥⎥⎥⎦
∣∣∣∣∣∣∣∣∣

2

=
K∑

i=1

E

∣∣∣∣∣
K∑

k=1

skθ
k−1
i

∣∣∣∣∣
2

=
K∑

i=1

K∑
k=1

E |sk |2 = K 2,

in which we use the assumptions that sk are independent of each other, Esk = 0,
E |sk |2 = 1, and |θi | = 1.

The full diversity of the diagonal code in (2.43) can be guaranteed by the Vander-
monde matrix with algebraic numbers θ1, θ2, . . . , θK . For any two distinct codewords
C = diag{x1, x2, . . . , xK } (with input information symbols s1 s2 · · · sK ) and C̃ =
diag{x̃1, x̃2, . . . , x̃K } (with input information symbols s̃1 s̃2 · · · s̃K ), the determinant
of the difference matrix can be calculated as follows:
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det(C − C̃) =
K∏

i=1

|xi − x̃i |

=
K∏

i=1

∣∣∣∣∣
K∑

k=1

(sk − s̃k)θ
k−1
i

∣∣∣∣∣ .
For a given signal constellation, the minimum value of the determinant can be maxi-
mized by properly selecting the variables θ1, θ2, . . . , θK . We summarize in the following
some of the best-known results from [44, 14]:

(i) If K = 2s (s ≥ 1), the optimum transform MK for a signal constellation � from

Z[j] �= {a + b j : both a and b are integers, j = √−1} is given by

MK = 1√
K

V (θ1, θ2, . . . , θK ), (2.44)

where θ1, θ2, . . . , θK are the roots of the polynomial θK − j over field Q[j] �=
{c + d j : both c and d are rational numbers}, and they can be determined as

θk = ej 4k−3
2K π , k = 1, 2, . . . , K . (2.45)

(ii) If K = 3 ·2s (s ≥ 0), the optimum transform MK for a signal constellation� from

Z[ω] �= {a + bω : both a and b are integers, ω = (−1+ j
√

3)/2} is given by

MK = 1√
K

V (θ1, θ2, . . . , θK ), (2.46)

where θ1, θ2, . . . , θK are the roots of the polynomial θK + ω over field Q[ω] �=
{c + d ω : both c and d are rational numbers}, and they can be specified as

θk = ej 6k−1
3K π , k = 1, 2, . . . , K . (2.47)

The signal constellations � from Z[j] such as QAM and PAM constellations are of
practical interest.

Example 2.9 When K = 2, for two 4-QAM symbols s1 and s2, let [x1 x2] =
[s1 s2] · V (θ1, θ2), where the optimum variables θ1 = ej π4 and θ2 = ej 5π

4 . Thus, the
corresponding 2× 2 diagonal algebraic ST code is formed as:

C =
[

s1 + s2ej π4 0
0 s1 − s2ej π4

]
.

�
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2.3 Chapter summary and bibliographical notes

In this chapter, we reviewed ST code design criteria for MIMO communications systems
for narrowband wireless communications. We derived ST code pair-wise error proba-
bility and developed several error bounds. ST code design criteria were then developed
based on a tight error probability bound. We reviewed several well-known ST block
codes that can achieve full spatial and temporal diversity, including ST cyclic codes, ST
unitary codes, ST codes from orthogonal and quasi-orthogonal designs, and diagonal
algebraic codes.

We provide some bibliographical notes as follows. Both [214] and [40] discovered
in the late 1990s that MIMO communication systems deploying multiple transmit and
receive antennas have a huge capacity gain compared to that of conventional single
antenna communication systems. Since then, a large number of works have been carried
out to exploit MIMO capacity and performance diversity. The fundamental performance
criteria of ST codes were derived in [52, 212]. Two ST code design criteria based on
the upper bound (2.7) were developed in [52, 212]. The quantity of diversity product
was given in [70, 184]. To achieve the maximum diversity (or the maximum degrees
of freedom available in the multiple antenna systems), the difference matrix between
any two distinct codewords should be of full rank. Some popular ST codes achieving
full space–time diversity include cyclic ST codes in [70, 77], orthogonal ST codes in
[5, 213], quasi-orthogonal ST codes in [90, 216, 202], and diagonal algebraic ST codes
in [28]. In addition, diversity analysis of space–time modulation for time-correlated
Rayleigh fading channels can be found in [201].

The cyclic ST coding approach was developed specifically in [70, 77] in 2000, inde-
pendently. Unitary ST codes have been designed through Fourier transforms [71, 72]
or by using unitary matrices with some special structures [71, 72, 184, 63]. The first
ST code from orthogonal design was proposed by Alamouti in [5] for systems with
Mt = 2 transmit antennas. For three and four transmit antennas, ST codes from orthog-
onal designs with rate R = 3/4 were presented in [213, 43, 217]. For Mt = 2k

(k = 1, 2, 3, . . .), a recursive expression for orthogonal designs was given in [200].
Designs for space–time trellis codes were presented in [164, 165]. For ST code from
orthogonal designs with non-square size (p �= n), a general design with rate 1/2 for any
number of transmit antennas was shown in [213]. Later, a systematic design method
was presented in [203] that provide higher rates.

For 4 transmit antennas, the quasi-orthogonal ST code with symbol transmission rate
1 was proposed in [90, 216] but without achieving full diversity. Later, a method of
rotating signal constellations was proposed in [202] for the quasi-orthogonal ST codes
to achieve full diversity, in which optimum rotation angles were also developed. Diag-
onal algebraic ST codes were proposed in [28] and related code transforms were also
developed in [44, 14, 122].
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Exercises

2.1 Show the derivation in (2.4), i.e., to show that the instantaneous PEP between
two distinct codewords C and C̃ can be determined as

P(C → C̃ |H) = Q

(√
ρ

2Mt
||(C − C̃)H ||F

)
= 1

π

∫ π/2

0
exp

(
− ρ

4Mt sin2 θ
||(C − C̃)H ||2F

)
dθ,

where Q(x) = (1/
√

2π)
∫∞

x exp
(−t2/2

)
dt is the Gaussian error function.

Moreover, show that by averaging over the Rayleigh fading channel H , the
average PEP can be determined as

P(C → C̃) = 1

π

∫ π/2

0

γ∏
i=1

(
1+ ρλi

4Mt sin2 θ

)−Mr

dθ,

where γ = rank(C − C̃), and λ1, λ2, . . . , λγ are the nonzero eigenvalues of
(C − C̃)(C − C̃)H.

2.2 A MIMO system with Mt = 2 transmit antennas uses the following set of ST
signals:

C0 =
√

2

3

[
j 1− j

−1− j −j

]
, C1 =

√
2

3

[ −j −1− j
1− j j

]
,

C2 =
√

2

3

[ −j 1+ j
−1+ j j

]
, C3 =

√
2

3

[
j −1+ j

1+ j −j

]
.

Show that this set of ST signals can guarantee the full diversity, and determine
the diversity product of the ST signals.

2.3 An orthogonal ST code for MIMO systems with Mt = 4 transmit antennas is
given by

G4 =

⎡⎢⎢⎣
x1 x2 x3 0

−x∗2 x∗1 0 x3

−x∗3 0 x∗1 −x2

0 −x∗3 x∗2 x1

⎤⎥⎥⎦ ,
where x1, x2, and x3 can be chosen from arbitrary signal constellations.
(a) Show that

GH
4 G4 = (|x1|2 + |x2|2 + |x3|2)I4.

(b) If x1, x2 and x3 are chosen independently from QPSK signals {1,−1, j,−j},
what is the spectral efficiency (bits per time slot) of the ST code?

(c) Determine the normalized coding gain of the orthogonal ST code when x1,
x2, and x3 are chosen independently from QPSK signals {1,−1, j,− j}.

(d) Show that the orthogonal ST code has fast maximum-likelihood (ML) decod-
ing at the receiver, i.e., x1, x2, and x3 can be decoded separately, not
jointly.
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2.4 For k = 1, 2, 3, . . ., let

G2k (x1, . . . , xk+1) =
[

G2k−1(x1, . . . , xk) xk+1 I2k−1

−x∗k+1 I2k−1 GH
2k−1(x1, . . . , xk)

]
,

and G1(x1) = x1 I1. Show that

GH
2k G2k = G2k GH

2k = (|x1|2 + |x2|2 + · · · + |xk+1|2)I2k ,

i.e., G2k (x1, x2, . . . , xk+1) is an orthogonal design of size 2k × 2k with complex
variables x1, x2, . . . , xk+1.

2.5 A quasi-orthogonal ST code for MIMO systems with Mt = 4 transmit antennas
is given by

C =

⎡⎢⎢⎣
x1 x2 x3 x4

−x∗2 x∗1 −x∗4 x∗3
x3 x4 x1 x2

−x∗4 x∗3 −x∗2 x∗1

⎤⎥⎥⎦ ,
where x1, x2, x3, and x4 can be chosen from arbitrary signal constellations.
(a) Show that

CHC =

⎡⎢⎢⎣
a 0 b 0
0 a 0 b
b 0 a 0
0 b 0 a

⎤⎥⎥⎦ ,
where a = |x1|2+|x2|2+|x3|2+|x4|2, and b = x1x∗3 + x3x∗1 − x2x∗4 − x4x∗2 .

(b) Show that the quasi-orthogonal ST code has a fast ML decoding that the
symbol pairs (x1, x3) and (x2, x4) can be decoded independently.

(c) Show that if x1, x2, x3, and x4 are chosen from a same signal constellation,
the code achieves only a diversity order of 2.

(d) If x1 and x2 are chosen from a QAM signal constellation A, and x3 and
x4 are chosen from a rotated signal constellation ejφA with a rotation angle
φ ∈ (0, π/2), show that the resulting quasi-orthogonal ST code guarantees
a full diversity order of 4 and the optimum rotation angle is φ = π/4 in this
case.

2.6 A diagonal algebraic ST code for Mt = 2 transmit antennas is given by

C =
[

s1 + s2ej π4 0
0 s1 − s2ej π4

]
,

in which s1 and s2 are chosen from 4-QAM constellation. Show that the code
achieves a full diversity, and determine the corresponding diversity product.

2.7 (Simulation project) Consider a MIMO system with Mt = 2 transmit and Mr =
1 receive antennas. It uses a set of two ST signals:

C0 =
[

1 1
−1 1

]
, C1 =

[ −1 −1
1 −1

]
.



Exercises 63

The transceiver signal can be modeled as:[
y1

y2

]
=
√
ρ

Mt
Ci

[
h1

h2

]
+
[
η1

η2

]
, (E2.1)

where y1 and y2 are received signals at time slots 1 and 2, respectively, and h1

and h2 are channel coefficients from the two transmit antennas to the receive
antenna which are modeled as independent complex Gaussian random variables
with zero mean and variance one, i.e., C N (0, 1). The noise η1 and η2 are also
modeled as C N (0, 1).
(a) Determine the average signal-to-noise ratio (SNR) at the receiver.
(b) For fixed channel realizations h1 and h2, show that the instantaneous

pairwise error probability between C0 and C1 is

Pr{C0 → C1 | h1, h2} = Q

(√
2ρ(|h1|2 + |h2|2)

)
, (E2.2)

where Q(x) = (1/√2π)
∫∞

x e−t2/2dt .
(c) Determine a PEP between C0 and C1 by averaging the instantaneous PEP

over the Rayleigh fading channels h1 and h2.
(d) Simulate the system by Matlab and plot the symbol error rate curve. In this

case, the symbol error rate is the same as the PEP between C0 and C1. In the
same figure, plot the theoretical PEP result from (c) and compare it with the
simulation curve.

2.8 (Simulation project) Design cyclic ST code for MIMO systems with two
transmit antennas (Mt = 2) by exhaustive computer searching:

Cl =
√

2

(
eju1θl 0

0 eju2θl

)
,

where θl = l
L 2π, l = 0, 1, . . . , L − 1.

(a) When size L = 8, search optimal parameters u1, u2 ∈ {0, 1, . . . , L − 1}
such that the coding gain is maximized. Determine the normalized coding
gain accordingly.

(b) Can we get larger coding gain if we allow non-integer parameters u1 and u2?
To answer this question, please determine parameters u1 and u2 by exhaus-
tive searching in the interval [0, L − 1] (you may use searching step 0.1 or
smaller).

(c) Repeat questions (a) and (b) for size L = 32.



3 Space–time–frequency diversity
and coding

In broadband wireless communications, the channel exhibits frequency selectivity
(delay spread), resulting in inter-symbol interference (ISI) that can cause serious per-
formance degradation. A mature technique to mitigate the frequency selectivity is to
use orthogonal frequency division multiplexing (OFDM), which eliminates the need for
high complexity equalization and offers high spectral efficiency. In order to combine the
advantages of both the MIMO systems and the OFDM, space–frequency (SF)-coded
MIMO-OFDM systems, where two-dimensional coding is applied to distribute chan-
nel symbols across space (transmit antennas) and frequency (OFDM tones) within one
OFDM block, can be developed to exploit the available spatial and frequency diversity.

If longer decoding delay and higher decoding complexity are allowable, one may
consider coding over several OFDM block periods, resulting in space–time–frequency
codes to exploit all of the spatial, temporal, and frequency diversity.

The chapter is organized as follows. First, we focus on SF-coded MIMO-OFDM
systems in broadband scenario and introduce two systematic approaches to design
SF codes to achieve full spatial and frequency diversity within each OFDM block.
Then, we consider STF coding for MIMO-OFDM systems, where the coding is applied
across multiple OFDM blocks to exploit the spatial, temporal, and frequency diversity
available in broadband MIMO wireless communications.

3.1 Space–frequency diversity and coding

In this section, we focus on SF-coded MIMO-OFDM systems to achieve the spatial and
frequency diversity in broadband wireless communications. First, we specify an SF-
coded MIMO-OFDM system model and discuss design criteria for achieving the full
spatial and frequency diversity. Then, we review two systematic approaches to design
SF codes to achieve the full spatial and frequency diversity within each OFDM block.

3.1.1 MIMO-OFDM system model

An SF-coded MIMO-OFDM system with Mt transmit antennas, Mr receive antennas,
and N subcarriers is shown in Figure 3.1. Suppose that the frequency selective fading
channels between each pair of transmit and receive antennas have L independent delay
paths and the same power delay profile. The MIMO channel is assumed to be constant
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Fig. 3.1 An SF-coded MIMO-OFDM system with Mt transmit and Mr receive antennas.

over each OFDM block period. The channel impulse response from transmit antenna i
to receive antenna j can be modeled as

hi, j (τ ) =
L−1∑
l=0

αi, j (l)δ(τ − τl), (3.1)

where τl is the delay of the l-th path, and αi, j (l) is the complex amplitude of the l-th
path between transmit antenna i and receive antenna j . The αi, j (l)’s are modeled as
zero-mean, complex Gaussian random variables with variances E |αi, j (l)|2 = δ2

l , where
E stands for the expectation. Note that the time delay τl and the variance δ2

l are assumed
to be the same for each transmit–receive link. The powers of the L paths are normalized
such that

∑L−1
l=0 δ

2
l = 1. From (3.1), the frequency response of the channel is given by

Hi, j ( f ) =
L−1∑
l=0

αi, j (l)e
−j2π f τl , j = √−1. (3.2)

Assume that the MIMO channel is spatially uncorrelated, i.e. the channel taps αi, j (l)
are independent for different indices (i, j).

The input bit stream (uncoded or coming from a channel encoder) is divided into b
bit long segments, forming 2b-ary source symbols. These source symbols are parsed
into blocks and mapped onto an SF codeword to be transmitted over the Mt transmit
antennas. Each SF codeword can be expressed as an N × Mt matrix

C =

⎡⎢⎢⎢⎣
c1(0) c2(0) · · · cMt (0)
c1(1) c2(1) · · · cMt (1)
...

...
. . .

...

c1(N − 1) c2(N − 1) · · · cMt (N − 1)

⎤⎥⎥⎥⎦ , (3.3)

where ci (n) denotes the channel symbol transmitted over the n-th subcarrier by transmit
antenna i , and N is the number of subcarriers. The SF code is assumed to satisfy the
energy constraint E ||C ||2F = N Mt, where ||C ||F is the Frobenius norm of C . The OFDM
transmitter applies an N -point IFFT to each column of the matrix C . After appending a
cyclic prefix, the OFDM symbol corresponding to the i-th (i = 1, 2, . . . ,Mt) column
of C is transmitted by transmit antenna i . Note that all of the Mt OFDM symbols are
transmitted simultaneously from different transmit antennas.
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At the receiver, after matched filtering, removing the cyclic prefix, and applying FFT,
the received signal at the n-th subcarrier at receive antenna j is given by

y j (n) =
√
ρ

Mt

Mt∑
i=1

ci (n)Hi, j (n)+ z j (n), (3.4)

where

Hi, j (n) =
L−1∑
l=0

αi, j (l)e
−j2πn� f τl (3.5)

is the channel frequency response at the n-th subcarrier between transmit antenna i and
receive antenna j ,� f = 1/T is the subcarrier separation in the frequency domain, and
T is the OFDM symbol period. We assume that the channel state information Hi, j (n) is
known at the receiver, but not at the transmitter. In (3.4), z j (n) denotes the additive com-
plex Gaussian noise with zero mean and unit variance at the n-th subcarrier at receive
antenna j . The noise samples z j (n) are assumed to be uncorrelated for different j’s and
n’s. The factor

√
ρ/Mt in (3.4) ensures that ρ is the average signal to noise ratio (SNR)

at each receive antenna, independently of the number of transmit antennas.

3.1.1.1 General performance criteria
The received signal (3.4) can be rewritten in vector form as

Y =
√
ρ

Mt
DH+ Z, (3.6)

where D is an N Mr × N MtMr matrix constructed from the SF codeword C in (3.3) as
follows:

D =

⎡⎢⎢⎢⎣
D1 D2 · · · DM 0 0 · · · 0 · · · 0 0 · · · 0
0 0 · · · 0 D1 D2 · · · DM · · · 0 0 · · · 0

...
...

. . .
...

0 0 · · · 0 0 0 · · · 0 · · · D1 D2 · · · DM

⎤⎥⎥⎥⎦ ,
(3.7)

in which

Di = diag{ci (0), ci (1), . . . , ci (N − 1)}, i = 1, 2, . . . ,Mt. (3.8)

Each Di in (3.8) is related to the i-th column of the SF codeword C . The channel vector
H of size N MtMr × 1 is formatted as

H = [HT
1,1 · · · HT

Mt ,1 HT
1,2 · · · HT

Mt,2 · · · HT
1,Mr

· · · HT
Mt,Mr

]T, (3.9)

where

Hi, j = [Hi, j (0) Hi, j (1) · · · Hi, j (N − 1)]T. (3.10)

The received signal vector Y of size N Mr × 1 is given by

Y = [y1(0) · · · y1(N − 1) y2(0) · · · y2(N − 1) · · · yMr(0) · · · yMr(N − 1)
]T
,

(3.11)
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and the noise vector Z has the same form as Y, i.e.,

Z = [z1(0) · · · z1(N − 1) z2(0) · · · z2(N − 1) · · · zMr(0) · · · zMr(N − 1)
]T
.

(3.12)
Suppose that D and D̃ are two different matrices related to two different SF codewords

C and C̃ , respectively. Then, the pairwise error probability between D and D̃ can be
upper bounded as (leave proof as an exercise)

P(D → D̃) ≤
(

2r − 1
r

) ( r∏
i=1

γi

)−1 (
ρ

Mt

)−r

, (3.13)

where r is the rank of (D− D̃)R(D− D̃)H, γ1, γ2, . . . , γr are the nonzero eigenvalues
of (D−D̃)R(D−D̃)H, and R = E{HHH} is the correlation matrix of H. The superscript
H stands for the complex conjugate and transpose of a matrix.

Based on the upper bound on the pairwise error probability in (3.13), two general SF
code performance criteria can be proposed as follows:

• Diversity (rank) criterion: The minimum rank of (D− D̃)R(D− D̃)H over all pairs of
different codewords C and C̃ should be as large as possible.

• Product criterion: The minimum value of the product
∏r

i=1 γi over all pairs of
different codewords C and C̃ should be maximized.

However, it is hard to design SF codes directly based on the discussion on (D − D̃)R
(D− D̃)H, which is related to an N MtMr × N MtMr correlation matrix R.

3.1.1.2 Performance criteria
In case of spatially uncorrelated MIMO channels, i.e., the channel taps αi, j (l) are inde-
pendent for different transmit antenna i and receive antenna j , the correlation matrix R
of size N MtMr × N MtMr becomes

R = E{HHH}
= diag

(
R1,1, . . . , RMt,1, R1,2, . . . , RMt,2,

. . . , R1,Mr , . . . , RMt,Mr

)
, (3.14)

where

Ri, j = E
{

Hi, j HH
i, j

}
(3.15)

is the correlation matrix of the channel frequency response from transmit antenna i to
receive antenna j . Using the notation w = e−j2π� f , from (3.5) and (3.10), we have

Hi, j =
[

L−1∑
l=0

αi, j (l)
L−1∑
l=0

αi, j (l)w
τl · · ·

L−1∑
l=0

αi, j (l)w
(N−1)τl

]T

= W · Ai, j , (3.16)



68 Space–time–frequency diversity and coding

where

W =

⎡⎢⎢⎢⎣
1 1 · · · 1
wτ0 wτ1 · · · wτL−1

...
...

. . .
...

w(N−1)τ0 w(N−1)τ1 · · · w(N−1)τL−1

⎤⎥⎥⎥⎦
N×L

,

and

Ai, j =
[
αi, j (0) αi, j (1) · · · αi, j (L − 1)

]T
.

Note that, in general, W is not a unitary matrix. If all of the L delay paths fall at the
sampling instances of the receiver, then W is part of the DFT-matrix, which is unitary.
Substituting (3.16) into (3.15), Ri, j in (3.15) can be expressed as

Ri, j = E
{

W Ai, j AH
i, j W

H
}

= W E
{

Ai, j AH
i, j

}
W H

= Wdiag(δ2
0, δ

2
1, . . . , δ

2
L−1)W

H �= R. (3.17)

The third equality follows from the assumption that the path gains αi, j (l) are indepen-
dent for different paths and different pairs of transmit and receive antennas. Note that
the correlation matrix R is independent of the transmit and receive antenna indices i
and j . From (3.14) and (3.17), we obtain

R = IMt Mr ⊗ R, (3.18)

where IMt Mr is the identity matrix of size MtMr × MtMr, and ⊗ denotes the tensor
product which is defined as follows: for any two matrices A = {ai, j } and B = {bi, j } of
size m × n,

A ⊗ B
�=
⎡⎣ a1,1 B · · · a1,n B

· · · · · · · · ·
am,1 B · · · am,n B

⎤⎦ . (3.19)

Therefore, combining (3.3), (3.7), (3.8), and (3.18), the expression for (D − D̃)R
(D− D̃)H in (3.13) can be rewritten as

(D− D̃)R(D− D̃)H = IMr ⊗
[ Mt∑

i=1

(Di − D̃i )R(Di − D̃i )
H

]
= IMr ⊗

{[
(C − C̃)(C − C̃)H

]
◦ R
}
, (3.20)

where ◦ denotes the Hadamard product, which is defined as follows: for any two
matrices A = {ai, j } and B = {bi, j } of size m × n,

A ◦ B
�=
⎡⎣ a1,1b1,1 · · · a1,nb1,n

· · · · · · · · ·
am,1bm,1 · · · am,nbm,n

⎤⎦ . (3.21)



3.1 Space–frequency diversity and coding 69

Denoting a matrix � as

� = (C − C̃)(C − C̃)H, (3.22)

and substituting (3.20) into (3.13), the pairwise error probability between C and C̃ can
be upper bounded as

P(C → C̃) ≤
(

2K Mr − 1
K Mr

) ( K∏
i=1

λi

)−Mr (
ρ

Mt

)−K Mr

, (3.23)

where K is the rank of�◦ R, and λ1, λ2, . . . , λK are the nonzero eigenvalues of�◦ R.
As a consequence, we can formulate the performance criteria as follows:

• Diversity (rank) criterion: The minimum rank of�◦R over all pairs of distinct signals
C and C̃ should be as large as possible.

• Product criterion: The minimum value of the product
∏K

i=1 λi over all pairs of distinct
signals C and C̃ should also be maximized.

According to a rank inequality on Hadamard products ([74], p.307), we have the
relationship

rank(� ◦ R) ≤ rank(�)rank(R). (3.24)

Since the rank of � is at most Mt, the rank of R is at most L , and the rank of � ◦ R is
at most N , so

rank(� ◦ R) ≤ min{L Mt , N }. (3.25)

Thus, the maximum achievable diversity is at most min{L MtMr, N Mr}. When N is
large, the full diversity is L MtMr, which is the product of the number of multiple delays
and the number of transmit and receive antennas.

3.1.2 Full-diversity SF code design via mapping

In this subsection, we present an interesting approach to systematically design full-
diversity SF codes from ST codes. It shows that using a simple repetition mapping,
full-diversity SF codes can be constructed from any ST (block or trellis) code designed
for quasi-static flat Rayleigh fading channels.

3.1.2.1 SF code design via mapping
In the sequel, the SF encoder will consist of an ST encoder and a mapping Ml , as shown
in Figure 3.2. For each 1 × Mt output vector [g1 g2 · · · gMt] from the ST encoder and
a fixed number l (1 ≤ l ≤ L), the mapping Ml is defined as

Ml : [g1 g2 · · · gMt] → 1l×1[g1 g2 · · · gMt], (3.26)

where 1l×1 is an all one matrix of size l × 1. The resulting l × Mt matrix is actually
a repetition of the vector [g1 g2 · · · gMt] l times. Suppose that lMt is not greater than
the number of OFDM subcarriers, N , and k is the largest integer such that klMt ≤ N .
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Fig. 3.2 An SF encoder consisting of an ST encoder and a mapping.

Denote the output code matrix of the ST encoder by G. Then, the SF code C of size
N × Mt is constructed as

C =
[

Ml(G)
0(N−klMt)×Mt

]
, (3.27)

where

Ml(G) =
[
IkMt ⊗ 1l×1

]
G. (3.28)

In fact, the SF code C is obtained by repeating each row of G l times and adding some
zeros. The zero padding used here ensures that the space–frequency code C has size
N × Mt. Typically, the size of the zero padding is small, and it can be used to drive the
trellis encoder to the zero state.

Example 3.1 If G is the Alamouti code and l = 2, then an SF code of size 4 × 2 can
be obtained by repeating each row of the Alamouti code twice as follows:

C =

⎡⎢⎢⎣
x1 x2

x1 x2

−x∗2 x∗1
−x∗2 x∗1

⎤⎥⎥⎦ . (3.29)

�

The following theorem states that if the employed ST code G has full diversity for
quasi-static flat fading channels, the space–frequency code constructed by (3.27) will
achieve a diversity of at least lMtMr.

T H E O R E M 3.1.1 Suppose that an MIMO-OFDM system equipped with Mt transmit
and Mr receive antennas has N subcarriers, and the frequency selective channel has
L independent paths, in which the maximum path delay is less than one OFDM block
period. If an ST (block or trellis) code designed for Mt transmit antennas achieves full
diversity for quasi-static flat fading channels, then the SF code obtained from this ST
code via the mapping Ml (1 ≤ l ≤ L) defined in (3.28) will achieve a diversity order
of at least min{lMtMr, N Mr}.

Proof Since in typical MIMO-OFDM systems the number of subcarriers, N , is greater
than L Mt, we provide the proof for the lMt ≤ N case for a given mapping Ml ,
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1 ≤ l ≤ L . If lMt > N , the proof is similar to the one described below and is omitted
for brevity. Assume that k is the largest integer such that klMt ≤ N .

For two distinct SF codewords C and C̃ of size N × Mt, there are two corresponding
distinct ST codewords G and G̃ of size kMt × Mt such that

C − C̃ =
[

Ml(G − G̃)
0(N−klMt)×Mt

]
, (3.30)

in which

Ml(G − G̃) = [IkMt ⊗ 1l×1
]
(G − G̃). (3.31)

Since the ST code achieves full diversity for quasi-static flat fading channels, G − G̃ is
of full rank for two distinct G and G̃, i.e., the rank of G − G̃ is Mt.

Based on the SF code performance criteria, the objective of the proof is to show that
the matrix � ◦ R has a rank of at least lMt. From (3.22) and (3.30), we have

� =
[

Ml(G − G̃)[Ml(G − G̃)]H 0klMt×(N−klMt)

0(N−klMt)×klMt 0(N−klMt)×(N−klMt)

]
. (3.32)

Thus, in�◦ R, all entries are zero except a klMt× klMt submatrix. Denote this klMt×
klMt submatrix as (� ◦ R)klMt×klMt .

On the other hand, from (3.17), it can be verified that the entries of the correlation

matrix R
�= {ri, j }1≤i, j≤N can be expressed as

ri, j =
L−1∑
s=0

δ2
sw

(i− j)τs , 1 ≤ i, j ≤ N .

Therefore, from (3.30), (3.31), and (3.32), we obtain

(� ◦ R)klMt×klMt =
{
Ml(G − G̃)[Ml(G − G̃)]H

}
◦ P

=
{
[IkMt ⊗ 1l×1](G − G̃)(G − G̃)H[IkMt ⊗ 1l×1]H

}
◦ P

=
{[
(G − G̃)(G − G̃)H

]
⊗ 1l×l

}
◦ P, (3.33)

where P = {pi, j }1≤i, j≤klMt is a klMt × klMt matrix with entries

pi, j =
L−1∑
s=0

δ2
sw

(i− j)τs , 1 ≤ i, j ≤ klMt. (3.34)

The last equality in (3.33) follows from the identities [IkMt ⊗1l×1]H = IkMt ⊗11×l and
(A1 ⊗ B1)(A2 ⊗ B2)(A3 ⊗ B3) = (A1 A2 A3)⊗ (B1 B2 B3) ([74], p.251).

We further partition the klMt × klMt matrix P into l × l submatrices as follows:

P =

⎡⎢⎢⎢⎣
P1,1 P1,2 · · · P1,kMt

P2,1 P2,2 · · · P2,kMt
...

...
. . .

...

PkMt,1 PkMt,2 · · · PkMt,kMt

⎤⎥⎥⎥⎦ , (3.35)
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where each submatrix Pm,n, 1 ≤ m, n ≤ kMt, is of size l × l. Denoting the entries of
Pm,n as pm,n(i, j), 1 ≤ i, j ≤ l, we obtain

pm,n(i, j) =
L−1∑
s=0

δ2
sw

[(m−n)l+(i− j)]τs , 1 ≤ i, j ≤ l. (3.36)

As a consequence, each submatrix Pm,n, 1 ≤ m, n ≤ kMt, can be expressed as

Pm,n = Wmdiag{δ2
0, δ

2
1, . . . , δ

2
L−1}W H

n , (3.37)

where

Wm =

⎡⎢⎢⎢⎣
w(m−1)lτ0 w(m−1)lτ1 · · · w(m−1)lτL−1

w[(m−1)l+1]τ0 w[(m−1)l+1]τ1 · · · w[(m−1)l+1]τL−1

...
...

. . .
...

w[(m−1)l+(l−1)]τ0 w[(m−1)l+(l−1)]τ1 · · · w[(m−1)l+(l−1)]τL−1

⎤⎥⎥⎥⎦ , (3.38)

for m = 1, 2, . . . , kMt. In (3.38), Wm can be further decomposed as

Wm = W1diag{w(m−1)lτ0, w(m−1)lτ1 , . . . , w(m−1)lτL−1} (3.39)

for 1 ≤ m ≤ kMt, where

W1 =

⎡⎢⎢⎢⎣
1 1 · · · 1
wτ0 wτ1 · · · wτL−1

...
...

. . .
...

w(l−1)τ0 w(l−1)τ1 · · · w(l−1)τL−1

⎤⎥⎥⎥⎦ . (3.40)

Let us denote the matrix consisting of the first l columns of W1 by W0. We observe that
W0 is an l× l Vandermonde matrix in l variables wτ0 , wτ1 , . . . , wτl−1 ([74], p.400). The
determinant of W0 can be calculated as follows:

det(W0) =
∏

0≤i< j≤l−1

(wτ j − wτi )

=
∏

0≤i< j≤l−1

[
e−j2π� f (τ j−τi ) − 1

]
e−j2π� f τi .

Since � f is the inverse of the OFDM block period T and the maximum path delay is
less than T , we have � f (τ j − τi ) < 1 for any 0 ≤ i < j ≤ l − 1. Thus, W0 is of full
rank, and so is W1. It follows that for any m = 1, 2, . . . , kMt, the rank of Wm is l.

We now go back to (3.33) to investigate the rank of � ◦ R. For convenience, we use
the notation

(G − G̃)(G − G̃)H
�=

⎡⎢⎢⎢⎣
a1,1 a1,2 · · · a1,kMt

a2,1 a2,2 · · · a2,kMt
...

...
. . .

...

akMt,1 akMt,2 · · · akMt,kMt

⎤⎥⎥⎥⎦ ,
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and � = diag{δ2
0, δ

2
1, . . . , δ

2
L−1}. Then, substituting (3.35) and (3.37) into (3.33), we

obtain

(� ◦ R)klMt×klMt

=

⎡⎢⎢⎢⎣
a1,1 P1,1 a1,2 P1,2 · · · a1,kMt P1,kMt

a2,1 P2,1 a2,2 P2,2 · · · a2,kMt P2,kMt
...

...
. . .

...

akMt,1 PkMt,1 akMt,2 PkMt,2 · · · akMt,kMt PkMt,kMt

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎣
W1a1,1�W H

1 W1a1,2�W H
2 · · · W1a1,kMt�W H

kMt

W2a2,1�W H
1 W2a2,2�W H

2 · · · W2a2,kMt�W H
kMt

...
...

. . .
...

WkMtakMt,1�W H
1 WkMtakMt,2�W H

2 · · · WkMtakMt,kMt�W H
kMt

⎤⎥⎥⎥⎥⎦
= Q

{[
(G − G̃)(G − G̃)H

]
⊗�

}
QH, (3.41)

where

Q = diag
{
W1, W2, . . . , WkMt

}
.

Since the rank of G − G̃ is Mt, there are Mt linearly independent rows in G − G̃.
Suppose that the fi -th, 1 ≤ f1 < f2 < · · · < fMt ≤ kMt, rows of G − G̃ are linearly
independent of each other. Then, the matrix

A
�=

⎡⎢⎢⎢⎣
a f1, f1 a f1, f2 · · · a f1, fMt

a f2, f1 a f2, f2 · · · a f2, fMt
...

...
. . .

...

a fMt , f1 a fMt , f2 · · · a fMt , fMt

⎤⎥⎥⎥⎦
is a submatrix of (G − G̃)(G − G̃)H, and the rank of A is Mt. Using the notation

Q0 = diag{W f1, W f2 , . . . , W fMt
},

from (3.41), we can see that Q0 {A ⊗�} QH
0 is an lMt × lMt submatrix of (� ◦

R)klMt×klMt . Therefore, to show that the rank of � ◦ R is at least lMt, it is sufficient to
show that the submatrix Q0 {A ⊗�} QH

0 has rank lMt.
Since the rank of A is Mt and the rank of � is L , according to a rank equality on

tensor products ([74], p.246), we have

rank(A ⊗�) = rank(A)rank(�) = MtL ,

so the matrix A ⊗� is of full rank. Recall that for any m = 1, 2, . . . , kMt, the rank of
Wm is l, so the rank of Q0 is lMt. Therefore, the rank of Q0 {A ⊗�} QH

0 is lMt. This
proves the theorem. �

In addition, from the proof of Theorem 3.1.1, we can see that the SF code obtained from
a space–time block code of square size via the mapping Ml (1 ≤ l ≤ L) will achieve a
diversity of lMtMr exactly. Since the maximum achievable diversity is upper bounded
by min{L MtMr, N Mr}, we arrive at the following result.
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Corollary 3.1.1 Under the assumptions of Theorem 3.1.1, the SF code obtained from
a full diversity ST code via the mapping ML defined in (3.28) achieves the maximum
achievable diversity min{L MtMr, N Mr}.

The symbol rate of the resulting SF codes obtained via the mapping Ml (3.28) is 1/ l
times that of the corresponding ST codes. For example, for a system with two trans-
mit antennas, eight subcarriers and a two-ray delay profile, the symbol rate of the
full-diversity SF codes discussed here is 1/2. In certain practical situations, this effect
can be compensated by expanding the constellation size, maintaining the same spectral
efficiency. Furthermore, from a system performance point of view, there is a tradeoff
between the diversity order and the coding rate. Theorem 3.1.1 offers a flexible choice
on the diversity order.

3.1.2.2 Coding advantage
In the following, we characterize the coding advantage of the resulting SF codes in
terms of the coding advantage of the underlying ST codes by defining and evaluating
the diversity product for SF codes.

We recall from (2.9) that the diversity product or the normalized coding advantage of
a full-diversity ST code for quasi-static flat fading channels is

ζST = 1

2
√

Mt
min
G �=G̃

∣∣∣∣∣
Mt∏

i=1

βi

∣∣∣∣∣
1

2Mt

, (3.42)

where β1, β2, . . . , βMt are the nonzero eigenvalues of (G− G̃)(G− G̃)H for any pair of
distinct ST codewords G and G̃. Similarly, the diversity product of a full-diversity SF
code can be defined as

ζSF, R = 1

2
√

Mt
min
C �=C̃

∣∣∣∣∣
L Mt∏
i=1

λi

∣∣∣∣∣
1

2L Mt

, (3.43)

where λ1, λ2, . . . , λL Mt are the nonzero eigenvalues of � ◦ R for any pair of dis-
tinct space–frequency codewords C and C̃ . In the rest of this section, without loss of
generality, we assume that the number of subcarriers, N , is not less than L Mt, i.e.,
L Mt ≤ N .

The relationship between the diversity products of the full-diversity SF codes
obtained via the repetition mapping and the underlying ST codes is characterized by
the following theorem.

T H E O R E M 3.1.2 The diversity product of the full-diversity SF code in Corollary
3.1.1 is bounded by that of the corresponding ST code as follows:

√
ηL �ζST ≤ ζSF, R ≤ √η1�ζST, (3.44)
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where � =
(∏L−1

l=0 δl

)1/L
, and η1 and ηL are the largest and smallest eigenvalues,

respectively, of the matrix H defined as

H =

⎡⎢⎢⎢⎣
H(0) H(1)∗ · · · H(L − 1)∗
H(1) H(0) · · · H(L − 2)∗
...

...
. . .

...

H(L − 1) H(L − 2) · · · H(0)

⎤⎥⎥⎥⎦
L×L

, (3.45)

and the entries of H are given by

H(n) =
L−1∑
l=0

e−j2πn� f τl , n = 0, 1, . . . , L − 1.

Proof In the following, we use the notation developed in the proof of Theorem 3.1.1
by replacing the repetition factor l with L , since the full diversity is achieved in Corol-
lary 3.1.1 by using the mapping ML . For any n × n nonnegative definite matrix A,
we denote its eigenvalues in a non-increasing order as: eig1(A) ≥ eig2(A) ≥ · · · ≥
eign(A).

For two distinct SF codewords C and C̃ , there are two corresponding ST codewords
G and G̃ such that the relationship of C − C̃ and G − G̃ in (3.30) and (3.31) holds.
According to (3.25) and Corollary 3.1.1, the rank of � ◦ R is exactly L Mt. It means
that � ◦ R has totally L Mt nonzero eigenvalues, which are the same as the nonzero
eigenvalues of (� ◦ R)kL Mt×kL Mt . Thus,

ζSF, R = 1

2
√

Mt
min
C �=C̃

∣∣∣∣∣
L Mt∏
i=1

eigi

(
(� ◦ R)kL Mt×kL Mt

)∣∣∣∣∣
1

2L Mt

= 1

2
√

Mt
min
G �=G̃

∣∣∣∣∣
L Mt∏
i=1

eigi

(
Q
{[
(G − G̃)(G − G̃)H

]
⊗�

}
QH
)∣∣∣∣∣

1
2L Mt

= 1

2
√

Mt
min
G �=G̃

∣∣∣∣∣
L Mt∏
i=1

θi eigi

([
(G − G̃)(G − G̃)H

]
⊗�

)∣∣∣∣∣
1

2L Mt

, (3.46)

where eigkL Mt
(QQH) ≤ θi ≤ eig1(QQH) for i = 1, 2, . . . , L Mt. In (3.46), the second

equality follows from (3.41), and the last equality follows by Ostrowski’s theorem ([73],
p.224). Since Q = diag

{
W1, W2, . . . , WkMt

}
, we have

QQH = diag
{

W1W H
1 , W2W H

2 , . . . , WkMt W
H
kMt

}
.

As a requirement of Ostrowski’s theorem, the matrix Q should be nonsingular, which is
guaranteed by the fact that each matrix Wm is of full rank for any m = 1, 2, . . . , kMt.
Furthermore, from (3.39), we know that for any 1 ≤ m ≤ kMt,

WmW H
m = W1 DDHW H

1 = W1W H
1 ,
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where D = diag{w(m−1)Lτ0 , w(m−1)Lτ1 , . . . , w(m−1)LτL−1}. From (3.40), it is easy to
verify that W1W H

1 is the matrix H defined in (3.45). Thus, QQH = IkMt⊗H . Therefore,
we can conclude that eigL(H) ≤ θi ≤ eig1(H) for any i = 1, 2, . . . , L Mt.

Since the set of L Mt nonzero eigenvalues of
[
(G − G̃)(G − G̃)H

]
⊗ � can be

expressed as ([73], p.246){
eigi

(
(G − G̃)(G − G̃)H

)
· eig j (�) : 1 ≤ i ≤ Mt, 1 ≤ j ≤ L

}
, (3.47)

substituting (3.47) into (3.46), we arrive at

ζSF, R = 1

2
√

Mt
min
G �=G̃

(L Mt∏
i=1

θi

) 1
2L Mt

∣∣∣∣∣
Mt∏
i=1

eigi

(
(G − G̃)(G − G̃)H

)∣∣∣∣∣
1

2Mt
⎛⎝ L∏

j=1

eig j (�)

⎞⎠
1

2L

=
(L Mt∏

i=1

θi

) 1
2L Mt

⎛⎝ L∏
j=1

δ2
j

⎞⎠
1

2L

ζST. (3.48)

Since ηL ≤ θi ≤ η1 for any i = 1, 2, . . . , L Mt, we have the inequalities in (3.44). �

From Theorem 3.1.2, we can see that the larger the coding advantage of the ST code,
the larger the coding advantage of the resulting SF code, suggesting that to maximize
the performance of the SF codes, we should look for the best-known ST codes existing
in the literature. Moreover, the coding advantage of the SF code depends on the power
delay profile:

• First, it depends on the power distribution through the square root of the geometric

average of path powers, i.e., � =
(∏L−1

l=0 δl

)1/L
. Since the sum of the powers of the

paths is unity, this implies that the best performance is expected in the case of uniform
power distribution (i.e., δ2

l = 1/L).
• Second, the entries of the matrix H defined in (3.45) are functions of the path delays,

so the coding advantage also depends on the delay distribution of the paths.

For example, in case of a two-ray delay profile (i.e., L = 2), the matrix H in (3.45) has
two eigenvalues:

η1 = 2+ 2| cosπ(τ1 − τ0)/T |,
η2 = 2− 2| cosπ(τ1 − τ0)/T |.

Typically, the ratio of (τ1− τ0)/T is less than 1/2, so cosπ(τ1− τ0)/T is nonnegative.
Thus, the smaller the separation of the two rays, the smaller the eigenvalue η2. If the
two rays are very close compared to the duration of one OFDM symbol, T , the lower
bound in (3.44) approaches zero. Simulation results seem to suggest that the behavior
of the coding advantage is close to the lower bound.
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3.1.2.3 Code design examples and performance comparisons
In the following, we give some SF code design examples based on the introduced
approach and compare their performance and complexity tradeoff. The SF block codes
were obtained from orthogonal ST block codes for two and four transmit antennas,
respectively. For two transmit antennas, the used 2 × 2 orthogonal ST block code was
Alamouti’s structure, given by

G2 =
[

x1 x2

−x∗2 x∗1

]
. (3.49)

The SF block code for four transmit antennas was obtained from the 4 × 4 orthogonal
design

G4 =

⎡⎢⎢⎣
x1 x2 x3 0

−x∗2 x∗1 0 x3

−x∗3 0 x∗1 −x2

0 −x∗3 x∗2 x1

⎤⎥⎥⎦ . (3.50)

In both cases, the xi ’s were taken from BPSK or QPSK constellations. Note that the
2 × 2 orthogonal design could carry one channel symbol per subcarrier, whereas the
4× 4 block code had a symbol rate of only 3/4.

Code performances with two-ray delay profiles
First, let us assume a simple two-ray, equal-power delay profile, with a delay of τ μs
between the two rays. Let us consider two cases: (i) τ = 5 μs and (ii) τ = 20 μs. The
simulated communication system has N = 128 subcarriers, and the total bandwidth
is BW = 1 MHz. Thus, the OFDM block duration is T = 128 μs without the cyclic
prefix. We set the length of the cyclic prefix to 20 μs for all cases. The MIMO-OFDM
systems have one receive antenna.

Figure 3.3 depicts the performance of the SF block codes obtained from the two-
antenna orthogonal design. We used BPSK modulation for the non-repeated case and
QPSK for the repeated case. Therefore, both systems have a spectral efficiency of

128×1 bits
(128 μs+20 μs)×1 MHz = 0.86 bits/s/Hz. The figure shows that in case of τ = 20 μs, the
performance curve of the full-diversity SF code has a steeper slope than that of the code
without repetition. We can observe a performance improvement of about 4 dB at a BER
of 10−4. The performance of the full-diversity SF code degraded significantly from the
τ = 20 μs case to the τ = 5 μs case, while the performance of the SF code using ST
code without repetition was almost the same for the two delay profiles.

This observation is consistent with the theoretical result that the coding advantage
depends on the delay distribution of the multiple paths. It also indicates that using ST
codes directly as SF codes can exploit only the spatial diversity, and cannot exploit the
frequency diversity.

Figure 3.4 shows the performance of the SF block codes obtained from the orthogo-
nal ST code for four transmit antennas. The full-diversity SF code with repetition used
QPSK modulation, and the non-repeated code used BPSK modulation. Thus, the spec-
tral efficiency of both codes was 128×3/4 bits

(128 μs+20 μs)×1 MHz = 0.65 bits/s/Hz. The tendencies
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Fig. 3.3 Performance of two-antenna SF block codes with the two-ray channel model.
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Fig. 3.4 Performance of four-antenna SF block codes with the two-ray channel model.

observed in Figure 3.4 are similar to those observed in Figure 3.3. In case of τ = 20 μs,
the full-diversity SF code has a steeper performance curve than the SF code using ST
without repetition, and it has an improvement of about 1 dB at a BER of 10−4. In case
of τ = 5 μs, the performance of the proposed SF code is a little worse than that of the
SF code using ST code without repetition. The worse performance is due to the smaller
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coding advantage of the proposed SF code since, in order to keep the same spectral effi-
ciency of the two schemes, we used QPSK modulation for the proposed SF code and
BPSK modulation for the non-repeated code.

Code performances with the COST207 six-ray delay profile
Let us consider a more realistic channel model, the COST207 typical urban (TU) six-
ray channel model [196]. The power delay profile of the channel is shown in Figure 3.5.
Let us consider an MIMO-OFDM system having N = 128 subcarriers with two dif-
ferent bandwidths: (i) BW = 1 MHz (denoted by dashed lines) and (ii) BW = 4 MHz
(denoted by solid lines). The cyclic prefix was 20 μs long for both cases.

The performance of the SF block codes from the 2 × 2 orthogonal design with and
without repetition are shown in Figure 3.6 for two transmit and one receive antennas.
The repeated code (using QPSK modulation) and the non-repeated code (using BPSK
modulation) had the same spectral efficiency of 0.86 bits/s/Hz for the 1 MHz system
and 0.22 bits/s/Hz for the 4 MHz system, respectively. We can see from the figure that
in case of BW = 4 MHz, the code with repetition has a steeper performance curve than
the code without repetition. There is a performance improvement of about 2 dB at a
BER of 10−4. In case of BW = 1 MHz, the maximum delay of the TU profile (5.0 μs)
is “short” compared to the “long” duration of the OFDM block (128 μs), which means
that there is little frequency diversity available in the fading channel. From the figure,
we observe that the performance of the repeated code is worse than the non-repeated
code, due to the smaller coding advantage, which is a result of the larger constellation
size.
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Fig. 3.5 The COST207 typical urban (TU) six-ray power delay profile.
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Fig. 3.6 Performance of two-antenna SF block codes with the COST six-ray channel model.

Observations and discussion
Based on the above design examples and their performance results, we can make some
observations. It is apparent that by repeating each row of the space–time code matrix,
we could construct codes whose error performance curve is steeper than that of the
codes without repetition, i.e., the obtained codes have higher diversity order. However,
the actual performance of the code depends heavily on the underlying channel model.
In all cases, both the absolute performance and the performance improvement obtained
by repetition are considerably better in case of the longer delay profile (i.e., τ = 20 μs),
and the performance of the obtained full-diversity SF codes degrade significantly in case
of the delay profile with τ = 5 μs.

These phenomena can be explained as follows. The delay distribution of the channel
has a significant effect on the SF code performance. If the delays of the paths are large
with respect to one OFDM block period, there will be fast variations in the spectrum of
the channel impulse response, so the probability of simultaneous deep fades in adjacent
subchannels will be smaller. This observation is in accordance with Theorem 3.1.2. As
discussed in Section 3.1.2.2, we should expect better BER performance when transmit-
ting data over channels with larger path delays. On the other hand, if the two delay paths
are very close, the channel will cause performance degradation.

3.1.3 Full-rate full-diversity SF code design

In this subsection, we describe a systematic method to obtain full-rate SF codes achiev-
ing full diversity. Specifically, the design approach provides a class of SF codes that can
achieve a diversity order of �MtMr for any fixed integer � (1 ≤ � ≤ L).
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3.1.3.1 Code structure
The basic idea of the full-rate full-diversity SF codes is similar to the diagonal algebraic
code design. Specifically, let us consider a coding strategy where each SF codeword C
is a concatenation of some matrices G p:

C =
[
GT

1 GT
2 · · · GT

P 0T
N−P�Mt

]T
, (3.51)

where P = �N/(�Mt )�, and each matrix G p, p = 1, 2, . . . , P , is of size �Mt × Mt.
The zero padding in (3.51) is used if the number of subcarriers N is not an integer
multiple of �Mt . Each matrix G p (1 ≤ p ≤ P) has the same structure given by

G = √Mt diag
(
X1, X2, . . . , XMt

)
, (3.52)

where diag(X1, X2, . . . , X Mt) is a block diagonal matrix, Xi =[x(i−1)�+1x(i−1)

�+2 · · · xi�]T, i = 1, 2, . . . ,Mt, and xk, k = 1, 2, . . . , �Mt, are complex symbols
and will be specified later. The energy constraint is

E

(
�Mt∑
k=1

|xk |2
)
= �Mt.

For a fixed p, the symbols in G p are designed jointly, but the design of G p1 and G p2 ,
p1 �= p2, is independent of each other. The symbol rate of the code is P�Mt/N , ignor-
ing the cyclic prefix. If N is a multiple of �Mt, the symbol rate is 1. If not, the rate is less
than 1, but since usually N is much greater than �Mt, the symbol rate is very close to 1.

Now we derive sufficient conditions for the SF codes described above to achieve a
diversity order of �MtMr. Suppose that C and C̃ are two distinct SF codewords which
are constructed from G1,G2, . . . ,G P and G̃1, G̃2, . . . , G̃ P , respectively. We would
like to determine the rank of�◦ R, where� is defined in (3.22) and R is the correlation
matrix defined in (3.17). For two distinct codewords C and C̃ , there exists at least one
index p0 (1 ≤ p0 ≤ P) such that G p0 �= G̃ p0 . We may further assume that G p = G̃ p

for any p �= p0 since the rank of�◦ R does not decrease if G p = G̃ p for some p �= p0

([74], Corollary 3.1.3, p.149).

From (3.17), we know that the correlation matrix R
�= {ri, j }1≤i, j≤N is a Toeplitz

matrix. The entries of R are given by

ri, j =
L−1∑
l=0

δ2
l w

(i− j)τl , 1 ≤ i, j ≤ N . (3.53)

Under the assumption that G p = G̃ p for any p �= p0, we observe that the nonzero
eigenvalues of� ◦ R are the same as those of [(G p0 − G̃ p0)(G p0 − G̃ p0)

H] ◦ Q, where
Q = {qi, j }1≤i, j≤�Mt is also a Toeplitz matrix whose entries are
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qi, j =
L−1∑
l=0

δ2
l w

(i− j)τl , 1 ≤ i, j ≤ �Mt. (3.54)

Note that Q is independent of the index p0, i.e., it is independent of the position of
G p0 − G̃ p0 in C − C̃ . Suppose that G p0 and G̃ p0 have symbols X = [x1 x2 · · · x�Mt ]
and X̃ = [x̃1 x̃2 · · · x̃�Mt ], respectively. Then, the difference matrix between G p0 and
G̃ p0 is

G p0 − G̃ p0 =
√

Mt diag(X1 − X̃1, X2 − X̃2, . . . , XMt − X̃ Mt)

= √Mt diag(X− X̃)
(
IMt ⊗ 1�×1

)
, (3.55)

where diag(X − X̃)
�= diag(x1 − x̃1, x2 − x̃2, . . . , x�Mt − x̃�Mt), IMt is the identity

matrix of size Mt × Mt, 1�×1 is an all one matrix of size � × 1, and ⊗ stands for the
tensor product. Thus, we have[

(G p0 − G̃ p0)(G p0 − G̃ p0)
H
]
◦ Q

= Mt

[
diag(X− X̃)

(
IMt ⊗ 1�×1

) (
IMt ⊗ 1�×1

)H diag(X− X̃)H
]
◦ Q

= Mt

[
diag(X− X̃)

(
IMt ⊗ 1�×�

)
diag(X− X̃)H

]
◦ Q

= Mt diag(X− X̃)
[(

IMt ⊗ 1�×�
) ◦ Q

]
diag(X− X̃)H. (3.56)

In the above derivation, the second equality follows from the identities

[IMt ⊗ 1�×1]H = IMt ⊗ 11×�

and

(A1 ⊗ B1)(A2 ⊗ B2)(A3 ⊗ B3) = (A1 A2 A3)⊗ (B1 B2 B3),

and the last equality follows from a property of the Hadamard product ([74], p.304). If
all of the eigenvalues of [(G p0 − G̃ p0)(G p0 − G̃ p0)

H] ◦ Q are nonzero, the product of
the eigenvalues is

det
([
(G p0 − G̃ p0)(G p0 − G̃ p0)

H
]
◦ Q
)

= M�Mt
t

�Mt∏
k=1

|xk − x̃k |2 · det
((

IMt ⊗ 1�×�
) ◦ Q

)
= M�Mt

t

�Mt∏
k=1

|xk − x̃k |2 · (det(Q0))
Mt , (3.57)

where Q0 = {qi, j }1≤i, j≤� and qi, j is specified in (3.54). Q0 can also be expressed as

Q0 = W0diag(δ2
0, δ

2
1, . . . , δ

2
L−1)W

H
0 , (3.58)
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where

W0 =

⎡⎢⎢⎢⎣
1 1 · · · 1
wτ0 wτ1 · · · wτL−1

...
...

. . .
...

w(�−1)τ0 w(�−1)τ1 · · · w(�−1)τL−1

⎤⎥⎥⎥⎦
�×L

.

Clearly, with τ0 < τ1 < · · · < τL−1, Q0 is non-singular. Therefore, from (3.57) we
observe that if

∏�Mt
k=1 |xk− x̃k | �= 0, the determinant of [(G p0− G̃ p0)(G p0− G̃ p0)

H]◦Q
is nonzero. This implies that the SF code achieves a diversity order of �MtMr.

The assumption that G p = G̃ p for any p �= p0 is also sufficient to calculate the
diversity product. If the rank of � ◦ R is �Mt and G p �= G̃ p for some p �= p0, the
product of the nonzero eigenvalues of�◦R cannot be less than that with the assumption
that G p = G̃ p for any p �= p0 ([74], Corollary 3.1.3, p.149). Specifically, the diversity
product can be calculated as

ζ = 1

2
√

Mt
minG p0 �=G̃ p0

∣∣∣det
([
(G p0 − G̃ p0)(G p0 − G̃ p0)

H
]
◦ Q
)∣∣∣ 1

2�Mt

= 1

2
min
X�=X̃

(
�Mt∏
k=1

|xk − x̃k |
) 1
�Mt

|det(Q0)| 1
2�

= ζin · |det(Q0)| 1
2� , (3.59)

and

ζin = 1

2
min
X�=X̃

(
�Mt∏
k=1

|xk − x̃k |
) 1
�Mt

(3.60)

is termed as the “intrinsic” diversity product of the SF code. The “intrinsic” diversity
product ζin does not depend on the power delay profile of the channel. Thus, we have
the following theorem.

T H E O R E M 3.1.3 For any SF code constructed by (3.51) and (3.52), if
∏�Mt

k=1 |xk −
x̃k | �= 0 for any pair of distinct sets of symbols X = [x1 x2 · · · x�Mt ] and X̃ =
[x̃1 x̃2 · · · x̃�Mt ], the SF code achieves a diversity order of �MtMr, and the diversity
product is

ζ = ζin |det(Q0)| 1
2� , (3.61)

where Q0 is defined in (3.58), and ζin is the “intrinsic” diversity product defined in
(3.60).

From Theorem 3.1.4, we observe that |det(Q0)| depends only on the power delay
profile of the channel, and the “intrinsic” diversity product ζin depends only on
minX�=X̃(

∏�Mt
k=1 |xk − x̃k |)1/(�Mt), which is called the minimum product distance of the

set of symbols X = [x1 x2 · · · x�Mt ]. Therefore, given the code structure (3.52), it is
desirable to design the set of symbols X such that the minimum product distance is as
large as possible.
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3.1.3.2 Maximizing the “intrinsic” diversity product
The problem of maximizing the minimum product distance of a set of signal points
has arisen previously as the problem of constructing signal constellations for Rayleigh
fading channels. In this subsection, we will discuss two approaches to design the set of
variables X = [x1 x2 · · · x�Mt ]. For simplicity, we will use the notation K = �Mt.

One approach to designing the signal points X = [x1 x2 · · · xK ] is to apply a
transform over a K -dimensional signal set. Specifically, assume that � is a set of
signal points (a constellation such as QAM, PAM, and so on). For any signal vector
S = [s1 s2 · · · sK ] ∈ �K , let

X = SMK , (3.62)

where MK is a K × K matrix. For a given signal constellation �, the transform MK

should be optimized such that the minimum product distance of the set of X vectors
is as large as possible. Both Hadamard transforms and Vandermonde matrices have
been proposed for constructing MK [44, 14]. The results have been used recently to
design space–time block codes with full diversity. Note that the transforms MK based
on Vandermonde matrices result in larger minimum product distance than those based
on Hadamard transforms. Some best-known transforms MK based on Vandermonde
matrices can be found in the previous section for diagonal algebraic ST codes.

The other approach to designing the signal set X is to exploit the structure of the
diagonal space–time block codes. Suppose that the spectral efficiency of the SF code
is r bits/s/Hz. We may consider designing the set of L0 = 2r K variables directly under
the energy constraint E ||X||2F = K . We can take advantage of the diagonal space–time
block codes which are given by:

Cl = diag(eju1θl , eju2θl , . . . , ejuK θl ), l = 0, 1, . . . , L0 − 1, (3.63)

where θl = (l/L0)2π, 0 ≤ l ≤ L0 − 1, and u1, u2, . . . , uK ∈ {0, 1, . . . , L0 − 1}. The
parameters u1, u2, . . . , uK need to be optimized such that the metric

min
l �=l ′

K∏
k=1

∣∣∣ejukθl − ejukθl′
∣∣∣ = min

1≤l≤L0−1

K∏
k=1

∣∣∣∣2 sin

(
ukl

L0
π

)∣∣∣∣ (3.64)

is maximized. Then, we can design a set of variables X = [x1 x2 · · · xK ] as follows.
For any l = 0, 1, . . . , L0 − 1, let

xk = ejukθl , k = 1, 2, . . . , K . (3.65)

As a consequence, the minimum product distance of the set of the resulting sig-
nal vectors X is determined by the metric in (3.64). The optimum parameters u =
[u1 u2 · · · uK ] can be obtained via computer search. With exhaustive search [70], one
can find

K = 4, L0 = 16, u = [1 3 5 7];
K = 4, L0 = 256, u = [1 25 97 107];
K = 6, L0 = 64, u = [1 9 15 17 23 25];
K = 6, L0 = 1024, u = [1 55 149 327 395 417]; . . . .
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3.1.3.3 Maximizing the coding advantage by permutations
In the previous subsection, we obtained a class of SF codes with full rate and full diver-
sity assuming that the transmitter has no a priori knowledge about the channel. In this
case, the performance of the SF codes can be improved by random interleaving, as it
can reduce the correlation between adjacent subcarriers. However, if the power delay
profile of the channel is available at the transmitter side, further improvement can be
achieved by developing a permutation (or interleaving) method that explicitly takes the
power delay profile into account. This possibility will be explored in this subsection.

Suppose that the path delays τ0, τ1, . . . , τL−1 and powers δ2
0, δ

2
1, . . . , δ

2
L−1 are

available at the transmitter. Our objective is to develop an optimum permutation (or
interleaving) method for the SF codes defined by (3.51) and (3.52) such that the result-
ing coding advantage is maximized. By permuting the rows of an SF codeword C , we
obtain an interleaved codeword σ(C). We know that for two distinct SF codewords
C and C̃ constructed from G1,G2, . . . ,G P and G̃1, G̃2, . . . , G̃ P , respectively, there
exists at least one index p0 (1 ≤ p0 ≤ P) such that G p0 �= G̃ p0 . In order to determine
the minimum rank of [σ(C− C̃)σ (C− C̃)H]◦ R, we may further assume that G p = G̃ p

for any p �= p0 for the same reason as stated in the previous section.
Suppose that G p0 and G̃ p0 consist of symbols X = [x1 x2 · · · x�Mt ] and X̃ =

[x̃1 x̃2 · · · x̃�Mt ], respectively, with xk �= x̃k for all 1 ≤ k ≤ �Mt. For simplicity,
we use the notation �xk = xk − x̃k for k = 1, 2, . . . , �Mt. After row permutation,
we assume that the k-th (1 ≤ k ≤ �Mt) row of G p0 − G̃ p0 is located at the nk-th
(0 ≤ nk ≤ N−1) row of σ(C−C̃), i.e., the k-th row of G p0 will be transmitted at the nk-
th subcarrier. Then, all the (n(m−1)�+i , n(m−1)�+ j )-th, 1 ≤ i, j ≤ � and 1 ≤ m ≤ Mt,
entries of σ(C − C̃)σ (C − C̃)H are nonzero, and the other entries are zero. Thus, all
the entries of [σ(C−C̃)σ (C−C̃)H]◦R are zeros except the (n(m−1)�+i , n(m−1)�+ j )-th
entries for 1 ≤ i, j ≤ � and 1 ≤ m ≤ Mt . For convenience, we define the matrices
Am , m = 1, 2, . . . ,Mt , such that the (i, j)-th (1 ≤ i, j ≤ �) entry of Am is the
(n(m−1)�+i , n(m−1)�+ j )-th entry of [σ(C − C̃)σ (C − C̃)H] ◦ R. Since the correlation
matrix R is a Toeplitz matrix (see (3.53)), the (i, j)-th, 1 ≤ i, j ≤ �, entry of Am can
be expressed as

Am(i, j) = Mt�xq�x∗r
L−1∑
l=0

δ2
l ω

(nq−nr )τl , (3.66)

where q = (m − 1)� + i and r = (m − 1)� + j . Note that the nonzero eigenvalues of
[σ(C − C̃)σ (C − C̃)H] ◦ R are determined by the matrices Am,m = 1, 2, . . . ,Mt . It
can be shown that the product of the nonzero eigenvalues of [σ(C− C̃)σ (C− C̃)H] ◦ R,
λ1, λ2, . . . , λ�Mt , can be calculated as (leave proof as an exercise)

�Mt∏
k=1

λk =
Mt∏

m=1

|det(Am)| . (3.67)

From (3.66), for each m = 1, 2, . . . ,Mt, the �×� matrix Am can be decomposed as
follows:

Am = DmWm�W H
m DH

m, (3.68)
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where

� = diag(δ2
0, δ

2
1, . . . , δ

2
L−1),

Dm =
√

Mt diag(�x(m−1)�+1, �x(m−1)�+2, . . . ,�xm�),

Wm =

⎡⎢⎢⎢⎣
wn(m−1)�+1τ0 wn(m−1)�+1τ1 · · · wn(m−1)�+1τL−1

wn(m−1)�+2τ0 wn(m−1)�+2τ1 · · · wn(m−1)�+2τL−1

...
...

. . .
...

wnm�τ0 wnm�τ1 · · · wnm�τL−1

⎤⎥⎥⎥⎦ . (3.69)

As a consequence, the determinant of Am is given by

det(Am) = M�
t

�∏
i=1

∣∣�x(m−1)�+i
∣∣2 det(Wm�W H

m ). (3.70)

Substituting (3.70) into (3.67), the expression for the product of the nonzero eigenvalues
of [σ(C − C̃)σ (C − C̃)H] ◦ R takes the form

�Mt∏
k=1

λk = M�Mt
t

�Mt∏
k=1

|�xk |2
Mt∏

m=1

∣∣∣det(Wm�W H
m )

∣∣∣ . (3.71)

Therefore, the diversity product of the permuted SF code can be calculated as

ζ = 1

2
min
X�=X̃

(
�Mt∏
k=1

|�xk |
) 1
�Mt
( Mt∏

m=1

∣∣∣det(Wm�W H
m )

∣∣∣)
1

2�Mt

= ζin · ζex, (3.72)

where ζin is the “intrinsic” diversity product defined in (3.60), and ζex, the “extrinsic”
diversity product, is defined by

ζex =
( Mt∏

m=1

∣∣∣det(Wm�W H
m )

∣∣∣)
1

2�Mt

. (3.73)

The “extrinsic” diversity product ζex depends only on the permutation and the power
delay profile of the channel. The permutation does not effect the “intrinsic” diversity
product ζin.

From (3.69), for each m = 1, 2, . . . ,Mt, Wm can be written as

Wm = Vm · diag(wn(m−1)�+1τ0 , wn(m−1)�+1τ1 , . . . , wn(m−1)�+1τL−1), (3.74)

where

Vm =

⎡⎢⎢⎢⎣
1 · · · 1

w[n(m−1)�+2−n(m−1)�+1]τ0 · · · w[n(m−1)�+2−n(m−1)�+1]τL−1

...
. . .

...

w[nm�−n(m−1)�+1]τ0 · · · w[nm�−n(m−1)�+1]τL−1

⎤⎥⎥⎥⎦ . (3.75)

Thus, det(Wm�W H
m ) = det(Vm�V H

m ). We observe that the determinant of Wm�W H
m

depends only on the relative positions of the permuted rows with respect to the position
n(m−1)�+1, not on their absolute positions.
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Let us summarize the above discussion in the following result and obtain upper
bounds on the “extrinsic” diversity product ζex for arbitrary permutations.

T H E O R E M 3.1.4 For any subcarrier permutation, the diversity product of the
resulting SF code is

ζ = ζin · ζex, (3.76)

where ζin and ζex are the “intrinsic” and “extrinsic” diversity products defined in
(3.60) and (3.73), respectively. Moreover, the “extrinsic” diversity product ζex is upper
bounded as:
(i) ζex ≤ 1; and, more precisely,

(ii) if we sort the power profile δ0, δ1, . . . , δL−1 in a non-increasing order as: δl1 ≥
δl2 ≥ · · · ≥ δlL , then

ζex ≤
(
�∏

i=1

δli

) 1
�
∣∣∣∣∣

Mt∏
m=1

det(Vm V H
m )

∣∣∣∣∣
1

2�Mt

, (3.77)

where equality holds when � = L. As a consequence,

ζex ≤
√

L

(
�∏

i=1

δli

) 1
�

. (3.78)

We leave the proof of Theorem 3.1.4 as an exercise. We observe from Theorem 3.1.4
(ii) that the “extrinsic” diversity product ζex depends on the power delay profile in two
ways. First, it depends on the power distribution through the square root of the geometric
average of the largest � path powers, i.e., (

∏�
i=1 δli )

1/� . In case of � = L , the best
performance is expected if the power distribution is uniform (i.e., δ2

l = 1/L) since
the sum of the path powers is unity. Second, the “extrinsic” diversity product ζex also
depends on the delay distribution and the applied subcarrier permutation. On the other
hand, the “intrinsic” diversity product, ζin, is not affected by the power delay profile or
the permutation method. It only depends on the signal constellation and the SF code
design via the achieved minimum product distance.

3.1.3.4 Maximizing the “extrinsic” diversity product
By carefully choosing the applied permutation method, the overall performance of the
SF code can be improved by increasing the value of the “extrinsic” diversity product
ζex. Toward this end, we consider a specific permutation strategy.

We decompose any integer n (0 ≤ n ≤ N − 1) as

n = e1� + e0, (3.79)

where 0 ≤ e0 ≤ � − 1, e1 = �n/��, and �x� denotes the largest integer not greater
than x . For a fixed integer μ (μ ≥ 1), we further decompose e1 in (3.79) as

e1 = v1μ+ v0, (3.80)

where 0 ≤ v0 ≤ μ− 1 and v1 = �e1/μ�.
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σ  (n) : 0 1 2 3 4 5  . . .

0 1 2 3 4 5  . . .n   :

Fig. 3.7 An illustration of the permutation with � = 2 and separation factor μ = 3.

We permute the rows of the N ×Mt SF codeword constructed from (3.51) and (3.52)
in such a way that the n-th (0 ≤ n ≤ N − 1) row of C is moved to the σ(n)-th row,
so that

σ(n) = v1μ� + e0μ+ v0, (3.81)

where e0, v0, v1 come from (3.79) and (3.80). We call the integer μ as the separation
factor. The separation factor μ should be chosen such that σ(n) ≤ N for any 0 ≤ n ≤
N − 1, or, equivalently, μ ≤ �N/��. Moreover, in order to guarantee that the mapping
(3.81) is one-to-one over the set {0, 1, . . . , N − 1} (i.e., it defines a permutation), μ
must be a factor of N . The role of the permutation specified in (3.81) is to separate
two neighboring rows of C by μ subcarriers. An example of this permutation method is
depicted in Figure 3.7.

The following result characterizes the extrinsic diversity product of the SF code that
is permuted with the above described method. A proof of the result can be found in the
exercise.

T H E O R E M 3.1.5 For the permutation specified in (3.81) with a separation factor μ,
the “extrinsic” diversity product of the permuted SF code is

ζex = |det(V0�V H
0 )|

1
2� , (3.82)

where

V0 =

⎡⎢⎢⎢⎢⎢⎣
1 1 · · · 1
wμτ0 wμτ1 · · · wμτL−1

w2μτ0 w2μτ1 · · · w2μτL−1

...
...

. . .
...

w(�−1)μτ0 w(�−1)μτ1 · · · w(�−1)μτL−1

⎤⎥⎥⎥⎥⎥⎦
�×L

. (3.83)

Moreover, if � = L, the “extrinsic” diversity product ζex can be calculated as

ζex =
(

L−1∏
l=0

δl

) 1
L
⎛⎝ ∏

0≤l1<l2≤L−1

∣∣∣∣2 sin

(
μ(τl2 − τl1)π

T

)∣∣∣∣
⎞⎠

1
L

. (3.84)

The permutation (3.81) is determined by the separation factor μ. Our objective is to find
a separation factor μop that maximizes the “extrinsic” diversity product ζex:

μop = arg max
1≤μ≤�N/��

|det(V0�V H
0 )|. (3.85)
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If � = L , the optimum separation factor μop can be expressed as

μop = arg max
1≤μ≤�N/��

∏
0≤l1<l2≤L−1

∣∣∣∣sin(μ(τl2 − τl1)πT

)∣∣∣∣ , (3.86)

which is independent of the path powers. The optimum separation factor can be eas-
ily found via low complexity computer search. However, in some cases, closed-form
solutions can also be obtained.

Example 3.2 If � = L = 2, the “extrinsic” diversity product ζex is

ζex =
√
δ0δ1

∣∣∣∣2 sin

(
μ(τ1 − τ0)π

T

)∣∣∣∣ 1
2

. (3.87)

Suppose that the system has N = 128 subcarriers, and the total bandwidth is BW =
1 MHz. Then, the OFDM block duration is T = 128 μs without the cyclic prefix. If
τ1 − τ0 = 5 μs, then μop = 64 and ζex = √2δ0δ1. If τ1 − τ0 = 20 μs, then μop = 16
and ζex = √2δ0δ1. In general, if τ1 − τ0 = 2ab μs, where a is a nonnegative integer
and b is an odd integer, μop = 128/2a+1. In all of these cases, the “extrinsic” diversity
product is ζex = √2δ0δ1, which achieves the upper bound (3.78) of Theorem 3.1.4. �

Example 3.3 Assume that τl−τ0 = lN0T/N , l = 1, 2, . . . , L−1, and N is an integer
multiple of L N0, where N0 is a constant and not necessarily an integer. If � = L or
δ2

0 = δ2
1 = · · · = δ2

L−1 = 1/L , the optimum separation factor is

μop = N

L N0
, (3.88)

and the corresponding “extrinsic” diversity product is ζex =
√

L(
∏L−1

l=0 δl)
1/L (see

Appendix D for the proof). In particular, in case of δ2
0 = δ2

1 = · · · = δ2
L−1 = 1/L ,

ζex = 1. In both cases, the “extrinsic” diversity products achieve the upper bounds of
Theorem 3.1.4. Note that if τl = lT/N for l = 0, 1, . . . , L − 1, � = L and N is an
integer multiple of L . �

We now determine the optimum separation factors for two commonly used multipath
fading models. The COST 207 six-ray power delay profiles for typical urban (TU) and
hilly terrain (HT) environments are described in Tables 3.1 and 3.2, respectively. We
consider two different bandwidths: (a) BW = 1 MHz, and (b) BW = 4 MHz. Suppose
that the OFDM has N = 128 subcarriers. The plots of the “extrinsic” diversity product
ζex as the function of the separation factor μ for the TU and HT channel models are
shown in Figures 3.8 and 3.9, respectively. In each figure, the curves of the “extrinsic”
diversity product are depicted for different � (2 ≤ � ≤ L) values. Note that for a fixed
�,� = 2, 3, . . . , L , the separation factor μ cannot be greater than �N/��.
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Table 3.1 Typical urban (TU) six-ray power delay profile.

Delay profile (μs): 0.0 0.2 0.5 1.6 2.3 5.0

Power profile: 0.189 0.379 0.239 0.095 0.061 0.037

Table 3.2 Hilly terrain (HT) six-ray power delay profile.

Delay profile (μs): 0.0 0.1 0.3 0.5 15.0 17.2

Power profile: 0.413 0.293 0.145 0.074 0.066 0.008

Let us focus on the case where � = 2. For the TU channel model with BW = 1 MHz
(Figure 3.8(a)), the maximum “extrinsic” diversity product is ζex = 0.8963. The cor-
responding separation factor is μop = 40. However, to ensure one-to-one mapping,
we choose μ = 64, which results in an “extrinsic” diversity product ζex = 0.8606.
For the TU channel model with BW = 4 MHz (Figure 3.8(b)), the maximum “extrin-
sic” diversity product is ζex = 0.9998, which approaches the upper bound 1 stated
in Theorem 3.1.4. The corresponding separation factor is μop = 51. Similarly, we
choose μ = 64 to generate a permutation. The resulting “extrinsic” diversity product
is ζex = 0.9751, which is a slight performance loss compared to the maximum value
ζex = 0.9998. Finally, in case of the six-ray HT channel model with BW = 1 MHz
(Figure 3.9(a)), the maximum “extrinsic” diversity product is ζex = 0.8078. The cor-
responding separation factor is μop = 64, which is desirable. For the HT channel
model with BW = 4 MHz (Figure 3.9(b)), the maximum “extrinsic” diversity product
is ζex = 0.9505, and the corresponding separation factor is μop = 46. To ensure one-
to-one mapping, we choose μ = 64, which results in an “extrinsic” diversity product
ζex = 0.9114.

3.1.3.5 Code design examples and performance comparisons
In the following, we provide some full-rate full-diversity SF code design examples and
show their performances. Assume that the MIMO-OFDM system has Mt = 2 transmit
antennas, Mr = 1 receive antenna and N = 128 subcarriers. The simulated full-rate
full-diversity SF codes are constructed according to (3.51) and (3.52) with � = 2,
yielding the code block structure

G = √2

⎡⎢⎢⎣
x1 0
x2 0
0 x3

0 x4

⎤⎥⎥⎦ . (3.89)

The symbols x1, x2, x3, x4 were obtained as

[x1 x2 x3 x4] = [s1 s2 s3 s4] · 1

2
V (θ,−θ, jθ,− jθ), (3.90)



3.1 Space–frequency diversity and coding 91

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Separation factor μ (1 ≤ μ ≤ ⎣N/Γ⎦ )
(a)

0 10 20 30 40 50 60 70
Separation factor μ (1 ≤ μ ≤ ⎣N/Γ⎦ )

(b)

E
xt

ri
n

si
c 

d
iv

er
si

ty
 p

ro
d

u
ct

 ζ e
x

E
xt

ri
n

si
c 

d
iv

er
si

ty
 p

ro
d

u
ct

 ζ e
x

Γ = 2
Γ = 3

Γ = 4

Γ = 5

Γ = 6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Γ = 2 Γ = 3
 

Γ = 4

Γ = 5

Γ = 6

Fig. 3.8 Extrinsic diversity product ζex versus separation factor μ for different � (2 ≤ � ≤ 6), TU
channel model. (a) BW = 1 MHz, (b) BW = 4 MHz.

where s1, s2, s3, s4 were chosen from BPSK constellation (si ∈ {1,−1}) or QPSK con-
stellation (si ∈ {±1,± j}), V (·) is the Vandermonde matrix, and θ = ejπ/8. This code
targets a frequency diversity order of � = 2, thus it achieves full diversity only if the
number of delay paths is L ≤ 2.
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Fig. 3.9 Extrinsic diversity product ζex versus separation factor μ for different � (2 ≤ � ≤ 6), HT
channel model. (a) BW = 1 MHz, (b) BW = 4 MHz.

Let us compare the performances of the considered SF codes with three permuta-
tion schemes: no permutation, random permutation, and the optimum permutation. The
random permutation was generated by the Takeshita–Constello method [210], which is
given by

σ(n) =
(

n(n + 1)

2

)
mod N , n = 0, 1, · · · , N − 1. (3.91)
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Code performances with different permutation schemes
Let us compare the performance of the full-rate full-diversity SF codes using different
permutation schemes. For example, let us focus on the code (3.89) with the channel
symbols s1, s2, s3, s4 chosen from BPSK constellation. The symbol rate of this code is
1, and its spectral efficiency is 1 bit/s/Hz, ignoring the cyclic prefix.

First, we consider a simple two-ray, equal-power delay profile, with a delay τ μs
between the two rays. We consider two cases: (a) τ = 5 μs, and (b) τ = 20 μs with
OFDM bandwidth BW = 1 MHz. From the BER curves, shown in Figures 3.10(a) and
(b), we observe that the performance of the proposed SF code with the random per-
mutation is better than that without permutation. In case of τ = 5μs, the performance
improvement is more significant. With the optimum permutation, the performance is
further improved. In case of τ = 5μs, there is a 3 dB gain between the optimum permu-
tation (μop = 64) and the random permutation at a BER of 10−5. In case of τ = 20μs,
the performance improvement of the optimum permutation (μop = 16) over the random
permutation is about 2 dB at a BER of 10−5. If no permutation is used, the performance
of the code in the τ = 5 μs case (ζex = 0.3499) is worse than that in the τ = 20 μs
case (ζex = 0.6866). However, if we apply the optimum permutation, the performance
of the SF code in both the τ = 5 μs case (μop = 64, ζex = 1) and the τ = 20 μs
case (μop = 16, ζex = 1) is approximately the same. This confirms that by care-
ful interleaver design, the performance of the SF codes can be significantly improved.
Moreover, the consistency between the theoretical diversity product values and the sim-
ulation results suggests that the “extrinsic” diversity product ζex is a good indicator of
the code performance.

Let us simulate the code (3.89) with a more practical TU channel model. We con-
sider two situations: (a) BW = 1 MHz, and (b) BW = 4 MHz. Figure 3.11 provides
the performance results of the code with different permutations for the TU channel
model. From Figures 3.11(a) and (b), we observe that in both cases, the code with ran-
dom permutation has a significant improvement over the non-permuted code. Using
the proposed permutation with a separation factor μ = 64, there is an additional gain
of 1.5 dB and 1 dB at a BER of 10−5 in case of BW = 1 MHz and BW = 4 MHz,
respectively.

Comparisons of the full-rate full-diversity SF codes with other SF codes
Let us compare the performance of the full-rate full-diversity SF codes with that of the
full-diversity SF codes obtained via mapping. We consider the full-rate full-diversity
SF code (3.89) with symbols s1, s2, s3, s4 chosen from QPSK constellation. The sym-
bol rate of the code is 1, and the spectral efficiency is 2 bits/s/Hz, ignoring the cyclic
prefix. The full-diversity SF code is a repetition of the Alamouti scheme two times as
follows:

G =

⎡⎢⎢⎣
x1 x2

x1 x2

−x∗2 x∗1
−x∗2 x∗1

⎤⎥⎥⎦ , (3.92)
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Fig. 3.10 Performance of the proposed SF code with different permutations, two-ray channel model. (a)
Two rays at 0 and 5 μs, (b) Two rays at 0 and 20 μs.

where the channel symbols x1 and x2 were chosen from 16-QAM in order to maintain
the same spectral efficiency.

First, we consider the two-ray, equal-power profile, with (a) τ = 5 μs, and (b)
τ = 20 μs. The total bandwidth was BW = 1 MHz. From the BER curve of the
τ = 5 μs case, depicted in Figure 3.12(a), we observe that without permutation, the
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Fig. 3.11 Performance of the proposed SF code with different permutations, six-ray TU channel model.
(a) BW = 1 MHz, (b) BW = 4 MHz.

full-rate SF code outperforms the SF code from orthogonal design by about 3 dB at a
BER of 10−4. With the random permutation (3.91), the full-rate code outperforms the
code from orthogonal design by about 2 dB at a BER of 10−4. With the optimum per-
mutation (μop = 64), the full-rate code has an additional gain of 3 dB at a BER of
10−4. Compared to the code from orthogonal design with the random permutation, the
full-rate code with the optimum permutation has a total gain of 5 dB at a BER of 10−4.
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Fig. 3.12 Comparison of the proposed SF code and the code from orthogonal design, two-ray channel
model. (a) Two rays at 0 and 5, (b) two rays at 0 and 20 μs.

Figure 3.12(b) shows the performance of the SF codes in the τ = 20 μs case. It can be
seen that without permutation, the full-rate code outperforms the code (3.92) by about
2 dB at a BER of 10−4. With the random permutation (3.91), the performance of the
full-rate code is better than that of the code (3.92) by about 2 dB at a BER of 10−4.
With the optimum permutation (μop = 16), an additional improvement of 2 dB at a
BER of 10−4 is achieved by the full-rate code.
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Fig. 3.13 Comparison of the proposed SF code and the code from orthogonal design, six-ray TU channel
model. (a) BW = 1 MHz, (b) BW = 4 MHz.

Let us compare the performances of the two SF codes with a more practical TU
channel model. We consider two situations: (a) BW = 1 MHz, and (b) BW = 4 MHz.
Figure 3.13 depicts the simulation results for the TU channel model. In case of BW =
1 MHz, from Figure 3.13(a), we can see that without permutation, the full-rate SF code
outperforms the SF code (3.92) by about 2 dB at a BER of 10−4. With the random per-
mutation (3.91), the performance of the full-rate code is better than that of the code from
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orthogonal design by about 2.5 dB at a BER of 10−4. With the permutation (μ = 64), an
additional improvement of 1 dB at a BER of 10−4 is achieved by the full-rate SF code.
In case of BW = 4 MHz, from Figure 3.13(b), we observe that without permutation, the
performance of the full-rate code is better than that of the code from orthogonal design
by about 3 dB at a BER of 10−4. With the random permutation, the full-rate SF code
outperforms the SF code (3.92) by about 2 dB at a BER of 10−4. With the permutation
(μ = 64), there is an additional gain of about 1 dB at a BER of 10−4. Compared to
the SF code from orthogonal design with the random permutation, the full-rate SF code
with the optimum permutation has a total gain of 3 dB at a BER of 10−4.

3.2 Space–time–frequency diversity and coding

In this section, we consider transmission techniques to exploit all of the spatial, tempo-
ral, and frequency diversity available in broadband wireless communications. First, we
briefly review a STF-coded MIMO-OFDM system model and determine the maximum
achievable diversity in this case. Then, we review two systematic approaches to design
STF codes to achieve the maximum achievable diversity in MIMO-OFDM systems.

3.2.1 STF-coded MIMO-OFDM system model

A STF-coded MIMO-OFDM system with Mt transmit antennas, Mr receive antennas
and N subcarriers is shown in Figure 3.14. Suppose that the frequency selective fading
channels between each pair of transmit and receive antennas have L independent delay
paths and the same power delay profile. The MIMO channel is assumed to be constant
over each OFDM block period, but it may vary from one OFDM block to another. At
the k-th OFDM block, the channel impulse response from transmit antenna i to receive
antenna j at time τ can be modeled as

hk
i, j (τ ) =

L−1∑
l=0

αk
i, j (l)δ(τ − τl), (3.93)

1

2

1

2

Mt Mr 

101011
OFDM Tx

OFDM Tx

OFDM Tx OFDM Rx

OFDM Rx

OFDM Rx

Decoder

STF
STF

Encoder

(across K
OFDM blocks)

Fig. 3.14 STF-coded MIMO-OFDM system with Mt transmit and Mr receive antennas.
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where τl is the delay and αk
i, j (l) is the complex amplitude of the l-th path between

transmit antenna i and receive antenna j . The αk
i, j (l)’s are modeled as zero-mean, com-

plex Gaussian random variables with variances E |αk
i, j (l)|2 = δ2

l , where E stands for

the expectation. The powers of the L paths are normalized such that
∑L−1

l=0 δ
2
l = 1.

Assume that the MIMO channel is spatially uncorrelated, so the channel coefficients
αk

i, j (l) are independent for different indices (i, j). From (3.93), the frequency response
of the channel is given by

Hk
i, j ( f ) =

L−1∑
l=0

αk
i, j (l)e

−j2π f τl , (3.94)

where j = √−1.
Let us consider STF coding across Mt transmit antennas, N OFDM subcarriers’ and

K consecutive OFDM blocks. Each STF codeword can be expressed as a K N × Mt

matrix

C = [CT
1 CT

2 · · · CT
K ]T, (3.95)

where the channel symbol matrix Ck is given by

Ck =

⎡⎢⎢⎢⎢⎣
ck

1(0) ck
2(0) · · · ck

Mt
(0)

ck
1(1) ck

2(1) · · · ck
Mt
(1)

...
...

. . .
...

ck
1(N − 1) ck

2(N − 1) · · · ck
Mt
(N − 1)

⎤⎥⎥⎥⎥⎦ , (3.96)

and ck
i (n) is the channel symbol transmitted over the n-th subcarrier by transmit antenna

i in the k-th OFDM block. The STF code is assumed to satisfy the energy constraint
E ||C ||2F = K N Mt , where ||C ||F is the Frobenius norm of C . During the k-th OFDM
block period, the transmitter applies an N -point IFFT to each column of the matrix
Ck . After appending a cyclic prefix, the OFDM symbol corresponding to the i-th (i =
1, 2, . . . ,Mt) column of Ck is transmitted by transmit antenna i .

At the receiver, after matched filtering, removing the cyclic prefix, and applying FFT,
the received signal at the n-th subcarrier at receive antenna j in the k-th OFDM block
is given by

yk
j (n) =

√
ρ

Mt

Mt∑
i=1

ck
i (n)H

k
i, j (n)+ zk

j (n), (3.97)

where

Hk
i, j (n) =

L−1∑
l=0

αk
i, j (l)e

−j2πn� f τl (3.98)

is the channel frequency response at the n-th subcarrier between transmit antenna i and
receive antenna j ,� f = 1/T is the subcarrier separation in the frequency domain, and
T is the OFDM symbol period. Assume that the channel state information Hk

i, j (n) is

known at the receiver, but not at the transmitter. In (3.97), zk
j (n) denotes the additive
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white complex Gaussian noise with zero mean and unit variance at the n-th subcarrier
at receive antenna j in the k-th OFDM block. The factor

√
ρ/Mt in (3.97) ensures that

ρ is the average signal to noise ratio (SNR) at each receive antenna.

3.2.2 Performance criteria and maximum achievable diversity

In this subsection, we discuss the performance criteria for STF-coded MIMO-OFDM
systems and determine the maximum achievable diversity order for such systems.

Using the notation

ci ((k − 1)N + n)
�= ck

i (n),

Hi, j ((k − 1)N + n)
�= Hk

i, j (n),

y j ((k − 1)N + n)
�= yk

j (n),

z j ((k − 1)N + n)
�= zk

j (n)

for 1 ≤ k ≤ K , 0 ≤ n ≤ N − 1, 1 ≤ i ≤ Mt and 1 ≤ j ≤ Mr, the received signal in
(3.97) can be expressed as

y j (m) =
√
ρ

Mt

Mt∑
i=1

ci (m)Hi, j (m)+ z j (m) (3.99)

for m = 0, 1, . . . , K N − 1. We further rewrite the received signal in vector form as

Y =
√
ρ

Mt
DH+ Z, (3.100)

where D is a K N Mr×K N MtMr matrix constructed from the STF codeword C in (3.95)
as follows:

D = IMr ⊗
[
D1 D2 · · · DMt

]
, (3.101)

where ⊗ denotes the tensor product, IMr is the identity matrix of size Mr × Mr, and

Di = diag{ci (0), ci (1), . . . , ci (K N − 1)} (3.102)

for any i = 1, 2, . . . ,Mt. The channel vector H of size K N MtMr × 1 is formatted as

H = [HT
1,1 · · · HT

Mt,1 HT
1,2 · · · HT

Mt,2 · · · HT
1,Mr

· · · HT
Mt,Mr

]T, (3.103)

where

Hi, j = [Hi, j (0) Hi, j (1) · · · Hi, j (K N − 1)]T. (3.104)

The received signal vector Y of size K N Mr × 1 is given by

Y = [y1(0) · · · y1(K N − 1) y2(0) · · · y2(K N − 1) · · · yMr(0) · · · yMr(K N − 1)]T,
(3.105)

and the noise vector Z has the same form as Y, i.e.,

Z = [z1(0) · · · z1(K N − 1) z2(0) · · · z2(K N − 1) · · · zMr (0) · · · zMr (K N − 1)]T.
(3.106)
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Suppose that D and D̃ are two matrices constructed from two different codewords C
and C̃ , respectively. Then, the pairwise error probability between D and D̃ can be upper
bounded as

Pr(D → D̃) ≤
(

2r − 1
r

) ( r∏
i=1

γi

)−1 (
ρ

Mt

)−r

, (3.107)

where r is the rank of (D−D̃)R(D−D̃)H, γ1, γ2, . . . , γr are the nonzero eigenvalues of
(D− D̃)R(D− D̃)H, and R = E{HHH} is the correlation matrix of H. The superscript H
stands for the complex conjugate and transpose of a matrix. Based on the upper bound
on the pairwise error probability in (3.107), two general STF code performance criteria
can be proposed as follows:

• Diversity (rank) criterion: The minimum rank of (D− D̃)R(D− D̃)H over all pairs of
different codewords C and C̃ should be as large as possible.

• Product criterion: The minimum value of the product
∏r

i=1 γi over all pairs of
different codewords C and C̃ should be maximized.

In the case of spatially uncorrelated MIMO channels, i.e., the channel taps αk
i, j (l) are

independent for different transmit antenna index i and receive antenna index j , the
correlation matrix R of size K N MtMr × K N MtMr becomes

R = diag

(
R1,1, . . . , RMt,1, R1,2, . . . , RMt,2, . . . , R1,Mr , . . . , RMt,Mr

)
, (3.108)

where

Ri, j = E
{

Hi, j HH
i, j

}
(3.109)

is the correlation matrix of the channel frequency response from transmit antenna i to
receive antenna j . Using the notation w = e−j2π� f , from (3.98), we have

Hi, j = (IK ⊗W )Ai, j , (3.110)

where

W =

⎡⎢⎢⎢⎣
1 1 · · · 1
wτ0 wτ1 · · · wτL−1

...
...

. . .
...

w(N−1)τ0 w(N−1)τ1 · · · w(N−1)τL−1

⎤⎥⎥⎥⎦ ,
and

Ai, j = [α1
i, j (0) α

1
i, j (1) · · · α1

i, j (L − 1) · · · αK
i, j (0) α

K
i, j (1) · · · αK

i, j (L − 1)]T.
Substituting (3.110) into (3.109), Ri, j can be calculated as follows:

Ri, j = E
{
(IK ⊗W )Ai, j AH

i, j (IK ⊗W )H
}

= (IK ⊗W )E
{

Ai, j AH
i, j

}
(IK ⊗W H).
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With the assumptions that the path gains αk
i, j (l) are independent for different paths

and different pairs of transmit and receive antennas, and that the second order statistics
of the time correlation is the same for all transmit and receive antenna pairs and all paths
(i.e. the correlation values do not depend on i , j and l), we can define the time correla-

tion at lag m as rT(m) = E{αk
i, j (l)α

k+m
i, j

∗
(l)}. Thus, the correlation matrix E

{
Ai, j AH

i, j

}
can be expressed as

E
{

Ai, j AH
i, j

}
= RT ⊗�, (3.111)

where � = diag{δ2
0, δ

2
1, · · · , δ2

L−1}, and RT is the temporal correlation matrix of size
K × K , whose entry in the p-th row and the q-th column is given by rT (q − p) for
1 ≤ p, q ≤ K . We can also define the frequency correlation matrix, RF, as RF =
E{Hk

i, j Hk
i, j

H}, where

Hk
i, j = [ Hk

i, j (0), . . . , Hk
i, j (N − 1) ]T.

Then, RF = W�W H. As a result, we arrive at

Ri, j = (IK ⊗W )(RT ⊗�)(IK ⊗W H)

= RT ⊗ (W�W H) = RT ⊗ RF, (3.112)

yielding

R = IMt Mr ⊗ (RT ⊗ RF). (3.113)

Finally, combining (3.96), (3.101), (3.102), and (3.113), the expression for
(D− D̃)R(D− D̃)H in (3.107) can be rewritten as

(D− D̃)R(D− D̃)H

= IMr ⊗
[ Mt∑

i=1

(Di − D̃i )(RT ⊗ RF)(Di − D̃i )
H

]
= IMr ⊗

{[
(C − C̃)(C − C̃)H

]
◦ (RT ⊗ RF)

}
, (3.114)

where ◦ denotes the Hadamard product. Let

�
�= (C − C̃)(C − C̃)H, (3.115)

and R
�= RT⊗RF. Then, substituting (3.114) into (3.107), the pairwise error probability

between C and C̃ can be upper bounded as

Pr(C → C̃) ≤
(

2νMr − 1
νMr

) ( ν∏
i=1

λi

)−Mr (
ρ

Mt

)−νMr

, (3.116)

where ν is the rank of � ◦ R, and λ1, λ2, . . . , λν are the nonzero eigenvalues of � ◦ R.
The minimum value of the product

∏ν
i=1 λi over all pairs of distinct signals C and C̃ is

termed as coding advantage, denoted by

ζSTF = min
C �=C̃

ν∏
i=1

λi . (3.117)
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As a consequence, we can formulate the performance criteria for STF codes as follows:

• Diversity (rank) criterion: The minimum rank of � ◦ R over all pairs of distinct
codewords C and C̃ should be as large as possible.

• Product criterion: The coding advantage or the minimum value of the product∏ν
i=1 λi over all pairs of distinct signals C and C̃ should also be maximized.

If the minimum rank of � ◦ R is ν for any pair of distinct STF codewords C and
C̃ , we say that the STF code achieves a diversity order of νMr. For a fixed number of
OFDM blocks K , number of transmit antennas Mt, and correlation matrices RT and RF,
the maximum achievable diversity or full diversity is defined as the maximum diversity
order that can be achieved by STF codes of size K N × Mt.

According to the rank inequalities on Hadamard products and tensor products, we
have

rank(� ◦ R) ≤ rank(�)rank(RT)rank(RF).

Since the rank of � is at most Mt and the rank of RF is at most L , we obtain

rank(� ◦ R) ≤ min{L Mtrank(RT), K N }. (3.118)

Thus, the maximum achievable diversity is at most min{L MtMrrank(RT), K N Mr}. We
can see from the following discussion that this upper bound can indeed be achieved. We
also observe that if the channel stays constant over multiple OFDM blocks (rank(RT) =
1), the maximum achievable diversity is min{L MtMr, K N Mr}. In this case, STF cod-
ing basically reduces to SF coding and cannot provide additional diversity advantage
compared to the SF coding approach.

Note that the above analytical framework includes ST and SF codes as special cases.
If we consider only one subcarrier (N = 1), and one delay path (L = 1), the channel
becomes a single-carrier, time-correlated, flat fading MIMO channel. The correlation
matrix R simplifies to R = RT, and the code design problem reduces to that of ST code
design. In the case of coding over a single OFDM block (K = 1), the correlation matrix
R becomes R = RF, and the code design problem simplifies to that of SF codes.

3.2.3 Full-diversity STF code design methods

In this subsection, we review two STF code design methods to achieve the maximum
achievable diversity order min{L MtMrrank(RT), K N Mr}. Without loss of generality,
let us assume that the number of subcarriers, N , is not less than L Mt, so the maximum
achievable diversity order is L MtMrrank(RT).

3.2.3.1 Repetition-based STF code design
In the previous section, a systematic approach was proposed to design full-diversity SF
codes. Suppose that CSF is a full-diversity SF code of size N ×Mt. A full-diversity STF
code, CSTF, can be constructed by repeating CSF K times (over K OFDM blocks) as
follows:

CSTF = 1k×1 ⊗ CSF, (3.119)
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where 1k×1 is an all one matrix of size k × 1. Let

�STF = (CSTF − C̃STF)(CSTF − C̃STF)
H

and

�SF = (CSF − C̃SF)(CSF − C̃SF)
H.

Then we have

�STF =
[
1k×1 ⊗ (CSF − C̃SF)

] [
11×k ⊗ (CSF − C̃SF)

H
]
= 1k×k ⊗�SF.

Thus,

�STF ◦ R = (1k×k ⊗�SF) ◦ (RT ⊗ RF)

= RT ⊗ (�SF ◦ RF).

Since the SF code CSF achieves full diversity in each OFDM block, the rank of �SF ◦
RF is L Mt. Therefore, the rank of �STF ◦ R is L Mtrank(RT), so CSTF in (3.119) is
guaranteed to achieve a diversity order of L MtMrrank(RT).

We can see that the maximum achievable diversity depends on the rank of the tempo-
ral correlation matrix RT. If the fading channels are constant during K OFDM blocks,
i.e., rank(RT) = 1, the maximum achievable diversity order for STF codes (coding
across several OFDM blocks) is the same as that for SF codes (coding within one OFDM
block). Moreover, if the channel changes independently in time, i.e., RT = IK , the rep-
etition structure of STF code CSTF in (3.119) is sufficient, but not necessary to achieve
the full diversity. In this case,

� ◦ R = diag(�1 ◦ RF, �2 ◦ RF, . . . , �K ◦ RF),

where �k = (Ck − C̃k)(Ck − C̃k)
H for 1 ≤ k ≤ K . Thus, in this case, the necessary

and sufficient condition to achieve full diversity K L MtMr is that each matrix �k ◦ RF

be of rank L Mt over all pairs of distinct codewords simultaneously for all 1 ≤ k ≤ K .
The above repetition-based STF code design ensures full diversity at the price of

the symbol rate decreasing by a factor of 1/K (over K OFDM blocks) compared to
the symbol rate of the underlying SF code. The advantage of this approach is that any
full-diversity SF code (block or trellis) can be used to design full-diversity STF codes.

3.2.3.2 Full-rate STF code design
Let us consider a STF code structure consisting of STF codewords C of size K N by Mt:

C = [CT
1 CT

2 · · · CT
K ]T, (3.120)

where

Ck =
[
GT

k,1 GT
k,2 · · · GT

k,P 0T
N−P�Mt

]T
(3.121)

for k = 1, 2, . . . , K . In (3.121), P = �N/(�Mt)�, and each matrix Gk,p (1 ≤ k ≤
K , 1 ≤ p ≤ P) is of size �Mt by Mt. The zero padding in (3.121) is used if the number
of subcarriers N is not an integer multiple of �Mt. For each p (1 ≤ p ≤ P), we design
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the code matrices G1,p,G2,p, . . . ,GK ,p jointly, but the design of Gk1,p1 and Gk2,p2 ,
p1 �= p2, is independent of each other. For a fixed p (1 ≤ p ≤ P), let

Gk,p =
√

Mt diag
(
Xk,1, Xk,2, . . . , Xk,Mt

)
, k = 1, 2, . . . , K (3.122)

where diag(Xk,1, Xk,2, . . . , Xk,Mt) is a block diagonal matrix, in which Xk,i =
[xk,(i−1)�+1 xk,(i−1)�+2 . . . xk,i�]T, i = 1, 2, . . . ,Mt, and xk, j , j = 1, 2, . . . , �Mt,
are complex symbols and will be specified later. The energy normalization condition is

E

⎛⎝ K∑
k=1

�Mt∑
j=1

|xk, j |2
⎞⎠ = K�Mt.

The symbol rate of the proposed scheme is P�Mt/N , ignoring the cyclic prefix. If N is
a multiple of �Mt, the symbol rate is 1. If not, the rate is less than 1, but since usually
N is much greater than �Mt, the symbol rate is very close to 1. We term full rate as
one channel symbol per subcarrier per OFDM block period, so the proposed method
can either achieve the full symbol rate, or it can perform very close to it. Note that
this scheme includes the code design method proposed in [205] as a special case when
K = 1.

The following theorem provides a sufficient condition for the STF codes
described above to achieve a diversity order of �Mt Mr rank(RT). For simplicity,
let us use the notation X = [x1,1 · · · x1,�Mt · · · xK ,1 · · · xK ,�Mt ] and X̃ =
[x̃1,1 · · · x̃1,�Mt · · · x̃K ,1 · · · x̃K ,�Mt ]. Moreover, for any n × n nonnegative definite
matrix A, let us denote its eigenvalues in a non-increasing order as: eig1(A) ≥
eig2(A) ≥ · · · ≥ eign(A).

T H E O R E M 3.2.1 For any STF code specified in (3.120)–(3.122), if
∏K

k=1
∏�Mt

j=1

|xk, j − x̃k, j | �= 0 for any pair of distinct symbols X and X̃, the STF code achieves
a diversity order of �MtMrrank(RT), and the coding advantage is bounded by

(Mtδmin)
�Mtrank(RT) � ≤ ζSTF ≤ (Mtδmax)

�Mtrank(RT) �, (3.123)

where

δmin = min
X�=X̃

min
1≤k≤K ,1≤ j≤�Mt

|xk, j − x̃k, j |2, (3.124)

δmax = max
X�=X̃

max
1≤k≤K ,1≤ j≤�Mt

|xk, j − x̃k, j |2, (3.125)

� = |det(Q0)|Mt rank(RT)

rank(RT)∏
i=1

(
eigi (RT)

)�Mt , (3.126)

and

Q0 = W0diag(δ2
0, δ

2
1, . . . , δ

2
L−1)W

H
0 , (3.127)
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W0 =

⎡⎢⎢⎢⎣
1 1 · · · 1
wτ0 wτ1 · · · wτL−1

...
...

. . .
...

w(�−1)τ0 w(�−1)τ1 · · · w(�−1)τL−1

⎤⎥⎥⎥⎦
�×L

. (3.128)

Furthermore, if the temporal correlation matrix RT is of full rank, i.e., rank(RT) = K,
the coding advantage is

ζSTF = δ M K�Mt
t |det(RT)|�Mt |det(Q0)|K Mt , (3.129)

where

δ = min
X�=X̃

K∏
k=1

�Mt∏
j=1

|xk, j − x̃k, j |2. (3.130)

Proof Suppose that C and C̃ are two distinct STF codewords which are constructed
from Gk,p and G̃k,p (1 ≤ k ≤ K , 1 ≤ p ≤ P), respectively. We would like to determine
the rank of�◦R, where� = (C−C̃)(C−C̃)H and R = RT⊗RF. For convenience, let

Gp =
[
GT

1,p GT
2,p · · · GT

K ,p

]T
for each p = 1, 2, . . . , P . For two distinct codewords C and C̃ , there exists at least one
index p0 (1 ≤ p0 ≤ P) such that Gp0 �= G̃p0 . We may further assume that Gp = G̃p

for any p �= p0 since the rank of�◦ R does not decrease if Gp �= G̃p for some p �= p0

([74], Corollary 3.1.3, p.149).
Note that the frequency correlation matrix RF is a Toeplitz matrix. With the assump-

tion that Gp = G̃p for any p �= p0, we observe that the nonzero eigenvalues of�◦R are
the same as those of [(Gp0−G̃p0)(Gp0−G̃p0)

H]◦(RT⊗Q), where Q = {qi, j }1≤i, j≤�Mt

is also a Toeplitz matrix whose entries are

qi, j =
L−1∑
l=0

δ2
l w

(i− j)τl , 1 ≤ i, j ≤ �Mt. (3.131)

Note that Q is independent of the index p0, i.e., it is independent of the position of
Gp0 − G̃p0 in C − C̃ . For any 1 ≤ k ≤ K , we have

Gk,p0 − G̃k,p0

= √Mt diag(Xk,1 − X̃k,1, Xk,2 − X̃k,2, . . . , Xk,Mt − X̃k,Mt)

= √Mt diag(xk,1 − x̃k,1, . . . , xk,�Mt − x̃k,�Mt)
(
IMt ⊗ 1�×1

)
,

so the difference matrix between Gp0 and G̃p0 is

Gp0 − G̃p0 =
√

Mt

⎡⎢⎢⎣
diag(x1,1 − x̃1,1, . . . , x1,�Mt − x̃1,�Mt)

(
IMt ⊗ 1�×1

)
diag(x2,1 − x̃2,1, . . . , x2,�Mt − x̃2,�Mt)

(
IMt ⊗ 1�×1

)
· · ·

diag(xK ,1 − x̃K ,1, . . . , xK ,�Mt − x̃K ,�Mt)
(
IMt ⊗ 1�×1

)
⎤⎥⎥⎦

= √Mt diag(X− X̃)
[
1K×1 ⊗

(
IMt ⊗ 1�×1

)]
,
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where

diag(X− X̃)
�= diag(x1,1 − x̃1,1, . . . , x1,�Mt − x̃1,�Mt , . . . ,

xK ,1 − x̃K ,1, . . . , xK ,�Mt − x̃K ,�Mt).

Thus, we have[
(Gp0 − G̃p0)(Gp0 − G̃p0)

H
]
◦ (RT ⊗ Q)

= Mt

{
diag(X− X̃)

[
1K×1 ⊗

(
IMt ⊗ 1�×1

)] [
1K×1 ⊗

(
IMt ⊗ 1�×1

)]H
×diag(X− X̃)H

}
◦ (RT ⊗ Q)

= Mt

[
diag(X− X̃)

(
1K×K ⊗ IMt ⊗ 1�×�

)
diag(X− X̃)H

]
◦ (RT ⊗ Q)

= Mt diag(X− X̃)
{

RT ⊗
[(

IMt ⊗ 1�×�
) ◦ Q

]}
diag(X− X̃)H

= Mt diag(X− X̃)
(
RT ⊗ IMt ⊗ Q0

)
diag(X− X̃)H, (3.132)

where Q0 = {qi, j }1≤i, j≤� and qi, j is given by (3.131). In the above derivation, the
second equality follows from the identities [1K×1⊗(IMt⊗1�×1)]H = 11×K⊗IMt⊗11×�
and (A1⊗B1)(A2⊗B2)(A3⊗B3) = (A1 A2 A3)⊗(B1 B2 B3) ([74], p.251), and the third
equality follows from a property of the Hadamard product ([74], p.304). From (3.132),
we observe that if diag(X− X̃) is of full rank, i.e., xk, j − x̃k, j �= 0 for any 1 ≤ k ≤ K

and 1 ≤ j ≤ �Mt, then the rank of
[
(Gp0 − G̃p0) (Gp0 − G̃p0)

H
]
◦ (RT ⊗ Q) can be

determined as rank(RT ⊗ IMt ⊗ Q0), which is equal to Mtrank(RT)rank(Q0). Similar
to the correlation matrix RF in (3.112), Q0 can be expressed as

Q0 = W0diag(δ2
0, δ

2
1, . . . , δ

2
L−1)W

H
0 ,

where W0 is defined in (3.128). Note that W0 is a � by L matrix consisting of � rows of
a Vandermonde matrix [74], so with τ0 < τ1 < · · · < τL−1, W0 is nonsingular. Thus,
Q0 is of full rank (rank �). Therefore, if

∏K
k=1
∏�Mt

j=1 |xk, j − x̃k, j | �= 0, the rank of
� ◦ R is �Mtrank(RT).

The assumption that Gp = G̃p for any p �= p0 is also sufficient to calculate the
coding advantage since the nonzero eigenvalues of � ◦ R do not decrease if Gp �= G̃p

for some p �= p0 ([74], Corollary 3.1.3, p.149). Using the notation ν0 = �Mtrank(RT),
the coding advantage can be calculated as

ζSTF = min
X�=X̃

ν0∏
i=1

eigi

([
(Gp0 − G̃p0)(Gp0 − G̃p0)

H
]
◦ (RT ⊗ Q)

)
= min

X�=X̃

ν0∏
i=1

eigi

(
Mt diag(X− X̃)

(
RT ⊗ IMt ⊗ Q0

)
diag(X− X̃)H

)
(3.133)

= min
X�=X̃

ν0∏
i=1

θi Mteigi

(
RT ⊗ IMt ⊗ Q0

)
, (3.134)



108 Space–time–frequency diversity and coding

where the constants θi satisfy eigK�Mt
(diag(X − X̃)diag(X − X̃)H) ≤ θi ≤

eig1(diag(X−X̃)diag(X−X̃)H) for i = 1, 2, . . . , ν0. In the above derivation, the second
equality follows by (3.132), and the last equality follows by Ostrowski’s theorem ([73],
p.224). Since

ν0∏
i=1

eigi

(
RT ⊗ IMt ⊗ Q0

) = �rank(RT)∏
i=1

(
eigi (RT ⊗ Q0)

)Mt

= |det(Q0)|Mt rank(RT)

rank(RT)∏
i=1

(
eigi (RT)

)�Mt ,

and

eig1

(
diag(X− X̃)diag(X− X̃)H

)
= max

X�=X̃
max

1≤k≤K ,1≤ j≤�Mt
|xk, j − x̃k, j |2,

eigK�Mt

(
diag(X− X̃)diag(X− X̃)H

)
= min

X�=X̃
min

1≤k≤K ,1≤ j≤�Mt
|xk, j − x̃k, j |2,

we have the lower and upper bounds in (3.123).

Finally, if RT is of full rank, ν0 = K�Mt. From (3.133), the coding advantage is

ζSTF = min
X�=X̃

det
(

Mt diag(X− X̃)
(
RT ⊗ IMt ⊗ Q0

)
diag(X− X̃)H

)
= M K�Mt

t det
(
RT ⊗ IMt ⊗ Q0

)
min
X�=X̃

K∏
k=1

�Mt∏
j=1

|xk, j − x̃k, j |2

= δ M K�Mt
t |det(RT)|�Mt |det(Q0)|K Mt ,

where δ is given by (3.130). Thus, we have proved Theorem 3.2.1 completely. �

From Theorem 3.2.1, we observe that with the code structure specified in (3.120)–
(3.122), it is not difficult to achieve the maximum diversity order of �MtMrrank(RT).
The remaining problem is to design a set of complex symbol vectors, X =
[x1,1 · · · x1,�Mt · · · xK ,1 · · · xK ,�Mt ], such that the coding advantage ζSTF is as large
as possible. One approach is to maximize δmin and δmax in (3.123) according to the
lower and upper bounds of the coding advantage. Another approach is to maximize δ
in (3.130). We follow the latter for two reasons. First, the coding advantage ζSTF in
(3.129) is determined by δ in closed form although this closed form only holds with the
assumption that the temporal correlation matrix RT is of full rank. Second, the problem
of designing X to maximize δ is related to the problem of constructing signal constel-
lations for Rayleigh fading channels. In the literature, δ is called the minimum product
distance of the set of symbols X.

We summarize some existing results on designing X in order to maximize the mini-
mum product distance δ as follows. For simplicity, denote L = K�Mt, and assume that
� is a constellation such as QAM, PAM, and so on. The set of complex symbol vectors
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is obtained by applying a transform over a L-dimensional signal set �L. Specifically,

X = S · 1√
L

V (θ1, θ2, . . . , θL), (3.135)

where S = [s1 s2 · · · sL] ∈ �K is a vector of arbitrary channel symbols to be transmit-
ted, and V (θ1, θ2, . . . , θL) is a Vandermonde matrix with variables θ1, θ2, . . . , θL

V (θ1, θ2, . . . , θL) =

⎡⎢⎢⎢⎣
1 1 · · · 1
θ1 θ2 · · · θL
...

...
. . .

...

θL−1
1 θL−1

2 · · · θL−1
L

⎤⎥⎥⎥⎦ . (3.136)

The optimum θl , 1 ≤ l ≤ L, have been specified for different L and �.

Example 3.4 If � is a QAM constellation, and L = 2s (s ≥ 1), the optimum θl ’s were
given by

θl = ej 4l−3
2L π , l = 1, 2, . . . ,L. (3.137)

In case of L = 2s · 3t (s ≥ 1, t ≥ 1), a class of θl ’s were given as

θl = ej 6l−5
3L π , l = 1, 2, . . . ,L. (3.138)

�

For more details and other cases of � and L, readers can refer to [44, 14].
The STF code design discussed in this subsection achieves full symbol rate, which

is much larger than that of the repetition coding approach. However, the maximum-
likelihood decoding complexity of this approach is high. Its complexity increases
exponentially with the number of OFDM blocks, K , while the decoding complexity
of the repetition-coded STF codes increases only linearly with K . Fortunately, some
sphere decoding methods [166] can be used to reduce the complexity.

3.2.3.3 STF code design examples and performance comparisons
In the following, we provide some full-diversity STF code design examples and show
their performances. The OFDM modulation has N = 128 subcarriers, and the total
bandwidth is 1 MHz. Thus, the OFDM block duration is 128 μs. Let us set the length of
the cyclic prefix to 20 μs for all cases.

Performances of the repetition-coded STF codes
Let us consider a block code and a trellis code example. Assume that the communication
system has Mr = 1 receive antenna. We consider a two-ray, equal power delay profile
(L = 2), with a delay of 20 μs between the two rays. Each ray was modeled as a
zero-mean, complex Gaussian random variable with variance 0.5.

The full-diversity STF block codes were obtained by repeating a full-diversity SF
block code via (3.119) across K = 1, 2, 3, 4 OFDM blocks. The used full-diversity SF
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Fig. 3.15 The performance of the repetition block codes, with two transmit and one receive antennas.

block code for Mt = 2 transmit antennas was constructed from the Alamouti scheme
with QPSK modulation via mapping. The spectral efficiency of the resulting STF code
is 1, 0.5, 0.33, 0.25 bit/s/Hz (omitting the cyclic prefix) for K = 1, 2, 3, 4, respectively.
We consider the performance of the full-diversity STF block code without temporal
correlation (RT was an identity matrix). From Figure 3.15, we can see that, by repeating
the SF code over multiple OFDM blocks, the achieved diversity order can be increased.

The simulated full-diversity STF trellis code was obtained from a full-diversity SF
trellis code via (3.119) with K = 1, 2, 3, 4, respectively. The used full-diversity SF
trellis code for Mt = 3 transmit antennas was constructed by applying the repetition
mapping to the 16-state, QPSK ST trellis code given by [232]. Since the modulation
was the same in all four cases, the spectral efficiency of the resulting STF codes were
1, 0.5, 0.33, 0.25 bit/s/Hz (omitting the cyclic prefix) for K = 1, 2, 3, 4, respectively.
Similarly to the previous case, we assumed that the channel changes independently from
OFDM block to OFDM block. The obtained BER curves can be observed in Figure 3.16.
As apparent from the figure, the STF codes (K > 1) achieved higher diversity order than
the SF code (K = 1).

Performance of the full-rate STF codes
Let us consider a more realistic six-ray typical urban (TU) power delay profile, and
simulate the fading channel with different temporal correlations. Assume that the fading
channel is constant within each OFDM block period but varies from one OFDM block
period to another according to a first-order Makovian model

αk
i, j (l) = ε αk−1

i, j (l)+ ηk
i, j (l), 0 ≤ l ≤ L − 1, (3.139)
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Fig. 3.16 The performance of the repetition trellis codes, with three transmit and one receive antennas.
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Fig. 3.17 The performance of the full-rate STF codes, ε = 0, with two transmit and one receive antennas.

where the constant ε (0 ≤ ε ≤ 1) determines the amount the temporal correlation, and
ηk

i, j (l) is a zero-mean, complex Gaussian random variable with variance δl
√

1− ε2. If
ε = 0, there is no temporal correlation (independent fading), while if ε = 1, the channel
stays constant over multiple OFDM blocks. Let us considered three temporal correlation
scenarios: ε = 0, ε = 0.8, and ε = 0.95.
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Fig. 3.18 The performance of the full-rate STF codes, ε = 0.8, with two transmit and one receive
antennas.
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Fig. 3.19 The performance of the full-rate STF codes, ε = 0.95, with two transmit and one receive
antennas.

The full-rate STF codes were constructed by (3.120)–(3.122) for Mt = 2 transmit
antennas with � = 2. The set of complex symbol vectors X was obtained via (3.135) by
applying Vandermonde transforms over a signal set �4K for K = 1, 2, 3, 4. The Van-
dermonde transforms were determined for different K values according to (3.137) and
(3.138). The constellation � was chosen to be BPSK. Thus, the spectral efficiency the
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resulting STF codes were 1 bit/s/Hz (omitting the cyclic prefix), which is independent
of the number of jointly encoded OFDM blocks, K .

The performance of the full-rate STF codes are depicted in Figures 3.17–3.19 for
the three different temporal correlation scenarios. From the figures, we observe that the
diversity order of the STF codes increases with the number ofjointly encoded OFDM
blocks, K . However, the improvement of the diversity order depends on the temporal
correlation. The performance gain obtained by coding across multiple OFDM blocks
decreases as the correlation factor ε increases. For example, without temporal correla-
tion (ε = 0), the STF code with K = 4 achieves an average BER of about 6.0 × 10−8

at a SNR of 16 dB. In case of the correlated channel model and ε = 0.8, the STF code
with K = 4 has an average BER of only 3.0× 10−6 at a SNR of 16 dB. Finally, in case
of the correlated channel model and ε = 0.95, the STF code with K = 4 has an average
BER of around 10−4 at a SNR of 16 dB.

3.3 Chapter summary and bibliographical notes

In this chapter, we considered MIMO broadband wireless communications. Specifically,
we reviewed code design criteria for MIMO-OFDM systems and summarized some SF
and STF code designs. We explored different coding approaches for MIMO-OFDM
systems by taking into account all opportunities for performance improvement in the
spatial, temporal, and the frequency domains in terms of the achievable diversity order.
For SF coding, where the coding is applied within each OFDM block, we discussed
two systematic SF code design methods that can guarantee to achieve the full diversity
order of L MtMr, where the factor L comes from the frequency diversity due to the delay
spread of the channel. For STF coding, where coding is applied over multiple OFDM
blocks, we considered two STF code design methods by taking advantage of the SF
code design methodology. The STF code design methods can guarantee the maximum
achievable diversity order of L MtMrT , where T is the rank of the temporal correlation
matrix of the fading channel. We observed that the performance of the SF and STF
codes depends heavily on the channel power delay profile, and there is tradeoff between
the diversity order and the spectral efficiency of the code.

Most early ST coding and modulation focused on MIMO systems with frequency
non-selective (flat) fading channels to exploit spatial and temporal diversity in narrow-
band wireless communications. In case of broadband wireless communications with
frequency selective fading channels, there is an additional frequency diversity. The first
SF coding scheme was proposed in [3], in which previously existing ST codes were
used by replacing the time domain with the frequency domain. The resulting SF codes
could achieve only spatial diversity and were not guaranteed to achieve full (spatial
and frequency) diversity. Later, similar schemes were described in [111, 13, 47]. The
performance criteria for SF-coded MIMO-OFDM systems were derived in [125]. The
maximum achievable diversity order was found to be the product of the number of trans-
mit antennas, the number of receive antennas, and the number of delay paths. In [199],
a systematic approach was proposed to design full-diversity SF codes from ST codes
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for arbitrary power delay profiles. It turns out that ST codes and SF codes are related,
in the sense that ST codes achieving full (spatial) diversity in quasi-static flat fading
environment can be used to construct SF codes that can achieve the maximum diver-
sity available in frequency selective MIMO fading channels. More recently in [205],
a SF code design approach was proposed that offers full symbol rate and guarantees
full diversity for an arbitrary number of transmit antennas, any memoryless modulation
method and arbitrary power delay profiles.

If longer decoding delay and higher decoding complexity are allowable, one may
consider coding over several OFDM block periods, resulting in STF codes to exploit
all of the spatial, temporal and frequency diversity. The STF coding strategy was first
proposed in [46] for two transmit antennas and further developed in [126, 135, 121]
for multiple transmit antennas. Both [46] and [121] assumed that the MIMO channel
stays constant over multiple OFDM blocks; however, STF coding under this assumption
cannot provide any additional diversity compared to the SF coding approach. In [135],
an intuitive explanation on the equivalence between antennas and OFDM tones was
presented from the viewpoint of channel capacity. In [126], the performance criteria
for STF codes were derived, and an upper bound on the maximum achievable diversity
order was established. However, there was no discussion in [126] whether the upper
bound can be achieved or not, and the proposed STF codes were not guaranteed to
achieve the full spatial, temporal, and frequency diversities. Later in [206], a systematic
method was proposed to design full-diversity STF codes for MIMO-OFDM systems, in
which an alternative performance analysis was obtained for STF-coded MIMO-OFDM
systems that provides better insight for the STF code design.

Exercises

3.1 Show the PEP upper bound in (3.13), i.e., show that for any two distinct matrices
D and D̃, the pairwise error probability between D and D̃ can be upper bounded as

P(D → D̃) ≤
(

2r − 1
r

) ( r∏
i=1

γi

)−1 (
ρ

Mt

)−r

,

where r is the rank of (D − D̃)R(D − D̃)H, γ1, γ2, . . . , γr are the nonzero
eigenvalues of (D − D̃)R(D − D̃)H, and R = E{HHH} is the correlation matrix
of H.

3.2 Prove the result in Theorem 3.1.4: For any subcarrier permutation, the diversity
product of the resulting SF code is

ζ = ζin · ζex,

and ζin and ζex are the “intrinsic” and “extrinsic” diversity products defined in
(3.60) and (3.73), respectively. Moreover, the “extrinsic” diversity product ζex is
upper bounded as:
(a) ζex ≤ 1; and, more precisely,
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(b) if we sort the power profile δ0, δ1, . . . , δL−1 in a non-increasing order as:
δl1 ≥ δl2 ≥ · · · ≥ δlL , then

ζex ≤
(
�∏

i=1

δli

) 1
�
∣∣∣∣∣

Mt∏
m=1

det(Vm V H
m )

∣∣∣∣∣
1

2�Mt

,

where equality holds when � = L . In this case, ζex ≤
√

L
(∏�

i=1 δli

) 1
�
.

3.3 Prove the equation in (3.67), i.e., show that the product of the nonzero eigen-
values of [σ(C − C̃)σ (C − C̃)H] ◦ R, λ1, λ2, . . . , λ�Mt , can be calculated
as

�Mt∏
k=1

λk =
Mt∏

m=1

|det(Am)| .

3.4 Prove the result in Theorem 3.1.5: For the permutation specified in (3.81) with a
separation factor μ, the “extrinsic” diversity product of the permuted SF code is

ζex = |det(V0�V H
0 )|

1
2� ,

where V0 is specified in (3.83). Moreover, if � = L , the “extrinsic” diversity
product ζex can be calculated as

ζex =
(

L−1∏
l=0

δl

) 1
L
⎛⎝ ∏

0≤l1<l2≤L−1

∣∣∣∣2 sin

(
μ(τl2 − τl1)π

T

)∣∣∣∣
⎞⎠

1
L

.

3.5 Prove the result in (3.86): If � = L , the optimum separation factor μop defined
in (3.85) can be determined as follows:

μop = arg max
1≤μ≤�N/��

∏
0≤l1<l2≤L−1

∣∣∣∣sin(μ(τl2 − τl1)πT

)∣∣∣∣ ,
which is independent to the power profile of the multipath channel.

3.6 (Simulation project) Consider a MIMO-OFDM system with Mt = 2 transmit
and Mr = 1 receive antennas. It uses an SF code that is obtained by repeating
each row of the Alamouti code twice as follows:

C =

⎡⎢⎢⎣
x1 x2

x1 x2

−x∗2 x∗1
−x∗2 x∗1

⎤⎥⎥⎦ , (E3.1)

in which x1 and x2 are QPSK symbols. Assume that the system bandwidth is
BW = 1 MHz and the OFDM has N = 128 subcarriers. The SF code is applied
over subcarriers within each OFDM block.
(a) Determine the duration of each OFDM block and spectral efficiency of the

code without considering the cyclic prefix.
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(b) Consider a two-ray, equal-power delay profile, with a delay of τ μs between
the two rays. If the delay of the two rays is τ = 5 μs, simulate the system
by Matlab and plot the bit error rate curve versus the signal-to-noise ratio.
Repeat the simulation if τ = 20 μs. Compare the simulation results and
explain your observations.

(c) Simulate the system by considering the TU six-ray channel model shown in
Figure 3.5. Repeat the simulation if the system bandwidth is BW = 4 MHz.
Compare the simulation results and explain your observations.

3.7 (Simulation project) Consider a MIMO-OFDM system with Mt = 2 transmit
and Mr = 1 receive antennas. In this simulation, we compare performances of
the SF code as shown in (E3.1) and the full-rate full-diversity SF code shown in
(3.51).
(a) Design a proper full-rate full-diversity SF code based on (3.51) with the

same spectral efficiency as the one shown in (E3.1).
(b) Assume that the system bandwidth is BW = 1 MHz and the OFDM has

N = 128 subcarriers. Consider a two-ray, equal-power delay profile, with a
delay of τ = 20 μs between the two rays. Simulate both the SF codes and
compare their bit error rate performances

(c) With the same channel assumption as in (b), compare performances of the
two SF codes if rows of each code are randomly permuted among the N =
128 subcarriers.

(d) With the same channel assumption as in (b), determine the optimum per-
mutation factor, i.e., the separation factor defined in (3.81), for the full-rate
full-diversity SF code. Compare the performances of the full-rate code under
three scenarios: without permutation, random permutation, and the optimum
permutation.

(e) Repeat (b), (c), and (d) with the TU six-ray channel model shown in
Figure 3.5 and a system bandwidth of BW = 4 MHz.



Part II

Cooperative communications





4 Relay channels and protocols

In this chapter, we will discuss shortcomings of conventional point-to-point communi-
cations that led to the introduction of the new paradigm shift for wireless communica-
tions, i.e., cooperative communications. We will define what the relay channel is, and in
what aspects it is different from the direct point-to-point channel. We will also describe
several protocols that can be implemented at the relay channel, and discuss the perfor-
mance of these protocols which will be assessed based on their outage probability and
diversity gains.

4.1 Cooperative communications

In cooperative communications, independent paths between the user and the base sta-
tion are generated via the introduction of a relay channel as illustrated in Figure 4.1.
The relay channel can be thought of as an auxiliary channel to the direct channel
between the source and destination. A key aspect of the cooperative communication
process is the processing of the signal received from the source node done by the
relay. These different processing schemes result in different cooperative communica-
tions protocol. Cooperative communications protocols can be generally categorized
into fixed relaying schemes and adaptive relaying schemes. In fixed relaying, the chan-
nel resources are divided between the source and the relay in a fixed (deterministic)
manner. The processing at the relay differs according to the employed protocol. In a
fixed amplify-and-forward (AF) relaying protocol, the relay simply scales the received
version and transmits an amplified version of it to the destination. Another possi-
bility of processing at the relay node is for the relay to decode the received signal,
re-encode it and then retransmit it to the receiver. This kind of relaying is termed a fixed
decode-and-forward (DF) relaying protocol.

Fixed relaying has the advantage of easy implementation, but the disadvantage of
low bandwidth efficiency. This is because half of the channel resources are allocated
to the relay for transmission, which reduces the overall rate. This is true especially
when the source–destination channel is not very bad, because in such a scenario a high
percentage of the packets transmitted by the source to the destination could be received
correctly by the destination and the relay’s transmissions would be wasted. Adaptive
relaying techniques, comprising selective and incremental relaying, try to overcome
this problem.
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Fig. 4.1 Illustrating the difference between the direct and cooperative transmission schemes, and the
coverage extension prospected by cooperative transmission.

In selective relaying, if the signal-to-noise ratio of the signal received at the relay
exceeds a certain threshold, the relay performs decode-and-forward operation on the
message. On the other hand, if the channel between the source and the relay has severe
fading such that the signal-to-noise ratio is below the threshold, the relay idles. More-
over, if the source knows that the destination does not decode correctly, then the source
may repeat to transmit the information to the destination or the relay may help forward
information, which is termed as incremental relaying. In this case, a feedback channel
from the destination to the source and the relay is necessary.

In this chapter, we discuss performance comparisons of some basic cooperation pro-
tocols. The performance metric used is the outage capacity defined in Section 1.2. Recall
that the outage capacity given that a channel is required to support a transmission rate
R is defined as

Pr [I (x, y) ≤ R] ,

where I (x, y) is the the mutual information of a channel with input x and y is the chan-
nel output. Note that the mutual information is a random variable because the channel
varies in a random way due to fading.

In practice, a device typically cannot listen and transmit simultaneously, otherwise
transmitting signals will cause severe interference to incoming relatively weak received
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signals. Thus, a half-duplex constraint is assumed throughout the chapter, i.e, the relay
cannot transmit and receive at the same time,

4.2 Cooperation protocols

In this chapter, we only consider a single relay helping a user (source) in the network
forwarding information. The multiple relay scenarios will be considered in later chap-
ters. A typical cooperation strategy can be modeled with two orthogonal phases, either
in TDMA or FDMA, to avoid interference between the two phases:

• In phase 1, a source sends information to its destination, and the information is also
received by the relay at the same time.

• In phase 2, the relay can help the source by forwarding or retransmitting the
information to the destination.

Figure 4.2 depicts a general relay channel, where the source transmits with power P1

and the relay transmits with power P2. In this chapter, we will consider the special case
where the source and the relay transmit with equal power P . Optimal power allocation
is studied in the following chapters. In phase 1, the source broadcasts its information to
both the destination and the relay. The received signals ys,d and ys,r at the destination
and the relay, respectively, can be written as

ys,d =
√

P hs,d x + ns,d, (4.1)

ys,r =
√

P hs,r x + ns,r, (4.2)

in which P is the transmitted power at the source, x is the transmitted information sym-
bol, and ns,d and ns,r are additive noise. In (4.1) and (4.2), hs,d and hs,r are the channel
coefficients from the source to the destination and the relay, respectively. They are mod-
eled as zero-mean, complex Gaussian random variables with variances δ2

s,d and δ2
s,r,

respectively. The noise terms ns,d and ns,r are modeled as zero-mean complex Gaussian
random variables with variance N0.

In phase 2, the relay forwards a processed version of the source’s signal to the
destination, and this can be modeled as

yr,d = hr,d q(ys,r)+ nr,d, (4.3)

where the function q(·) depends on which processing is implemented at the relay node.

Relay

hs,r
hr,d

P2

DestinationSource

hs,d
P1

Fig. 4.2 A simplified cooperation model.
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4.2.1 Fixed cooperation strategies

In fixed relaying, the channel resources are divided between the source and the relay
in a fixed (deterministic) manner. The processing at the relay differs according to the
employed protocols. The most common techniques are the fixed AF relaying protocol
and the fixed relaying DF protocol.

4.2.1.1 Fixed amplify-and-forward relaying protocol
In a fixed AF relaying protocol, which is often simply called an AF protocol, the relay
scales the received version and transmits an amplified version of it to the destina-
tion. The amplify-and-forward relay channel can be modeled as follows. The signal
transmitted from the source x is received at both the relay and destination as

ys,r =
√

Phs,rx + ns,r, and ys,d =
√

Phs,dx + ns,d, (4.4)

where hs,r and hs,d are the channel fades between the source and the relay and destina-
tion, respectively, and are modeled as Rayleigh flat fading channels. The terms ns,r and
ns,d denote the additive white Gaussian noise with zero-mean and variance N0. In this
protocol, the relay amplifies the signal from the source and forwards it to the destina-
tion ideally to equalize the effect of the channel fade between the source and the relay.
The relay does that by simply scaling the received signal by a factor that is inversely
proportional to the received power, which is denoted by

βr =
√

P√
P|hs,r|2 + N0

. (4.5)

The signal transmitted from the relay is thus given by βrys,r and has power P equal to
the power of the signal transmitted from the source. To calculate the mutual information
between the source and the destination, we need to calculate the total instantaneous
signal-to-noise ratio at the destination. The SNR received at the destination is the sum
of the SNRs from the source and relay links. The SNR from the source link is given by

SNRs,d = �|hs,d|2, (4.6)

where � = P/N0.
In the following we calculate the received SNR from the relay link. In phase 2 the

relay amplifies the received signal and forwards it to the destination with transmitted
power P . The received signal at the destination in phase 2 according to (4.5) is given by

yr,d =
√

P√
P|hs,r|2 + N0

hr,d ys,r + nr,d, (4.7)

where hr,d is the channel coefficient from the relay to the destination and nr,d is an
additive noise. More specifically, the received signal yr,d in this case is

yr,d =
√

P√
P|hs,r|2 + N0

√
P hr,d hs,r x + n′r,d, (4.8)
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where

n′r,d =
√

P√
P|hs,r|2 + N0

hr,d ns,r + nr,d (4.9)

Assume that the noise terms ns,r and nr,d are independent, then the equivalent noise n′r,d
is a zero-mean, complex Gaussian random variable with variance

N ′0 =
(

P|hr,d|2
P|hs,r|2 + N0

+ 1

)
N0. (4.10)

The destination receives two copies from the signal x through the source link and relay
link. As discussed in Section 1.4, there are different techniques to combine the two
signals. The optimal technique that maximize the overall signal-to-noise ratio is the
maximal ratio combiner (MRC). Note that MRC combining requires a coherent detector
that has knowledge of all channel coefficients. Also, as shown in (1.43), the signal-to-
noise ratio at the output of the MRC is equal to the sum of the received signal-to-noise
ratios from both branches.

With knowledge of the channel coefficients hs,d, hs,r, and hr,d, the output of the MRC
detector at the destination can be written as

y = a1ys,d + a2yr,d, (4.11)

The combining factors a1 and a2 should be designed to maximize the combined SNR.
As discussed in Section 1.4, this can be solved by formulating an optimization problem
and selecting these factors correspondingly. An easier way to design them is be resort-
ing to signal space and detection theory principles. Since, the AWGN noise terms span
the whole space, to minimize the noise effects the detector should project the received
signals ys,d and ys,r to the desired signal spaces. Hence, ys,d and yr,d should be pro-
jected along the directions of hs,d and hr,dhs,r, respectively, after normalizing the noise
variance terms in both received signals. Therefore, a1 and a2 are given by

a1 =
√

Ph∗s,d
N0

and a2 =
√

P
P|hs,r|2+N0

√
P h∗s,rh∗r,d(

P|hr,d|2
P|hs,r|2+N0

+ 1
)

N0

. (4.12)

By assuming that the transmitted symbol x in (4.1) has average energy 1, the
instantaneous SNR of the MRC output is

γ = γ1 + γ2, (4.13)

where

γ1 = |a1
√
(P)hs,d|2
|a1|2N0

= P|hs,d|2/N0, (4.14)
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and

γ2 =
|a2

√
P√

P|hs,r|2+N0

√
P hr,d hs,r |2

N ′0|a2|2

=
P2

P|hs,r|2+N0
|hs,r|2|hr,d|2(

P|hr,d|2
P1|hs,r|2+N0

+ 1
)

N0

= 1

N0

P2|hs,r|2|hr,d|2
P|hs,r|2 + P|hr,d|2 + N0

. (4.15)

From the above, the instantaneous mutual information as a function of the fading
coefficients for amplify-and-forward is given by

IAF = 1

2
log(1+ γ1 + γ2). (4.16)

Substituting for the values of the SNR of both links, we can write the mutual infor-
mation as

IAF = 1

2
log
(
1+ �|hs,d|2 + f (�|hs,r|2, �|hr,d|2)

)
(4.17)

where

f (x, y) � xy

x + y + 1
. (4.18)

The outage probability can be obtained by averaging over the exponential channel
gain distribution, as follows:

Pr[IAF < R] = Ehs,d,hs,r,hr,d

[
1

2
log
(
1+ �|hs,d|2 + f (�|hs,r|2, �|hr,d|2)

)
< R

]
(4.19)

Calculating the above integration, the outage probability at high SNR is given by

Pr[IAF < R] �
⎛⎝ σ 2

s,r + σ 2
r,d

2σ 2
s,d

(
σ 2

s,rσ
2
r,d

)
⎞⎠(22R − 1

�

)2

, (4.20)

where the multiplicative factor of 2 in 2R is because half of the bandwidth is lost in
cooperation by allocating them to the relay. The outage expression decays as �−2, which
means that the AF protocol achieves diversity 2.

Example 4.1 In this example, we study the outage probability of amplify-and-forward
protocol and compare it to the performance of direct transmission. The channel variance
between the source and destination σs,d is taken to be 1, while the channel variances
for the source–relay or relay–destination channels are equal to 0.5. The noise variance
is one.

In Figure 4.3, the outage probability is depicted versus SNR in dB for a fixed rate of
2 bps/Hz. As shown from the figure, diversity order two is achieved by AF as clear from
the curve slope.
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Fig. 4.3 Outage probability versus SNR.
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Fig. 4.4 Outage probability versus spectral efficiency.

In Figure 4.4, the outage probability is depicted versus spectral efficiency in bps/Hz
for a fixed SNR of 40 dB. We have selected such high SNR to study the effect of increas-
ing the transmission rate and isolate it from the SNR effects. As clear from the figure, the
performance generally degrades with increasing R, but it degrades faster for AF because
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of the inherent loss in the spectral efficiency. At high enough R, direct transmission
becomes more efficient than cooperation. �

4.2.1.2 Fixed decode-and-forward relaying protocol
Another processing possibility at the relay node is for the relay to decode the received
signal, re-encode it, and then retransmit it to the receiver. This kind of relaying is termed
as a fixed decode-and-forward (DF) scheme, which is often simply called a DF scheme
without the confusion from the selective DF relaying scheme. If the decoded signal at
the relay is denoted by x̂ , the transmitted signal from the relay can be denoted by

√
Px̂ ,

given that x̂ has unit variance. Note that the decoded signal at the relay may be incorrect.
If an incorrect signal is forwarded to the destination, the decoding at the destination is
meaningless. It is clear that for such a scheme the diversity achieved is only one, because
the performance of the system is limited by the worst link from the source–relay and
source–destination. This will be illustrated through the following analysis.

Although fixed DF relaying has the advantage over AF relaying in reducing the
effects of additive noise at the relay, it entails the possibility of forwarding erroneously
detected signals to the destination, causing error propagation that can diminish the per-
formance of the system. The mutual information between the source and the destination
is limited by the mutual information of the weakest link between the source–relay
and the combined channel from the source–destination and relay–destination. More
specifically, the mutual information for decode-and-forward transmission in terms of
the channel fades can be given by

IDF = 1

2
min

{
log(1+ �|hs,r|2), log(1+ �|hs,d|2 + �|hr,d|2)

}
, (4.21)

where the min operator in the above equation takes into account the fact that the relay
only transmits if decoded correctly, and hence the performance is limited by the weakest
link between the source–destination and source–relay.

The outage probability for the fixed DF relaying scheme is given by Pr[IDF < R].
Since log is a monotonic function, the outage event is equivalent to

min
{
|hs,r|2, |hs,d|2 + |hr,d|2

}
<

22R − 1

�
. (4.22)

The outage probability can be written as

Pr[IDF < R] = Pr

{
|hs,r|2 < 22R − 1

�

}
(4.23)

+ Pr

{
|hs,r|2 > 22R − 1

�

}
Pr

{
|hs,d|2 + |hr,d|2 < 22R − 1

�

}
.

Since the channel is Rayleigh fading, the above random variables are all exponential
random variables with parameter one. Averaging over the channel conditions, the outage
probability for decode-and-forward at high SNR is given by
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Pr[IDF < R] � 1

σ 2
s,r

22R − 1

�
. (4.24)

From the above, fixed relaying has the advantage of easy implementation, but the
disadvantage of low bandwidth efficiency. This is because half of the channel resources
are allocated to the relay for transmission, which reduces the overall rate. This is
true especially when the source–destination channel is not very bad, because under
this scenario a high percentage of the packets transmitted by the source to the desti-
nation can be received correctly by the destination and the relay’s transmissions are
wasted.

Example 4.2 In this example, we study the outage probability of fixed DF relay-
ing and compare it to the performance of direct transmission. The channel variance
between the source and destination σs,d is taken to be 1, while the channel variances for
the source–relay or relay–destination channels are equal to 0.5. The noise variance is
one.

In Figure 4.5, the outage probability is depicted versus SNR in dB for a fixed rate
of 2 bps/Hz. As shown from the figure, diversity order one is achieved by fixed DF
relaying as is clear from the curve slope. This means that fixed DF relaying has no
diversity gain.

In Figure 4.6, the outage probability is depicted versus spectral efficiency in bps/Hz
for a fixed SNR of 40 dB. As is clear from the figure, the performance generally
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Fig. 4.5 Outage probability versus SNR.
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Fig. 4.6 Outage probability versus spectral efficiency.

degrades with increasing R. Again, fixed DF relaying does not have any advantage
over direct transmission in terms of diversity. �

4.2.1.3 Other cooperation strategies
Besides the two most common techniques for fixed relaying, there are other techniques,
such as compress-and-forward cooperation and coded cooperation, which deserve some
attention.

Compress-and-forward cooperation
The main difference between compress-and-forward and decode/amplify-and-forward
is that while in the later the relay transmits a copy of the received message, in compress-
and-forward the relay transmits a quantized and compressed version of the received
message. Therefore, the destination node will perform the reception functions by com-
bining the received message from the source node and its quantized and compressed
version from the relay node.

The quantization and compression process at the relay node is a process of source
encoding, i.e., the representation of each possible received message as a sequence of
symbols. For clarity and simplicity, let us assume that these symbols are binary digits
(bits). At the destination node, an estimate of the quantized and compressed message
is obtained by decoding the received sequence of bits. This decoding operation simply
involves the mapping of the received bits into a set of values that estimate the trans-
mitted message. This mapping process normally involves the introduction of distortion
(associated to the quantization and compression process), which can be considered as a
form of noise.

In Section 1.2, we reviewed the concept of entropy and mentioned that the entropy of
a random variable can be considered as the mean value of the information provided by
all the outcomes of the random variable. In addition, the entropy provides a benchmark
against which it is possible to evaluate the performance of source encoders. Next, and
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for the purpose of simplifying the presentation, let us consider that the source data is
generated from a discrete memoryless source. For this setting, the entropy of the random
variable being encoded at the source provides a lower bound on the average number
of bits per source symbol (the source encoding rate) needed to encode the source. In
this sense, the entropy provides a lower bound on the source encoding rate used at the
relay node if in a peer-to-peer communication setup. The use of cooperation and the
possibility of combining at the destination the messages from the source and the relay
node, changes this point. Effectively, the information received at the destination from
the source can be used, as side information, while decoding the message from the relay.
This will allow for encoding at a lower source encoding rate. The following example
further illustrates the operation of compress-and-forward.

Example 4.3 In this example we discuss a simplified model of a compress-and-forward
scheme so as to highlight its main characteristics. Consider a source node that trans-
mits a signal with four possible values: −1.5, 0.5, 0.5, and 1.5. With no cooperation,
the signal is sent over an AWGN channel with standard deviation σ = 0.5. When
using cooperation the source–relay and relay–destination channels are also assumed
also AWGN with standard deviation σ = 0.25 and σ = 0.6, respectively.

Assume now that the signal equal to 1.5 is transmitted without cooperation. The setup
is illustrated in Figure 4.7, which shows the figures associated with the channel. At the
destination node, the value of 1.5 is decoded whenever the received signal exceeds a
value of 1. Then, the probability of a successful reception equals

pnc = 1− Q
(1− 1.5

0.5

) = 0.84,

where

Q(x) =
∫ ∞

x

exp
(− x2

2

)
√

2π
dx .

When using compress-and-forward, the relay transmits a quantized and compressed
version of the received message. In this case, the message is the signal equal to 1.5.
Since the destination node receives information from both the source and the relay,
compression is not done in isolation from the information sent from the source to the
destination node. As shown in Figure 4.7, the relay will encode the received signal as a
binary 0 whenever the received signal is larger than 1 or in the interval [−1, 0) and will
encode the received signal as a binary 1 whenever the received signal is smaller than
−1 or in the interval [0, 1]. Note that only one bit is necessary to encode the received
signal, as opposed to two bits when the four possible inputs are equiprobable and there
is no extra information at the receiver. The binary 0 or 1 resulting from the encoding
process are transmitted as a signal with value +1 and −1, respectively. The threshold
used to receive the message from the relay is equal to 0 (meaning that when the received
signal is positive, a binary 0 is estimated as the encoded digit sent by the relay). At
the destination node, the encoded message from the relay is decoded using the signal
received from the source as side information. The decoding uses the following rules:
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Fig. 4.7 Compress-and-forward example.

• If the signal from the relay is positive, a binary 0 is decoded and:

– if the signal from the source is positive, the received signal becomes equal to 1.5;
– if the signal from the source is negative, the received signal becomes equal

to −0.5.
• If the signal from the relay is negative, a binary 1 is decoded and:

– if the signal from the source is positive, the received signal becomes equal to 0.5;
– if the signal from the source is negative, the received signal becomes equal

to −1.5.

If we assume again that the transmitted signal equals 1.5, the probability of a successful
reception is now equal to

pcf = Q

(
0− 1.5

0.5

)([
Q

(
1− 1.5

0.25

)
+ Q

(−1− 1.5

0.25

)
− Q

(
0− 1.5

0.25

)]
(1− q)

+
(

1−
[

Q

(
1− 1.5

0.25

)
+ Q

(−1− 1.5

0.25

)
− Q

(
0− 1.5

0.25

)])
q

)
= 0.93, (4.25)
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where

q = Q

(
0− 1

0.6

)
,

is the probability of successfully receiving the encoded message, a binary 0, from the
relay. In 4.25, the first factor is the probability that the signal from the source is positive.
This factor then multiplies two terms: the first being that the relay encodes a 0, which is
received as such, and the second being the lucky coincidence that the relay incorrectly
encodes a 1, but is received as a 0.

Although this example shows a simplified implementation of compress-and-forward,
the numerical comparison of pnc and pcf shows in simple terms how cooperation
improves the link quality. �

As a final note to compress-and-forward cooperation, we note that much of the source
encoding operation done at the relay falls into the realm of the set of coding techniques
known as distributed source coding, Sleppian–Wolf coding, or Wyner–Ziv coding.

Coded cooperation
Coded cooperation differs from the previous schemes in that the cooperation is
implemented at the level of the channel coding subsystem. Note that both the amplify-
and-forward and the decode-and-forward schemes presented earlier in this chapter were
based on schemes where the relay repeats the bits sent by the source. In coded coopera-
tion the relay sends incremental redundancy, which when combined at the receiver with
the codeword sent by the source, results in a codeword with larger redundancy.

To understand coded cooperation, consider first the operation of a typical error cor-
recting code. The encoder for an error correcting code takes a sequence of information-
bearing symbols and applies mathematical operations in such a way that it generates a
sequence of symbols containing not only the information present at the input sequence,
but also redundant information. The redundancy in the codeword is used at the receiver
to increase the chances of recovering the original information if errors have been intro-
duced during the transmission process. While in some codewords the information and
redundancy are encoded in such a way that they can only be separated through com-
plete decoding, in many other codes the encoding and decoding operation can be done
in such a way that it is possible to add redundancy to, or remove redundancy from, the
codeword in a simple manner (such as through concatenation of new redundancy sym-
bols or deletion of selected symbols). It is this second type of code that is used in coded
cooperation.

In coded cooperation a codeword is transmitted in two parts, each using a differ-
ent path or channel. Figure 4.8 summarizes one cycle of information transmission in
coded cooperation. The main steps in the process are sequentially labeled with the cir-
cled numbers. One cycle of information transmission in coded cooperation is as follows.
The cycle starts with a block of NI information symbols being entered to a cyclic redun-
dancy check (CRC) encoder at the source node (step 1). The result of the CRC encoder
is then entered to a forward error correcting (FEC) code encoder (step 2), resulting
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Fig. 4.8 A transmission cycle for coded cooperation.

in a codeword of N1 symbols, i.e, with a rate R1 = N1/NI . This codeword is then
transmitted to a destination node and also is overheard by the source node cooperation
partner node (step 3). After receiving the source transmission, the partner node decodes
both the FEC and CRC codes (step 4). If the CRC does not reveal any error in the
decoded message (step 5), the resulting NI information symbols at the partner node are
fed again into a CRC encoder. The output of the CRC encoder is then processed through
an FEC encoder, resulting in a codeword of N > N1 symbols (step 6), i.e, the channel
encoding rate at the partner node is R = N/NI < R1.

The overall result of the processing at the partner node is a codeword generated with
the same means as the codeword transmitted by the source node but containing N2 =
N − N1 extra parity symbols, which are separated from the rest of the symbols (step 7).
During a second phase of the communication process, the extra N2 symbols are sent by
the partner node to the destination (step 8). At the destination, the N2 symbols from the
partner node are combined with the N1 symbols from the partner node to reconstitute
the codeword with N symbols and rate R (step 9). This codeword is then decoded (step
10) and the original message is recovered if the FEC code was able to correct all the
errors introduced during communication (step 11).

Note that the whole process can also be thought of as if the source node also performs
channel encoding at a rate R and the transmitted codeword with N1 symbols is generated
by puncturing (deleting) N2 symbols from the codeword with N symbols. Regardless
of how the involved channel codes are generated, it is important to realize that the code-
word transmitted by the source node belongs to a code that is weaker than the code used
at the receiver. The code at the receiver is strengthen from that at the source node by
combining the N2 parity symbols received from the partner node. Also, it is important to
note that the partner and the source operate over orthogonal channels so that at the same
time that the source is transmitting its codeword, the partner is doing the same operation
with its own data. Even more, while the partner is helping the source by sending N2,
parity symbols, the source is reciprocally helping the partner in the same way.
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The operation of coded cooperation as described so far assumes that the partner is
able to successfully decode the source message (which it knows after checking the
CRC). If this is not the case, the partner is unable to generate N2 extra parity sym-
bols for the source and, instead, it generates and transmits N2 parity symbols from its
own data. Because of this, the weaker codeword transmitted by the source has to be a
valid codeword that can be decoded when the partner is not sending the extra N2 parity
symbols.

Since in coded cooperation the operation of the source node and its partner is com-
pletely symmetric, let us denote in what follows the two cooperating nodes as node one
and node two. The performance of coded cooperation is driven by the likelihood of four
possible events:

(i) Both node one and node two succeed in decoding each other (weaker) channel
code.

(ii) Both node one and node two fail in decoding each other (weaker) channel code.
(iii) Node one succeeds in decoding the channel code from node two but node two fails

in decoding the channel code from node one. In this case, both nodes send the
extra parity for node two, which can be combined together at the receiver using,
for example, a maximum ratio combiner.

(iv) Node one succeeds in decoding the channel code from node two but node two fails
in decoding the channel code from node one. In this case, both nodes send the
extra parity for node two, which can be combined together at the receiver using,
for example, a maximum ratio combiner.

As a consequence of this four-event dynamics, the outage probability in coded
corporation is given by the mean outage probability among the four events.

4.2.2 Adaptive cooperation strategies

Fixed relaying suffers from deterministic loss in the transmission rate, for example,
there is 50% loss in the spectral efficiency with transmissions in two phases. Moreover,
fixed DF relaying suffers from the fact that the performance is limited by the weakest
source–relay and relay–destination channels which reduces the diversity gains to one.
To overcome this problem, adaptive relaying protocols can be developed to improve the
inefficiency. We consider two strategies: selective DF relaying and incremental relaying.

4.2.2.1 Selective DF relaying
In a selective DF relaying scheme, if the signal-to-noise ratio of a signal received at the
relay exceeds a certain threshold, the relay decodes the received signal and forwards
the decoded information to the destination. On the other hand, if the channel between
the source and the relay suffers a severe fading such that the signal-to-noise ratio falls
below the threshold, the relay idles. Selective relaying improves upon the performance
of fixed DF relaying, as the threshold at the relay can be determined to overcome the
inherent problem in fixed DF relaying in which the relay forwards all decoded signals
to the destination although some decoded signals are incorrect. For simplicity, selective
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DF relaying is sometime simply called DF relaying without the confusion from fixed
DF relaying, which is the case when we discuss selective DF relaying in later chapters
in this book.

If the SNR in the source–relay link exceeds the threshold, the relay is likely able to
decode the source’s signal correctly. In this case, the SNR of the combined MRC signal
at the destination is the sum of the received SNR from the source and the relay. Thus,
the mutual information for selective DF relaying is given by

ISDF =
{

1
2 log(1+ 2�|hs,d|2), |hs,r|2 < g(�)
1
2 log(1+ �|hs,d|2 + �|hr,d|2), |hs,r|2 ≥ g(�)

(4.26)

where g(�) = (22R − 1)/�.
The outage probability for selective relaying can be derived as follows. Using the law

of total probability, conditioning on whether the relay forwards the source signal or not,
we have

P[ISDF < R] = P[ISDF < R||hs,r|2 < g(�)]Pr[|hs,r|2 < g(�)]
+ P[ISDF < R||hs,r|2 > g(�)]Pr[|hs,r|2 > g(�)].

From (4.26), the outage probability for selective DF relaying is given by

P[ISDF < R] = P[1
2

log(1+ 2�|hs,d|2) < R||hs,r|2 < g(�)]Pr[|hs,r|2 < g(�)]

+ P[1
2

log(1+ �|hs,d|2 + �|hr,d|2)||hs,r|2 > g(�)]Pr[|hs,r|2 > g(�)].
From the above, the source can achieve diversity order two because the first term in
the summation above is the product of two probabilities each account to diversity order
one, and the second term in the summation is also a product of two terms the first
of which has diversity order two. In other words, the selective relaying scheme can
achieve diversity order two because in order for an outage event to happen, either both
the source–destination and source–relay channels should be in outage, or the com-
bined source–destination and relay–destination channel should be in outage. All the
random variables in the above expression are independent exponential random vari-
ables, which makes the calculation of the outage probability straightforward, and the
outage expression at high SNR is given by

Pr[ISDF < R] �
⎛⎝ σ 2

s,r + σ 2
r,d

2σ 2
s,d

(
σ 2

s,rσ
2
r,d

)
⎞⎠(22R − 1

�

)2

, (4.27)

which has the same diversity gain as the AF case. This means that at high SNR, both
selective DF relaying and AF relaying have the same diversity gain.

4.2.2.2 Incremental relaying
For incremental relaying, it is assumed that there is a feedback channel from the des-
tination to the relay. The destination sends an acknowledgement to the relay if it was
able to receive the source’s message correctly in the first transmission phase, so the
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relay does not need to transmit. This protocol has the best spectral efficiency among
the previously described protocols because the relay does not always need to trans-
mit, and hence the second transmission phase becomes opportunistic depending on the
channel state condition of the direct channel between the source and the destination.
Nevertheless, incremental relaying achieves a diversity order of two as shown below.

In incremental relaying, if the source transmission in the first phase was successful,
then there is no second phase and the source transmits new information in the next time
slot. On the other hand, if the source transmission was not successful in the first phase,
the relay can use any of the fixed relaying protocols to transmit the source signal from
the first phase. We will focus here on the relay that utilizes the AF protocol, and in the
following chapters the selective DF relaying protocol will be explored.

Note that the transmission rate is random in incremental relaying. If the first phase
was successful, the transmission rate is R, while if the first transmission was in outage
the transmission rate becomes R/2 as in fixed relaying. The outage probability can be
calculated as follows:

Pr[IIR < R] = Pr[ID < R]Pr[IAF <
R

2
|ID < R]. (4.28)

The outage expressions for both direct transmission and AF relaying were computed
before. As a function of the SNR and the rate R, the outage probability is

Pr[IIR < R] = Pr

[
|hs,d|2 + 1

�
f (�|hs,r|2, �|hr,d|2) ≤ g(�)

]
, (4.29)

where g(�) = (2R−1)/�. The spectral efficiency is R if the source–destination channel
is not in outage, and R/2 if the channel is not in outage. The average spectral efficiency
is given by

R = RPr[|hs,r|2 ≥ g(�)] + R

2
Pr[|hs,r|2 < g(�)]

= R

2

[
1+ exp

(
−2R − 1

�

)]
. (4.30)

For large SNR, we have

Pr[IIAF < R] �
(

1

σ 2
s,d

σ 2
s,r + σ 2

r,d

σ 2
s,rσ

2
r,d

)(
2R − 1

�

)2

. (4.31)

Example 4.4 In this example, we study the outage probability of incremental relaying
and compare it to the performance of direct transmission. The channel variance between
the source and destination σs,d is taken to be 1, while the channel variances for the
source–relay or relay–destination channels are equal to 0.5. The noise variance is one.

In Figure 4.9, the outage probability is depicted versus SNR in dB for a fixed rate of
2 bps/Hz. As shown in the figure, a diversity order of two is achieved by incremental
relaying, as is clear from the curve slope.

In Figure 4.10, the outage probability is depicted versus spectral efficiency in bps/Hz
for a fixed SNR of 40 dB. Is is clear from the figure that the performance degrades with
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Fig. 4.9 Outage probability versus SNR.
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Fig. 4.10 Outage probability versus spectral efficiency.

increasing R, but it degrades faster for incremental relaying because of the inherent loss
in the spectral efficiency. At high enough R, direct transmission becomes more efficient
than cooperation.

Figures 4.11 and 4.12 compare the performance of the different relaying protocols
discussed versus SNR and rate, respectively. The selective DF relaying has similar It
is clear from both figures that incremental relaying has the best performance. This is
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Fig. 4.11 Outage probability versus SNR for different relaying protocols.
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Fig. 4.12 Outage probability versus spectral efficiency for different relaying protocols.

because incremental relaying operates at a much higher spectral efficiency than the other
relaying protocols and achieves a full diversity gain of two.

The simulation results also show that the fixed DF relaying offers only a diversity
gain of one. In the following chapters, we consider only the selective DF relaying at the
relay node and for convenience we refer to this scheme as DF relaying. �
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4.3 Hierarchical cooperation

Due to the spectrum scarcity, the design of future wireless systems strives to achieve
high bandwidth efficiency, i.e., transmit more bits per unit channel resource (time and
bandwidth). A good metric to measure the efficiency of a communication scheme is how
the capacity of the network scales as the density of the users in the network increases.
In this section, the impact of cooperative communications on the network capacity is
studied.

4.3.1 Network model

Let us consider a network with n nodes that are uniformly distributed in a square of
unit area. Each node in the network has traffic to transmit and can receive traffic from
other nodes, i.e., each node is both a source and a destination. The sources and the
destinations are paired arbitrarily and this pairing is fixed during the communication
scenario. Each node has traffic R(n) which is assumed to be the same for all nodes. The
average transmit power budget is P .

The channel is assumed flat with bandwidth W Hz and the carrier frequency fc >>
W . The channel between nodes i and k in the network is modeled as follows:

hik[m] =
√

Gr−α/2ik exp(jθik[m]), (4.32)

where θik[m] is a uniformly distributed random process that takes a value between 0
and 2π (θik ∝ U [0, 2π ]). The phase shift θik is also assumed to be stationary and
ergodic. The phase shifts at different nodes are mutually independent. Here rik denotes
the distance between nodes i and k and it is assumed to be independent from the phase
θik and to be fixed during communications. Also, α denotes the path-loss exponent and
G models the antenna gains at both transmitter and receiver.

The above channel model fits a far field assumption. Since a small position displace-
ment of any node does not affect much the separation distance rik , the assumption that
the distance rik is fixed is reasonable. On the other hand, the phase shift is measured
relative to the wavelength, so any small displacement in the node location can change
the phase shift of the received signal. The signal received by node i at time m is given by

yi [m] =
n∑

k=1

hik[m]xk[m] + zi [m], (4.33)

where xk[m] is the signal transmitted by node k at time instant m, and zi [m] is the
additive white Gaussian noise with variance N0.

Since each node in the network has a traffic of R(n) to be transmitted, the aggregate
throughput in the network is given by

T (n) = nR(n). (4.34)

An interesting couple of questions that could be asked are what is the maximum aggre-
gate throughput that can be achieved and how does it scale with the number of nodes?
Furthermore, what communication schemes can achieve this aggregate throughput. It
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has been shown that the nearest neighbor multihop transmission has a network capacity
that is upper bounded as follows [54]:

T (n) ≤ O
(√

n
)
. (4.35)

This means that the traffic rate per link scales as

R(n) ≤ O

(
1√
n

)
, (4.36)

hence the throughput per node drops as the density of the nodes increases. One can ask
the question whether this network scaling is the best that we could get or it is a limitation
of the nearest neighbor multihop transmission. It turns out that the network scaling in
(4.35) is indeed a result of assuming nearest neighbor multihop transmission because
this results in an interference limited scenario.

In the following section, a hierarchical cooperation protocol proposed in [142] that
achieves linear capacity scaling is described.

4.3.2 Hierarchical cooperation protocol description

First, we consider an upper bound for the best network scaling that can be achieved for
a unit area network with n nodes uniformly distributed.

T H E O R E M 4.3.1 For a network with n nodes, the aggregate network throughput is
upper bounded by

T (n) ≤ Kn log n, (4.37)

with probability approaching 1 as the number of nodes n goes to infinity, where K is a
constant independent of n.

Proof To prove this upper bound, let us consider a single input multiple output
(SIMO) system in which a source node s is transmitting to a destination node d and
the rest of the nodes in the network are collocated with node d. The capacity of this
channel is upper bounded by

R(n) ≤ log

⎛⎝1+ P

N0

n∑
i=1,i =s

|his |2
⎞⎠

= log

⎛⎝1+ P

N0

∑
i=1,i =s

G

rαis

⎞⎠ . (4.38)

The right-hand side in the above inequality can be further upper bounded if the destina-
tion node is assumed to be the nearest neighbor for the source. The minimum distance
between two nodes in a unit area where n nodes are uniformly distributed is larger than
1/n1+δ for δ > 0. In the following this claim is verified.

Consider a node in the network, where the event that the nearest neighbor is at dis-
tance 1/n1+δ is equivalent to the event that an area equal to π/n2+2δ is free of nodes.
Denote this event by �, where the probability of � is given by
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Pr (�) =
(
1− π

n2+2δ

)n−1
. (4.39)

The above event is true for all nodes in the network with probability

Pr

(
minimum distance in the network is smaller than

1

n1+δ

)
≤ n

(
1− π

n2+2δ

)n−1
,

(4.40)

where the above is true by the union bound. Therefore, the minimum distance between
any two nodes in the network is given by

rmin = 1

n1+δ , (4.41)

for δ > 0 with high probability. Substituting the minimum distance in (4.38), we get

R(n) ≤ log

(
1+ PG

N0
n(1+δ)α+1

)
, (4.42)

which concludes the theorem. �

This means that the upper bound on the capacity scaling of a network with n nodes
linearly scales with the number of nodes up to a logarithmic term. In other words, if
there is a scheme that can achieve linear capacity scaling, this scheme is optimal.

Let us now describe the hierarchical cooperation protocol that is the focus of this sec-
tion. The hierarchical scheme is based on clustering and long-range MIMO transmission
across clusters. This can achieve two main goals:

• Using clustering one can achieve spatial reuse. This is because clusters that are well
separated can work in parallel. The nodes operating in each cluster can lower their
power accordingly to limit the interference to other clusters working in parallel.

• Using long-range MIMO we can achieve high spatial multiplexing gain.

The network is divided into clusters each with M nodes. Consider a specific node s
within some cluster. Node s will first disseminate its bits to the other M − 1 nodes
inside its cluster. The M nodes within the cluster can then form a distributed MIMO
transmission and transmit the bits from source s to its destination, which might be
in a different cluster. The nodes in destination’s cluster form a MIMO receiver. Each
node in the receiving cluster will then quantize the received observation and relay the
information to the destination. In the following we describe these three phases in more
detail.

4.3.2.1 Phase I: Setting up transmit cooperation
In this phase, each node distributes its data to the rest of the node inside its cluster. This
is shown in Figure 4.13 in which source node s1 distributes its bits to its neighbors within
the cluster. There are nodes in all of the square areas in Figure 4.13, but only few of
them are shown for clarity. Clusters work in parallel according to the 9-TDMA scheme
depicted in Figure 4.14, which works as follows: between any two active clusters there
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s1

s1

Fig. 4.13 Illustration of phase I. Each source distributes its bits to the nodes within its cluster. Adapted
from [142].

Fig. 4.14 The 9-TDMA scheme. Squares with the same pattern can operate in parallel. Adapted
from [142].
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are at least two inactive clusters. Hence, the network needs nine time slots for all the
nodes to perform phase I. This is clear from Figure 4.14, where the nodes with the same
pattern are active simultaneously. Note that there are exactly nine patterns. This ensures
that the interference received by any active cluster is bounded, as will be discussed later.

Let us focus on a specific source node. This source node will divide a block of length
L M bits of its data into M blocks each of length L bits. The way that the source node
disseminates these M blocks among the nodes inside its clusters depends on the relative
location of the destination with respect to the source node. More specifically:

• if the source node and its destination are either in the same cluster or are not neigh-
boring clusters then the source node keeps one block and the remaining M − 1 blocks
are transmitted to the other M − 1 nodes located in the source’s cluster;

• if the source node and its destination are neighboring clusters, then the cluster of the
source is divided into two halves, one half located close to the cluster of the destina-
tion, and the other half away from it. The M blocks of the source node are distributed
among the M/2 nodes in the half away from the destination.

Therefore, in the extreme case we need 2M sessions to deliver L M blocks.
To enable parallel operation of different clusters, we need to ensure that the interfer-

ence from other clusters is bounded. Therefore, the transmit power is upper bounded by
P Aα/2c /M , where Ac is the cluster’s size and is given by

Ac = M

n
. (4.43)

Note that phase I resembles the original problem of communicating among n nodes in
the unit area but scaled down to a smaller area with fewer nodes.

4.3.2.2 Phase II: MIMO transmission
In this phase, long-range MIMO transmission is implemented as depicted in
Figure 4.15. Each node will independently encode the L bits received from the source
node in its cluster, as in phase I. This is done by using a code with length C symbols in
which the symbols have Gaussian distribution. The average transmit power is bounded
above by Prαs,d/M , where rs,d is the distance separation between the centers of the
clusters of the source and the destination.

The nodes in the destination’s cluster quantize the signals they observe and store these
quantized signals without decoding them. This MIMO transmission step requires C or
2C transmissions depending on the relative locations of the destination and the source
as described in phase I. Completing this step for all of the nodes in the network thus
requires 2nC transmissions at maximum.

4.3.2.3 Phase III: Cooperate to decode
In the previous phase, each observation is quantized into Q bits. Since each node
received C M symbols from the previous phase, we end up by a traffic size of C M Q×M
bits because we have M nodes within the clusters. Each node then needs to distribute
this traffic to the nodes within its cluster and this can be done exactly using the scheme
described in phase 1.
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Fig. 4.15 Illustration of phase II showing Long-range MIMO transmission from the source’s cluster to the
destination’s cluster.

Note that, depending on whether the source and the destination are in neighboring
clusters or not, we will have M/2 nodes with 2C observations each, or M nodes with
C observations each. An exception is when the destination node belongs to the same
cluster as the source node. In this case, each node in the cluster has L bits of the original
data and no MIMO observations because there is no phase II in this case. By assuming
L ≤ C Q these exceptions can be ignored and all nodes can be assumed to have MIMO
observations for simplicity.

4.3.3 Protocol analysis

In the following, the proof that a hierarchical protocol that consists of the previous three
phases can achieve arbitrarily close to linear scaling is described. We first present a
lemma that plays a fundamental rule in the proof.

Consider a path-loss exponent α > 2 and a network with n nodes subject to
interference from external sources. The received signal by node i is modeled as

yi =
n∑

k=1

hik xk + zi + Ii . (4.44)

Assume that {Ii , 1 ≤ i ≤ n} is a collection of uncorrelated zero-mean stationary and
ergodic random process with power PIi upper bounded by

PIi ≤ KI , 1 ≤ i ≤ n, (4.45)

for some constant KI > 0 independent of n. We have the following result.

Lemma 4.3.2 If there exists a scheme that can achieve an aggregate throughput of

T (n) ≥ K1nb, 0 ≤ b < 1, (4.46)
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with probability at least 1 − exp (−nc1) for some constant c1 which is independent of
n, and the per node average power budget required to achieve this scheme is upper-
bounded by P/n, then one can construct another scheme for this network that achieve
a higher aggregate throughput of

T (n) ≥ K2n
1

2−b , (4.47)

and the failure rate of this second scheme is upper bounded by exp
(−nC2

)
. Moreover,

the per node average power required to achieve this scheme is also upper bounded
by P/n.

Proof Let us divide the unit square into areas of Ac, each equal to

Ac = M

n
. (4.48)

Hence, each area has on average M nodes inside it. The proof of the lemma depends on
a claim that the number of nodes inside each square equals M with high probability. To
show this, let us calculate the probability that the number of nodes inside each square of
area Ac is between ((1− δ)Acn, (1+ δ)Acn) for some δ > 0. The proof is a standard
application of Chebyshev’s inequality as follows.

The number of nodes in any area of size Ac is a sum of n i.i.d. Bernoulli random
variables Bi such that P(Bi = 1) = Ac. We have

P
(

n∑
i=1

Bi ≥ (1+ δ)Acn

)
= P

(
es
∑n

i=1 Bi ≥ es(1+δ)Acn
)

≤
(
E
[
esB1

])n
e−s(1+δ)Acn

= (es Ac + (1− Ac)
)n e−s(1+δ)Acn

≤ e−Acn(s(1+δ)−es+1),

where the last inequality used the following lower bound

(1− x) ≤ exp(−x). (4.49)

Finally we have

P
(

n∑
i=1

Bi ≥ (1+ δ)Acn

)
≤ e−Acn�+(δ) (4.50)

where�+(δ) = (1+δ) log(1+δ)−δ, and this is achieved through choosing s to tighten
the bound as follows:

s = log(1+ δ). (4.51)

One can get a lower bound by following similar steps as above for negative Bi . This
proves that the probability that the number of nodes inside the square Ac deviates from
M decays exponentially with n. Hence, with high probability the number of nodes
within a square Ac is equal to its mean M . In the following, it is always assumed that
there exists M bits in each cluster.
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Analysis of phase I
As described before, each node in a cluster divides its data into L M bits, and hence
we have in total L M × M bits traffic for each cluster. For the special case where the
source and the destination lie in neighbor clusters, the source will need to organize 2M
sessions to transfer the information. Each node will scale its power proportional to the
size of the cluster as P(Ac)

α/2/M . The main reason for this is to allow parallel operation
of the clusters. This leads to a bounded interference at each node (this is proven later in
the exercises), then according to Lemma 4.3.2 all the conditions is satisfied to achieve
an aggregate throughput of K1Mb in each session for some K1 > 0. This throughput
also can be achieved with probability larger than 1− exp(−Mc1). By the union bound,
and since we have at maximum 2M sessions in each cluster and n/M clusters, the
throughput can be achieved with probability 1− 2n exp(−Mc1).

With this aggregate throughput, each session requires at most

Tsession = L M

K1Mb
= L

K1
M1−b (4.52)

channel uses. Since, we have at most 2M sessions, and taking into account the 9-
TDMA scheme, the total number of channels uses required to complete phase I is
given by

TI = 9× 2M × L

K1
M1−b = 18L

K1
M2−b (4.53)

channel uses to finish all the transmission required by the n nodes in the network within
their clusters.

Analysis of phase II
In this phase, long-range MIMO transmission takes place. It is this step essentially
that allows the protocol to achieve high capacity scaling. This is because with MIMO
transmission, as discussed in earlier chapters, the throughput scales linearly with the
minimum of the number of transmit and receive antennas.

In phase II, each source’s information is transmitted to its destination while the other
sources are silent. Hence, this resembles a TDMA scheme where all the sources in
the network transmit in a serial way, but the major difference between this and plain
TDMA is that while the source transmits all the nodes within its cluster cooperate by
transmitting the bits they received from the source in the previous phase. This forms an
M virtual antenna array at the source’s cluster.

At the same time, all of the M nodes at the destination cluster cooperate to receive
the transmitted information. This is done through each node storing a quantized version
of the received information to forward later to the destination node, hence forming a
distributed receive antenna array.

As described before, each node in the source’s cluster encode the L bits received
from the source in phase I into C symbols. This code is generated according to an
average power constraint of Prαs,d/M , where rs,d is the distance between the center of
the source’s cluster to the center of the destination’s cluster.
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In the special case in which the source and the destination belong to neighboring
clusters, only half of the nodes in the source’s cluster have the information. In this
case, each node encodes the information into 2C symbols. Therefore, each node in the
network requires either C or 2C channel uses to transmit its information. Since there
are n nodes in the network, the maximum number of channel uses required to achieve
phase II is given by

TII = 2nC. (4.54)

Analysis of phase III
In this phase, each node delivers the observation it received from phase II to the intended
destination. Either the M nodes in the clusters have C symbols or M/2 nodes have 2C
symbols depending on whether the source and the destination belong to neighboring
clusters or not. A node quantizes each symbol into Q bits. Therefore, at most we end
up having a traffic of 2M × QC M bits.

Similar to phase I, clusters work in parallel using the 9-TDMA scheme. This means
that there are at least two idle clusters between any two active clusters. Since nodes
within a cluster scale down their power proportionally to the cluster size, the inter-
ference from other active clusters can be shown to be bounded above by a constant
independent of n.

Therefore, similar to phase I, the conditions to apply Lemma 4.3.2 are all satis-
fied. Hence, the number of channel uses required to complete this phase is given
by (2C Q/K1)M2−b. Taking into account the 9-TDMA scheme, the total number of
channel uses required for the n nodes in the network to complete phase III is given by

TIII = 18C Q

K1
M2−b. (4.55)

This is achieved with probability larger than 1− 2ne−Mc1 .
The above depends on the quantization done at the nodes inside the clusters not intro-

ducing any distortion, although the nodes use a fixed quantizer of size Q bits. This is
indeed possible and the observations can be encoded using a fixed number of bits, the
rationale being that the observations have a bounded power that does not scale with M .

Combining all the results
Summarizing the results above, we have three phases and the total number of channel
uses required to complete these phases has been computed. The total number of channel
uses is given by

Tt = TI + TII + TIII

= 18L

K1
M2−b + 2Cn + 18C Q

K1
M2−b.

(4.56)

Therefore, with high probability and bounded average power per node, the aggregate
throughput is given by
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T (n) = nM L

Tt
≥ K2n

1
2−b , (4.57)

for some K2 > 0 independent of n. The above throughput is achieved by choosing the
maximizing size for the cluster as

M = n
1

2−b . (4.58)

This proves Lemma 4.3.2. �

4.3.4 Linear capacity scaling

In the previous subsection, the performance of the three-phase protocol was analyzed.
To achieve the linear capacity scaling, the basic idea is to recursively apply the three-
phase protocol to achieve higher throughput with each iteration. Figure 4.16 illustrates
the idea of hierarchical cooperation in which each of the three phases is recursively
applied. The recursion starts with smaller areas of the network and grows until it ulti-
mately includes the whole network. The main result of the linear capacity scaling [142]
is stated as follows for any path-loss exponent α ≥ 2.

T H E O R E M 4.3.3 For any ε > 0, there exists a constant Kε > 0 independent of n
such that with high probability an aggregate throughput of

T (n) ≥ Kεn
1−ε (4.59)

is achievable in the network for all possible pairings between source and destination.

Proof Start with a TDMA scheme that satisfies Lemma 4.3.2. The aggregate through-
put is O(1), so b = 0. This is because each node takes exactly 1/n of the time. The
failure probability of this scheme is 0, since there is no interference.

Phase 1 Phase 1Phase 2 Phase 2Phase 3 Phase 3

Phase 3
Phase 2

Phase 2 Phase 3Phase 1

Phase 2Phase 2 Phase 3 Phase 3Phase 1 Phase 1

Phase 1

Fig. 4.16 Hierarchical cooperation. The figure illustrates the recursion of the three transmission
phases c© IEEE, 2007 [142].
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Applying Lemma 4.3.2 recursively yields schemes that achieve higher throughput
with each recursion. More precisely, starting with a TDMA scheme with b = 0 and
applying Lemma 4.3.2 recursively h times, one gets a scheme achieving �

(
nh/(1+h)

)
aggregate throughput.

Given any ε > 0, we can now choose h such that

h

1+ h
≥ 1− ε, (4.60)

and we get a scheme that achieves �
(
n1−ε) with high probability. �

4.4 Chapter summary and bibliographical notes

In this chapter, we introduced the new notion of cooperative communications. Coop-
erative communications is a new communication paradigm that generalizes MIMO
communications to much broader applications. In this new paradigm, the terminals dis-
persed in a wireless network cell can be thought of as distributed antennas. Through
cooperation among these nodes, MIMO-like gains can be achieved by increasing the
diversity gains of the system. Different protocols have been described to implement
cooperation. We described the performance of these algorithms through calculating
outage capacity and characterizing diversity gains. The performance of adaptive relay-
ing techniques in general outperforms that of fixed relaying techniques because of the
extra information utilized in implementing the protocols, for example, knowledge of
the received SNR in selective relaying and the feedback from the destination in incre-
mental relaying. On the other hand, fixed relaying techniques are simpler to implement
compared to fixed relaying techniques due to the extra overhead needed to implement
the former protocols. Therefore, it is ultimately a tradeoff between performance and
complexity that the system designer must decide on.

In addition, in this chapter we have studied the capacity scaling in wireless ad hoc
networks when cooperation is applied. It was shown that the hierarchical coopera-
tion scheme proposed in [142] can achieve linear scaling in ad hoc networks. This
means that as the number of nodes per unit area increases the throughput per node
does not drop. This is an interesting result which shows that cooperation can over-
come the interference limitation in wireless networks. The scheme that achieves the
linear scaling is a recursive scheme that consists of three steps. The network is divided
into clusters. In the first step, nodes within a cluster distribute their bits to the other
nodes within the cluster. In the second phase, long-range MIMO transmission between
clusters is implemented, and finally in the third phase local signal quantization and
distribution within each cluster similar to phase 1 is implemented. Hence, the scheme
makes use of two very important concepts: spatial reuse by allowing different clus-
ters to operate in parallel, and long-range MIMO transmission that achieves linear
throughput.
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We provide some bibliographical notes as follows. The classical relay channel intro-
duced by Van der Meulen [224] models a three-terminal communication channel. The
relay channel, in general, is a channel with one transmitter, one receiver, and a num-
ber of intermediate nodes that act as relays to improve the system performance. The
simplest relay channel contains one terminal, the relay, that listens to the signal trans-
mitted by the source, processes it, and then transmits it to the destination. Cover and
El Gamal [25] developed lower and upper bounds on the channel capacity for specific
non-faded relay channel models. The lower and upper bound do not coincide in gen-
eral except for some special cases, such as in the degraded relay channel. Later, several
works have studied the capacity of the relay channels and developed coding strategies
that can achieve the ergodic capacity of the channel under certain scenarios, see [99]
and the references there in.

In [109] and [108], Laneman et al. proposed different cooperative diversity protocols
and analyzed their performance in terms of outage behavior. The terms decode-
and-forward and amplify-and-forward have been introduced in these two works. In
decode-and-forward, each relay receives and decodes the signal transmitted by the
source, and then forwards the decoded signal to the destination, which combines all the
copies in a proper way. Amplify-and-forward is a simpler technique, in which the relay
amplifies the received signal and then forwards it to the destination. Although the noise
is amplified along with the signal in this technique, we still gain spatial diversity by
transmitting the signal over two spatially independent channels. Compress-and-forward
was studied in [25] and [99]. More information about the related distributed source
coding technique can be found in [230]. Terminologies other than cooperative diversity
are also used in the research community to refer to the same concept of achieving spa-
tial diversity via forming virtual antennas. User cooperation diversity was introduced
by Sendonaris et al. in [179] in which the authors implemented a two-user CDMA
cooperative system, where both users are active and use orthogonal codes to avoid
multiple access interference. Another technique to achieve diversity that incorporates
error-control-coding into cooperation is coded cooperation, introduced by Hunter et al.
in [78].

Capacity scaling in wireless networks has been studied by several researchers
recently. The seminal work of Gupta and Kumar [54] has stimulated a lot of think-
ing in this problem. Gupta and Kumar showed that an aggregate throughput scaling of
�(
√

n) is an upper bound for what can be achievable by multihop transmission. The
limitation in their model is that no cooperation is allowed between networks, and hence
if a signal is not intended to be transmitted to a node it is treated as interference. Coop-
eration, on the other hand, benefits from the broadcast nature of the channel, and tries to
take advantage of this aspect instead of treating the overheard signals as interference. In
another recent work by Aeron and Saligrama [2], distributed collaborative schemes are
proposed that lead to an increase in throughput over the traditional multihop schemes.
The scheme proposed in this work achieves an aggregate throughput of �

(
n2/3

)
. The

scheme that achieves the linear capacity scaling in wireless ad hoc networks when coop-
eration is applied, and the associated analysis studied in this chapter, was presented in
[142].
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Exercises

4.1 In (4.12), the MRC parameters were derived from a detection theory and signal
space perspective. Another approach to solve for the MRC parameters is via
solving an optimization problem with the cost function being the SNR at the
output of the detector and the optimization variables being the MRC parameters.

Assume that signal x is received at the destination via two independent paths
as follows:

y1 = h1x + n1

y2 = h2x + n2

where h1, h2, n1, and n2 are all mutually independent complex normal Gaussian
random variables with zero mean and variances σ 2

1 , σ 2
2 , N01, and N02. Find the

optimal combining ratios a1 and a2 that maximize the output SNR of the detector.
4.2 In describing the different relaying protocols in this chapter, it was assumed that

the relay already exists in some position and is helping the source node. In a
real scenario, there might exist multiple relays that can help the source and the
source needs to decide which relay to select. Therefore, studying the effect of
relay position on the performance of various cooperation protocols is important.
(a) In AF relaying, assume the relay is located on the straight line joining

the source and destination. Assume that the channel variance between two
nodes depends on the distance d separating the two nodes according to an
exponential path loss model as follows:

σ 2 = d−α. (E4.1)

Find the outage probability of AF relaying as a function of the relay distance
from the source ds,r assuming a unit distance between the source and desti-
nation, and that ds,r takes values between 0.1 and 0.9. Use a Matlab code to
draw this outage probability as a function of the relay position.

(b) Repeat the previous calculations to DF, selective, and incremental relaying.
4.3 In proving that the schemes in phases I and III work, it was assumed that the

9-TDMA scheme and scaling the transmission power relative to the cluster size
result in uncorrelated and bounded interference. Consider clusters of size M and
area Ac. The clusters operate according to the 9-TDMA scheme shown in Fig-
ure 4.14 in a network of size n. The average power of each node is assumed to be
constrained to P Aα/2c /M . For α > 2, show that the interference power received
by a node from the clusters operating in parallel is upper bounded by a constant
KI independent of n.

4.4 In phase III, each node in the destination cluster quantizes the MIMO received
information into Q bits. The number of bits Q is assumed to be a fixed num-
ber independent of M . The argument is that this is sufficient to achieve linear
throughput from MIMO transmission without introducing distortion because the
received power in phase II by each node in the destination cluster is bounded



Exercises 151

below and above by constants P1 and P2, respectively, which are independent of
M . Show that this claim is correct.

4.5 In this chapter, equal transmit power at both the source and the relay was
assumed. Consider the case where the transmit power at the source and the relay
are given by Ps and Pr.
(a) Find the outage probability for amplify-and-forward relaying as a function

of Ps and Pr.
(b) Assuming an equal average power constraint as follows:

Ps + Pr = 2P, (E4.2)

where P is the transmit power used for direct transmission. Find the optimal
power allocation Ps and Pr to minimize the outage probability expression.

(c) Repeat the previous problem for selective decode-and-forward and incre-
mental relaying.

(d) Find the outage probability for selective decode-and-forward relaying when
two relays are available to help the source. What is the diversity gain
achieved?



5 Cooperative communications
with single relay

In this chapter, we consider single relay cooperative communications in wireless net-
works. We focus on the discussion of symbol error rate (SER) performance analysis
and optimum power allocation for uncoded cooperative communications with either an
amplify-and-forward (AF) or a selective decode-and-forward (DF)1 cooperation proto-
col. In this chapter and the rest of this book, we simply call the selective DF cooperation
protocol a DF protocol without confusing it with the fixed DF relaying protocol.

The chapter is organized as follows. First, we briefly describe a system model for
cooperative communications with either DF or AF cooperation protocols. Second, we
analyze the SER performance for DF cooperation systems, in which a closed-form SER
formulation is obtained explicitly for systems with M-PSK and M-QAM modulations.
An SER upper bound as well as an approximation are provided to reveal the asymp-
totic performance of the cooperative system. Based on the tight SER approximation,
we can determine an asymptotic optimum power allocation for DF cooperation sys-
tems. Third, we consider the SER performance for AF cooperation systems, in which
we first derive a simple closed-form moment-generating function (MGF) expression for
the harmonic mean of two independent exponential random variables. Then, based on
the simple MGF expression, closed-form SER formulations are given for AF cooper-
ation systems with M-PSK and M-QAM modulations. We also provide a tight SER
approximation to show the asymptotic performance of AF cooperation systems and to
determine an optimum power allocation. Fourth, we discuss performance comparisons
between the cooperation systems with DF and AF protocols and show some simulation
examples. Finally, we consider a method of re-mapping signal constellation points at
the relay to improve the SER performance of the DF protocol.

5.1 System model

A cooperative communication strategy with two phases is considered for wireless net-
works such as mobile ad hoc networks, sensor networks, or cellular networks. In both
phases, users transmit signals through orthogonal channels by using TDMA, FDMA, or

1 In this chapter, we consider that an ideal selective DF cooperation protocol is one in which a relay is able to
detect whether the decoding at the relay is correct or not. If the decoding is correct, the relay forwards the
decoded symbol to a destination, otherwise the relay does not send or remains idle.
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CDMA. In this chapter, we focus on a two-user cooperation scheme. Specifically, user
1 sends information to its destination in phase 1, and user 2 also receives the informa-
tion. User 2 helps user 1 to forward the information in phase 2. Similarly, when user 2
sends its information to its destination in phase 1, user 1 receives the information and
forwards it to user 2’s destination in phase 2. Due to the symmetry of the two users,
we may consider only user 1’s performance. Without loss of generality, we consider a
concise model as shown in Figure 5.1, in which “source” denotes user 1 and “relay”
represents user 2.

In Phase 1, the source broadcasts its information to both the destination and the relay.
The received signals ys,d and ys,r at the destination and the relay, respectively, can be
written as

ys,d =
√

P1 hs,d x + ηs,d, (5.1)

ys,r =
√

P1 hs,r x + ηs,r, (5.2)

in which P1 is the transmitted power at the source, x is the transmitted information
symbol, and ηs,d and ηs,r are additive noise. In (5.1) and (5.2), hs,d and hs,r are the
channel coefficients from the source to the destination and the relay respectively. They
are modeled as zero-mean, complex Gaussian random variables with variances δ2

s,d and

δ2
s,r, respectively. The noise terms ηs,d and ηs,r are modeled as zero-mean, complex

Gaussian random variables with variance N0.

DF protocol
In Phase 2, for a DF cooperation protocol, if the relay is able to decode the transmitted
symbol correctly, then the relay forwards the decoded symbol with power P2 to the
destination, otherwise the relay does not send or remains idle. The received signal at the
destination in Phase 2 in this case can be modeled as

yr,d =
√

P̃2 hr,d x + ηr,d, (5.3)

where P̃2 = P2 if the relay decodes the transmitted symbol correctly, otherwise P̃2 = 0.
In (5.3), hr,d is the channel coefficient from the relay to the destination, and it is modeled
as a zero-mean, complex Gaussian random variable with variance δ2

r,d. The noise term
ηr,d is also modeled as a zero-mean complex Gaussian random variable with variance
N0. Note that for analytical tractability of SER calculations, we assume here an ideal
DF cooperation protocol that the relay is able to detect whether the transmitted symbol
is decoded correctly or not. In practice, we may apply an SNR threshold at the relay. If

Relay

hs,r
hr,d

P2

DestinationSource

hs,d
P1

Fig. 5.1 A simplified cooperation model.
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Fig. 5.2 Performance of the DF cooperation protocol with different SNR thresholds at the relay. It is
assumed that δ2s,d = 1, δ2s,r = 10, δ2r,d = 1, N0 = 1, and P1 = P2 = P/2.

the received SNR at the relay is higher than the threshold, then the symbol has a high
probability to be decoded correctly. For example, Figure 5.2 shows performances of a
DF cooperation protocol with different SNR thresholds at the relay which are compared
with that of the ideal DF protocol. We can see that if the SNR threshold at the relay
is properly chosen (threshold = 2 in this case), the performance of the DF protocol is
close to that of the ideal DF protocol and the detection error propagation at the relay is
negligible. The ideal DF cooperation protocol considered here provides a performance
benchmark for the DF protocol with SNR thresholds. Further discussion on threshold
optimization at the relay can be found in later chapters.

AF protocol
For an AF cooperation protocol, in phase 2 the relay amplifies the received signal and
forwards it to the destination with transmitted power P2. The received signal at the
destination in phase 2 is specified as

yr,d =
√

P2√
P1|hs,r|2 +N0

hr,d ys,r + ηr,d, (5.4)

where hr,d is the channel coefficient from the relay to the destination and ηr,d is an addi-
tive noise, with the same statistics models as in (5.3), respectively. More specifically, by
(5.2), the received signal yr,d in this case is

yr,d =
√

P1 P2√
P1|hs,r|2 +N0

hr,d hs,r x + η′r,d, (5.5)
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where

η′r,d =
√

P2√
P1|hs,r|2 +N0

hr,d ηs,r + ηr,d (5.6)

Assume that the noise terms ηs,r and ηr,d are independent, then the equivalent noise η′r,d
is a zero-mean, complex Gaussian random variable with variance(

P2|hr,d|2
P1|hs,r|2 +N0

+ 1

)
N0.

In both the DF and AF cooperation protocols, the channel coefficients hs,d, hs,r, and
hr,d are assumed to be known at the receiver, but not at the transmitter. The destination
jointly combines the received signal from the source in Phase 1 and that from the relay
in phase 2, and detects the transmitted symbols by using maximum-ratio combining
(MRC). In both protocols, we consider a total transmitted power P such as

P1 + P2 = P. (5.7)

Note that in the DF cooperation protocol, the power saving in the case of P̃2 = 0 is
negligible, since at high SNR, the chance that the relay incorrectly decodes the symbol
is rare as we will see later in the performance analysis.

5.2 SER analysis for DF protocol

In this section, we consider the SER performance analysis for the DF cooperative com-
munication systems. First, we introduce closed-form SER formulations for the systems
with M-PSK and M-QAM2 modulations, respectively. Then, we provide an SER upper
bound as well as an approximation to reveal the asymptotic performance of the sys-
tems, in which the approximation is asymptotically tight at high SNR. Finally, based on
the tight SER approximation, we are able to determine an asymptotic optimum power
allocation for DF cooperation systems.

5.2.1 Closed-form SER analysis

With knowledge of the channel coefficients hs,d (between the source and the destination)
and hr,d (between the relay and the destination), the destination detects the transmitted
symbols by jointly combining the received signal ys,d (5.1) from the source and yr,d

(5.3) from the relay. The combined signal at the MRC detector can be written as

y = a1ys,d + a2yr,d, (5.8)

in which the factors a1 and a2 are determined such that the SNR of the MRC output is
maximized, and, from Section 1.4, they can be specified as

a1 =
√

P1h∗s,d/N0, a2 =
√

P̃2h∗r,d/N0.

2 In this chapter, QAM represents a square QAM constellation whose size is given by M = 2k with k even.
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Assume that the transmitted symbol x in (5.1) and (5.3) has average energy 1, then the
SNR of the MRC output is

γ = P1|hs,d|2 + P̃2|hr,d|2
N0

. (5.9)

First, let us review SER formulations for an uncoded system with M-PSK or M-QAM
(M = 2k with k even) modulation [187], which are given by

�PSK(ρ)
�= 1

π

∫ (M−1)π/M

0
exp

(
−bPSKρ

sin2 θ

)
dθ, (5.10)

�QAM(ρ)
�= 4K Q(

√
bQAMρ)− 4K 2Q2(

√
bQAMρ), (5.11)

in which ρ is SNR, bPSK = sin2(π/M), K = 1 − (1/√M), bQAM = 3/(M − 1), and
Q(u) = (1/√2π)

∫∞
u exp(−t2/2)dt is the Gaussian Q-function. Therefore, if M-PSK

modulation is used in the DF cooperation system, with the instantaneous SNR γ in
(5.9), the conditional SER of the system with the channel coefficients hs,d, hs,r and hr,d

can be written as

P
hs,d,hs,r,hr,d
PSK = �PSK(γ ). (5.12)

If M-QAM (M = 2k with k even) signals are used in the system, the conditional SER
of the system can also be expressed as

P
hs,d,hs,r,hr,d
QAM = �QAM(γ ). (5.13)

It is easy to see that, in the case of QPSK or 4-QAM modulation, the conditional SERs
in (5.12) and (5.13) are the same.

Note that in phase 2 we assume that if the relay decodes the transmitted symbol x
from the source correctly, then the relay forwards the decoded symbol with power P2 to
the destination, i.e., P̃2 = P2; otherwise the relay does not send, i.e., P̃2 = 0. If an M-
PSK symbol is sent from the source, then at the relay, the chance of incorrect decoding
is �PSK(P1|hs,r|2/N0), and the chance of correct decoding is 1−�PSK(P1|hs,r|2/N0).
Similarly, if an M-QAM symbol is sent out at the source, then the chance of incorrect
decoding at the relay is �QAM(P1|hs,r|2/N0), and the chance of correct decoding is
1−�QAM(P1|hs,r|2/N0).

Let us first focus on the SER performance analysis in the case of M-PSK modulation.
Taking into account the two scenarios P̃2 = P2 and P̃2 = 0, we further calculate the
conditional SER in (5.12) as follows:

P
hs,d,hs,r,hr,d
PSK

= �PSK(γ )|P̃2=0�PSK

(
P1|hs,r|2

N0

)
+�PSK(γ )|P̃2=P2

[
1−�PSK

(
P1|hs,r|2

N0

)]

= 1

π2

∫ (M−1)π/M

0
exp

(
−bPSK P1|hs,d|2

N0 sin2 θ

)
dθ
∫ (M−1)π/M

0
exp

(
−bPSK P1|hs,r|2

N0 sin2 θ

)
dθ
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+ 1

π

∫ (M−1)π/M

0
exp

(
−bPSK(P1|hs,d|2 + P2|hr,d|2)

N0 sin2 θ

)
dθ

×
[

1− 1

π

∫ (M−1)π/M

0
exp

(
−bPSK P1|hs,r|2

N0 sin2 θ

)
dθ

]
. (5.14)

In the following, we average the conditional SER (5.14) over the Rayleigh fading chan-
nels hs,d, hs,r, and hr,d with variances δ2

s,d, δ2
s,r, and δ2

r,d, respectively. Since the fading
channels hs,d, hs,r, and hr,d are independent of each other, and

∫ ∞

0
exp

(
− bPSK P1z

N0 sin2 θ

)
p|h|2(z)dz = 1

1+ bPSK P1δ
2
h

N0 sin2 θ

,

we are able to obtain the SER of the DF cooperation system with M-PSK modulation
as follows:

PPSK = F1

(
1+ bPSK P1δ

2
s,d

N0 sin2 θ

)
F1

(
1+ bPSK P1δ

2
s,r

N0 sin2 θ

)

+ F1

((
1+ bPSK P1δ

2
s,d

N0 sin2 θ

)(
1+ bPSK P2δ

2
r,d

N0 sin2 θ

))

×
[

1− F1

(
1+ bPSK P1δ

2
s,r

N0 sin2 θ

)]
, (5.15)

where

F1(x(θ)) = 1

π

∫ (M−1)π/M

0

1

x(θ)
dθ. (5.16)

For DF cooperation systems with M-QAM modulation, the conditional SER in (5.13)
with the channel coefficients hs,d, hs,r, and hr,d can be similarly determined as

P
hs,d,hs,r,hr,d
QAM = �QAM(γ )|P̃2=0�QAM

(
P1|hs,r|2

N0

)

+ �QAM(γ )|P̃2=P2

[
1−�QAM

(
P1|hs,r|2

N0

)]
. (5.17)

By substituting (5.11) into the above formulation and averaging it over the fading
channels hs,d, hs,r, and hr,d, as in the case of M-PSK modulation, the SER of the DF
cooperation system with M-QAM modulation can be given by
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PQAM = F2

(
1+ bQAM P1δ

2
s,d

2N0 sin2 θ

)
F2

(
1+ bQAM P1δ

2
s,r

2N0 sin2 θ

)

+ F2

((
1+ bQAM P1δ

2
s,d

2N0 sin2 θ

)(
1+ bQAM P2δ

2
r,d

2N0 sin2 θ

))

×
[

1− F2

(
1+ bQAM P1δ

2
s,r

2N0 sin2 θ

)]
, (5.18)

where

F2(x(θ)) = 4K

π

∫ π/2

0

1

x(θ)
dθ − 4K 2

π

∫ π/4

0

1

x(θ)
dθ. (5.19)

In order to get the SER formulation in (5.18), two special properties of the Gaussian
Q-function are needed as follows:

Q(u) = 1

π

∫ π/2

0
exp

(
− u2

2 sin2 θ

)
dθ,

Q2(u) = 1

π

∫ π/4

0
exp

(
− u2

2 sin2 θ

)
dθ

for any u ≥ 0. Note that for 4-QAM modulation,

F2(x(sin
2(θ))) = 2

π

∫ π/2

0

1

x(sin2(θ))
dθ − 1

π

∫ π/4

0

1

x(sin2(θ))
dθ

= 1

π

∫ π/2

0

1

x(sin2(θ))
dθ + 1

π

∫ π/2

π/4

1

x(sin2(θ))
dθ

= 1

π

∫ 3π/4

0

1

x(sin2(θ))
dθ,

which shows that the SER formulation in (5.18) for 4-QAM modulation is consistent
with that in (5.15) for QPSK modulation.

5.2.2 SER upper bound and asymptotic approximation

Even though the closed-form SER formulations in (5.15) and (5.18) can be efficiently
calculated numerically, they are very complex and it is hard to gain an insight into the
system performance from these. In the following, we introduce a SER upper bound and
SER approximation which are useful in demonstrating the asymptotic performance of
the DF cooperation scheme.

T H E O R E M 5.2.1 The SER of DF cooperation systems with M-PSK or M-QAM
modulation can be upper bounded as

Ps ≤ (M − 1)N 2
0

M2
· MbP1δ

2
s,r + (M − 1)bP2δ

2
r,d + (2M − 1)N0

(N0 + bP1δ
2
s,d)(N0 + bP1δ2

s,r)(N0 + bP2δ
2
r,d)
, (5.20)

where b = bPSK for M-PSK signals and b = bQAM/2 for M-QAM signals.
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Proof In the case of M-PSK modulation, the closed-form SER expression is given in
(5.15). By removing the negative term in (5.15), we have

PPSK ≤ F1

(
1+ bPSK P1δ

2
s,d

N0 sin2 θ

)
F1

(
1+ bPSK P1δ

2
s,r

N0 sin2 θ

)

+ F1

((
1+ bPSK P1δ

2
s,d

N0 sin2 θ

)(
1+ bPSK P2δ

2
r,d

N0 sin2 θ

))
, (5.21)

where

F1(x(θ)) = 1

π

∫ (M−1)π/M

0

1

x(θ)
dθ.

We observe that, in the right-hand side of the above inequality, all integrands have their
maximum value when sin2 θ = 1. Therefore, by substituting sin2 θ = 1 into (5.21),
we have

PPSK ≤ (M − 1)2

M2
· N 2

0

(N0 + bPSK P1δ
2
s,d)(N0 + bPSK P1δ2

s,r)

+ M − 1

M
· N 2

0

(N0 + bPSK P1δ
2
s,d)(N0 + bPSK P2δ

2
r,d)

= (M − 1)N 2
0

M2
· MbPSK P1δ

2
s,r + (M − 1)bPSK P2δ

2
r,d + (2M − 1)N0

(N0 + bPSK P1δ
2
s,d)(N0 + bPSK P1δ2

s,r)(N0 + bPSK P2δ
2
r,d)
,

which validates the upper bound in (5.20) for M-PSK modulation. Similarly, in the case
of M-QAM modulation, the SER in (5.18) can be upper bounded as

PQAM ≤ F2

(
1+ bQAM P1δ

2
s,d

2N0 sin2 θ

)
F2

(
1+ bQAM P1δ

2
s,r

2N0 sin2 θ

)

+ F2

((
1+ bQAM P1δ

2
s,d

2N0 sin2 θ

)(
1+ bQAM P2δ

2
r,d

2N0 sin2 θ

))
, (5.22)

where

F2(x(θ)) = 4K

π

∫ π/2

0

1

x(θ)
dθ − 4K 2

π

∫ π/4

0

1

x(θ)
dθ.

Note that the function F2(x(θ)) can be rewritten as

F2(x(θ)) = 4K

π
√

M

∫ π/2

0

1

x(θ)
dθ + 4K 2

π

∫ π/2

π/4

1

x(θ)
dθ, (5.23)

which does not contain negative term. It turns out that the integrands in (5.22) have
their maximum value when sin2 θ = 1. Thus, by substituting (5.23) and sin2 θ = 1 into
(5.22), we have
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PQAM ≤
(

2K√
M
+ K 2

)2 N 2
0

(N0 + bQAM
2 P1δ

2
s,d)(N0 + bQAM

2 P1δ2
s,r)

+
(

2K√
M
+ K 2

) N 2
0

(N0 + bQAM
2 P1δ

2
s,d)(N0 + bQAM

2 P2δ
2
r,d)

= (M − 1)N 2
0

M2
· M

bQAM
2 P1δ

2
s,r + (M − 1) bQAM

2 P2δ
2
r,d + (2M − 1)N0

(N0 + bQAM
2 P1δ

2
s,d)(N0 + bQAM

2 P1δ2
s,r)(N0 + bQAM

2 P2δ
2
r,d)
,

in which K = 1− 1/
√

M . Therefore, the upper bound in (5.20) holds for both M-PSK
and M-QAM modulation. �

In the sequel, we provide an asymptotically tight SER approximation if all of the chan-
nel links hs,d, hs,r, and hr,d are available, i.e., δ2

s,d �= 0, δ2
s,r �= 0, and δ2

r,d �= 0. According
to (5.15) and (5.18), let us denote the SER of DF cooperation systems with M-PSK or
M-QAM modulation as

Ps = I1(P1/N0)+ I2(P1/N0, P2/N0), (5.24)

where

I1(x) = Fi

(
1+ xbδ2

s,d

sin2 θ

)
Fi

(
1+ xbδ2

s,r

sin2 θ

)
, (5.25)

I2(x, y) = Fi

((
1+ xbδ2

s,d

sin2 θ

)(
1+ ybδ2

r,d

sin2 θ

))[
1− Fi

(
1+ xbδ2

s,r

sin2 θ

)]
, (5.26)

in which i = 1 and b = bPSK for M-PSK modulation, and i = 2 and b = bQAM/2 for
M-QAM modulation. Then, we have the following results (leave proof as an exercise):

lim
x→∞ x2 I1(x) = A2

b2δ2
s,dδ

2
s,r

, (5.27)

lim
x, y→∞ xy I2(x, y) = B

b2δ2
s,dδ

2
r,d

, (5.28)

where, for M-PSK signals, b = bPSK and

A = M − 1

2M
+ sin 2π

M

4π
, (5.29)

B = 3(M − 1)

8M
+ sin 2π

M

4π
− sin 4π

M

32π
; (5.30)

while for M-QAM signals, b = bQAM/2 and

A = M − 1

2M
+ K 2

π
, (5.31)

B = 3(M − 1)

8M
+ K 2

π
. (5.32)
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Therefore, for large enough x and y, we have the following asymptotically tight
approximations:

I1(x) ≈ 1

x2
· A2

b2δ2
s,dδ

2
s,r

, (5.33)

I2(x, y) ≈ 1

xy
· B

b2δ2
s,dδ

2
r,d

, (5.34)

in which approximation errors become insignificant compared to the orders 1/x2 and
1/(xy) when x and y go to infinity. Replacing x and y in (5.33) and (5.34) with P1/N0

and P2/N0 respectively and then substituting the results into (5.24), we arrive at the
following result.

T H E O R E M 5.2.2 If all of the channel links hs,d, hs,r, and hr,d are available, i.e.,
δ2

s,d �= 0, δ2
s,r �= 0, and δ2

r,d �= 0, then when P1/N0 and P2/N0 go to infinity, the SER of
the systems with M-PSK or M-QAM modulation can be tightly approximated as

Ps ≈ N 2
0

b2
· 1

P1δ
2
s,d

(
A2

P1δ2
s,r
+ B

P2δ
2
r,d

)
, (5.35)

where b, A, and B are specified in (5.29)–(5.32) for M-PSK and M-QAM signals,
respectively.

In Figure 5.3, we compare the asymptotically tight approximation (5.35) and the SER
upper bound (5.20) with the exact SER formulations (5.15) and (5.18) in the case of

S
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Fig. 5.3 Comparison of the exact SER formulation, the upper bound, and the asymptotically tight
approximation for DF cooperation systems with QPSK or 4-QAM signals. It is assumed that
δ2s,d = δ2s,r = δ2r,d = 1, N0 = 1, and P1 = P2 = P/2.
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QPSK (or 4-QAM) modulation. In this case, the parameters b, A, and B in the upper
bound (5.20) and the approximation (5.35) are specified as b = 1, A = 3/8 + 1/4π
and B = 9/32 + 1/4π . We can see that the upper bound (5.20) (dashed line with “·”)
is asymptotically parallel with the exact SER curve (solid line with “�”), which means
that they have the same diversity order. The approximation (5.35) (dashed line with
“◦”) is loose at low SNR, but it is tight at reasonable high SNR. It merges with the
exact SER curve at an SER of 10−3. Both the SER upper bound and the approxima-
tion show the asymptotic performance of DF cooperation systems. Specifically, from
the asymptotically tight approximation (5.35), we observe that the link between source
and destination contributes diversity order one in the system performance. The term
A2/P1δ

2
s,r + B/P2δ

2
r,d also contributes diversity order one in the performance, but it

depends on the balance of the two channel links from the source to the relay and from
the relay to the destination. Therefore, the DF cooperation systems show an overall
performance of diversity order two.

5.2.3 Optimum power allocation

Note that the SER approximation (5.35) is asymptotically tight at high SNR. In this
subsection, we determine an asymptotic optimum power allocation for the DF cooper-
ation protocol based on the asymptotically tight SER approximation. Specifically, we
determine an optimum transmitted power P1 that should be used at the source and P2

at the relay for a fixed total transmission power P1 + P2 = P . We have the following
result.

T H E O R E M 5.2.3 In DF cooperation systems with M-PSK or M-QAM modulation,
if all of the channel links hs,d, hs,r, and hr,d are available, i.e., δ2

s,d �= 0, δ2
s,r �= 0, and

δ2
r,d �= 0, then, for sufficiently high SNR, the optimum power allocation is

P1 =
δs,r +

√
δ2

s,r + 8(A2/B)δ2
r,d

3δs,r +
√
δ2

s,r + 8(A2/B)δ2
r,d

P, (5.36)

P2 = 2δs,r

3δs,r +
√
δ2

s,r + (8A2/B)δ2
r,d

P, (5.37)

where A and B are specified in (5.29)–(5.32) for M-PSK and M-QAM signals,
respectively.

Proof According to the asymptotically tight SER approximation (5.35), it is sufficient
to minimize the following term G(P1, P2) with the power constraint P1 + P2 = P in
order to optimize the asymptotic SER performance,

G(P1, P2) = 1

P1δ
2
s,d

(
A2

P1δ2
s,r
+ B

P2δ
2
r,d

)
.
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By taking derivative in terms of P1, we have

∂G(P1, P2)

∂P1
= 1

P1δ
2
s,d

(
− A2

P2
1 δ

2
s,r

+ B

P2
2 δ

2
r,d

)
− 1

P2
1 δ

2
s,d

(
A2

P1δ2
s,r
+ B

P2δ
2
r,d

)
.

By setting the above derivation as 0, we come up with an equation as follows:

Bδ2
s,r(P

2
1 − P1 P2)− 2A2δ2

r,d P2
2 = 0.

With the power constraint P1+ P2 = P , we can solve the above equation, which results
in the optimum power allocation in (5.36) and (5.37). �

The result in Theorem 5.2.3 is somewhat surprising since the asymptotic optimum
power allocation does not depend on the channel link between source and destination, it
depends only on the channel link between source and relay and that between relay and
destination. Moreover, we can see that the optimum ratio of the transmitted power P1 at
the source over the total power P is less than 1 and larger than 1/2, while the optimum
ratio of the power P2 used at the relay over the total power P is larger than 0 and less
than 1/2, i.e.,

1

2
<

P1

P
< 1 and 0 <

P2

P
<

1

2
. (5.38)

It means that we should always put more power at the source and less power at the relay.
If the link quality between source and relay is much less than that between relay and
destination, i.e., δ2

s,r << δ2
r,d, then from (5.36) and (5.37), P1 goes to P and P2 goes

to 0. It implies that we should use almost all of the power P at the source, and use few
power at the relay. On the other hand, if the link quality between source and relay is
much larger than that between relay and destination, i.e., δ2

s,r >> δ
2
r,d, then both P1 and

P2 go to P/2. It means that we should put almost equal power at the source and the
relay in this case.

The result in Theorem 5.2.3 may be interpreted as follows. With the assumption that
all of the channel links hs,d, hs,r, and hr,d are available in the system, the cooperation
strategy is expected to achieve a performance diversity of order two. The system is
guaranteed to have a performance diversity of order one due to the channel link between
source and destination. However, in order to achieve a diversity of order two, the channel
link between source and relay and the channel link between relay and destination should
be appropriately balanced. If the link quality between source and relay is bad, then it is
difficult for the relay to correctly decode the transmitted symbol. Thus, the forwarding
role of the relay is less important and it makes sense to put more power at the source.

On the other hand, if the link quality between source and relay is very good, the
relay can always correctly decode the transmitted symbol, so the decoded symbol at
the relay is almost the same as that at the source. We may consider the relay to be a
copy of the source and put almost equal power on both. We want to emphasize that
this interpretation is good only for the sufficiently high SNR scenario and under the
assumption that all of the channel links hs,d, hs,r, and hr,d are available.
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Example 5.1 In the case where the link quality between source and relay is the same
as that between relay and destination, i.e., δ2

s,r = δ2
r,d, the asymptotic optimum power

allocation is given by

P1 = 1+√1+ 8A2/B

3+√1+ 8A2/B
P, (5.39)

P2 = 2

3+√1+ 8A2/B
P, (5.40)

where A and B depend on specific modulation signals. For example, if BPSK mod-
ulation is used, then P1 = 0.5931P and P2 = 0.4069P; while if QPSK modulation
is used, then P1 = 0.6270P and P2 = 0.3730P . For 16-QAM, P1 = 0.6495P and
P2 = 0.3505P . We can see that the larger the constellation size, the more power should
be put at the source. �

Example 5.2 It is worth pointing out that, even though the asymptotic optimum power
allocations in (5.36) and (5.37) are determined for high SNR, they also provide a good
solution to a realistic moderate SNR scenario as in Figures 5.4–5.6, we plotted exact
SER as a function of the ratio P1/P for a DF cooperation system with QPSK modulation
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Fig. 5.4 SER of DF cooperation systems with δ2s,r = 1 and δ2r,d = 1: (a) δ2s,d = 0.1; (b) δ2s,d = 1; and (c)

δ2s,d = 10. The asymptotic optimum power allocation is P1/P = 0.6270 and P2/P = 0.3730.
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and different fading scenarios. In Figure 5.4, we considered the DF cooperation system
with δ2

s,r = δ2
r,d = 1 and three different qualities of the channel link between source and

destination: (a) δ2
s,d = 0.1; (b) δ2

s,d = 1; and (c) δ2
s,d = 10. The asymptotic optimum

power allocation in this case is P1/P = 0.6270 and P2/P = 0.3730. From the figures,
we can see that the ratio P1/P = 0.6270 almost provides the best performance for
different total transmit power P = 10, 20, 30 dB and different channel variance δ2

s,d.

We have the same observation in Figure 5.5 for a system with δ2
s,r = 10 and δ2

r,d = 1,

and in Figure 5.6 for a system with δ2
s,r = 1 and δ2

r,d = 10. Note that for a system with

fixed variances δ2
s,r and δ2

r,d, the system performance improves by increasing the channel
quality between source and destination, but the asymptotic optimum power allocation
keeps the same. Moreover, the larger the channel quality ratio δ2

r,d/δ
2
s,r, the larger the

optimum power ratio P1/P , i.e., the more power should be used at the source. �

5.2.4 Some special scenarios

In the previous subsection, optimum power allocation was determined for DF coop-
eration systems where all the channel links hs,d, hs,r, and hr,d are available. In the
following, we consider some special cases that some of the channel links are not
available.

• If the channel link between relay and destination is not available, i.e., δ2
r,d = 0,

according to (5.15), the SER of the DF system with M-PSK modulation can be
given by

PPSK = F1

(
1+ bPSK P1δ

2
s,d

N0 sin2 θ

)
≤ AN0

bPSK P1δ
2
s,d

, (5.41)

where F1(·) is defined in (5.16), and A is specified in (5.29). Similarly, from (5.18),
the SER of the system with M-QAM modulation is

PQAM = F2

(
1+ bQAM P1δ

2
s,d

2N0 sin2 θ

)
≤ 2AN0

bQAM P1δ
2
s,d

, (5.42)

where F2(·) is defined in (5.19), and A is specified in (5.31). From (5.41) and (5.42),
we can see that for both M-PSK and M-QAM signals, the optimum power allocation
is P1 = P and P2 = 0. It means that we should use the direct transmission from
source to destination in this case.

• If the channel link between source and relay is not available, i.e., δ2
s,r = 0, from (5.15)

and (5.18), the SER of the DF system with M-PSK or M-QAM modulation can be
upper bounded as

Ps ≤ 2AN0

bP1δ
2
s,d

,
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where, for M-PSK modulation, b = bPSK and A is specified in (5.29), while for M-
QAM modulation, b = bQAM/2 and A is specified in (5.31). Therefore, the optimum
power allocation in this case is P1 = P and P2 = 0.

• If the channel link between source and destination is not available, i.e., δ2
s,d = 0,

according to (5.15) and (5.18), the SER of the DF system with M-PSK or M-QAM
modulation can be given by

Ps = Fi

(
1+ bP1δ

2
s,r

N0 sin2 θ

)

+ Fi

(
1+ bP2δ

2
r,d

N0 sin2 θ

)[
1− Fi

(
1+ bP1δ

2
s,r

N0 sin2 θ

)]
, (5.43)

in which i = 1 and b = bPSK for M-PSK modulation, and i = 2 and b = bQAM/2
for M-QAM modulation. If δ2

s,r �= 0 and δ2
r,d �= 0, then by the same procedure as we

obtained the SER approximation in (5.35), the SER in (5.43) can be asymptotically
approximated as

Ps ≈ AN 2
0

b2

(
1

P1δ2
s,r
+ 1

P2δ
2
r,d

)
, (5.44)

where, for M-PSK modulation, b = bPSK and A is specified in (5.29), while for M-
PSK modulation, b = bQAM/2 and A is specified in (5.31). From (5.44), we can see
that with the total power P1 + P2 = P , the optimum power allocation in this case is

P1 = δr,d

δs,r + δr,d P (5.45)

P2 = δs,r

δs,r + δr,d P (5.46)

for both M-PSK and M-QAM modulations.

Note that when the channel link between source and destination is not available (i.e.,
δ2

s,d = 0), the system reduces to a two-hop communication scenario.

5.2.5 Simulation examples

In this subsection, we consider some examples to illustrate the theoretical analysis for
DF cooperation systems with different modulation signals and different power alloca-
tion schemes. Assume that the variance of the noise is 1 (i.e., N0 = 1), and the variance
of the channel link between source and destination is normalized as 1 (i.e., δ2

s,d = 1). We

consider two kinds of channel conditions: (a) δ2
s,r = 1 and δ2

r,d = 1; and (b) δ2
s,r = 1 and

δ2
r,d = 10. We compare the SER simulation curves with the asymptotically tight SER

approximation in (5.35). We also compare the performance of DF cooperation systems
using the optimum power allocation scheme in Theorem 5.2.3 with that of systems using
the equal power scheme, in which the total transmitted power is equally allocated at the
source and at the relay (P1/P = P2/P = 1/2).
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Fig. 5.7 Performance of DF cooperation systems with BPSK signals: optimum power allocation versus
equal power scheme. (a) δ2s,r = 1 and δ2r,d = 1, (b) δ2s,r = 1 and δ2r,d = 10.

Figure 5.7 depicts the simulation results for DF cooperation systems with BPSK mod-
ulation. We can see that the SER approximations from (5.35) are tight at high SNR in
all scenarios. From the figure we observe that, for δ2

s,r = 1 and δ2
r,d = 1, the perfor-

mance of the optimum power allocation is almost the same as that of the equal power
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scheme, as shown in Figure 5.7(a). For δ2
s,r = 1 and δ2

r,d = 10 in Figure 5.7(b), the opti-
mum power allocation scheme outperforms the equal power scheme with a performance
improvement of about 1 dB. According to Theorem 5.2.3, the optimum power ratios are
P1/P = 0.7579 and P2/P = 0.2421 in this case.

Figure 5.8 shows the simulation results for DF cooperation systems with QPSK mod-
ulation. For δ2

s,r = 1 and δ2
r,d = 1 in Figure 5.8(a), the optimum power ratios are
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Fig. 5.8 Performance of DF cooperation systems with QPSK signals: optimum power allocation versus
equal power scheme. (a) δ2s,r = 1 and δ2r,d = 1, (b) δ2s,r = 1 and δ2r,d = 10.
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P1/P = 0.6270 and P2/P = 0.3730 by Theorem 5.2.3. From the figure we observe
that the performance of the optimum power allocation is a little bit better than that of
the equal power case, and the two SER approximations are consistent with the simu-
lation curves at high SNR. For δ2

s,r = 1 and δ2
r,d = 10, the optimum power ratios are

P1/P = 0.7968 and P2/P = 0.2032 according to Theorem 5.2.3. From Figure 5.8(b),
we can see that the optimum power allocation scheme outperforms the equal power
scheme with a performance improvement of about 1 dB. Note that if the ratio of the link
quality δ2

r,d/δ
2
s,r becomes larger, we will observe a greater performance improvement of

the optimum power allocation over the equal power case. In all of the above simulations,
we can see that the SER approximation in (5.35) is asymptotically tight at high SNR.

5.3 SER analysis for AF protocol

In this section, we consider the SER performance of AF cooperative communication
systems. First, we derive a simple closed-form MGF expression for the harmonic mean
of two independent exponential random variables. Second, based on the simple MGF
expression, closed-form SER formulations are given for AF cooperation systems with
M-PSK and M-QAM modulations. Third, we provide an SER approximation, which is
is tight at high SNR, to show the asymptotic performance of the systems. Finally, based
on the tight approximation, we are able to determine an optimum power allocation for
AF cooperation systems.

5.3.1 SER analysis by MGF approach

In the AF cooperation systems, the relay amplifies not only the received signal, but also
the noise as shown in (5.4)–(5.6). The equivalent noise η′r,d at the destination in phase 2
is a zero-mean complex Gaussian random variable with variance(

P2|hr,d|2
P1|hs,r|2 +N0

+ 1

)
N0.

Therefore, with knowledge of the channel coefficients hs,d, hs,r and hr,d, the output of
the MRC detector at the destination can be written as

y = a1ys,d + a2yr,d, (5.47)

where a1 and a2 are specified as

a1 =
√

P1h∗s,d
N0

and a2 =
√

P1 P2
P1|hs,r|2+N0

h∗s,rh∗r,d(
P2|hr,d|2

P1|hs,r|2+N0
+ 1
)
N0

. (5.48)

Note that to determine the factor a2 in (5.48), we considered the equivalent received
signal model in (5.5). By assuming that the transmitted symbol x in (5.1) has average
energy 1, we know that the instantaneous SNR of the MRC output is
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γ = γ1 + γ2, (5.49)

where γ1 = P1|hs,d|2/N0, and

γ2 =
P1 P2

P1|hs,r|2+N0
|hs,r|2|hr,d|2(

P2|hr,d|2
P1|hs,r|2+N0

+ 1
)
N0

= 1

N0

P1 P2|hs,r|2|hr,d|2
P1|hs,r|2 + P2|hr,d|2 +N0

. (5.50)

The instantaneous SNR γ2 in (5.50) can be tightly upper bounded as

γ2 ≤ γ̃2
�= 1

N0

P1 P2|hs,r|2|hr,d|2
P1|hs,r|2 + P2|hr,d|2 , (5.51)

which is the harmonic mean of two exponential random variables P1|hs,r|2/N0 and
P2|hr,d|2/N0. If we approximate the SNR as γ ≈ γ1 + γ̃2, then, according to (5.12)
and (5.13), the conditional SER of AF cooperation systems with M-PSK and M-QAM
modulations can be given as follows:

P
hs,d,hs,r,hr,d
PSK ≈ 1

π

∫ (M−1)π/M

0
exp

(
−bPSK(γ1 + γ̃2)

sin2 θ

)
dθ, (5.52)

P
hs,d,hs,r,hr,d
QAM ≈ 4K Q

(√
bQAM(γ1 + γ̃2)

)
− 4K 2Q2

(√
bQAM(γ1 + γ̃2)

)
, (5.53)

where bPSK = sin2(π/M), bQAM = 3/(M − 1), and K = 1− 1/
√

M .
Let us denote the moment-generating function (MGF) of a random variable Z as

MZ (s) =
∫ ∞

−∞
exp(−sz)pZ (z)dz, (5.54)

for any real number s. By averaging over the Rayleigh fading channels hs,d, hs,r, and
hr,d in (5.52) and (5.53), we obtain the SER of AF cooperation systems in terms of MGF
Mγ1(s) and Mγ̃2(s) as follows:

PPSK ≈ 1

π

∫ (M−1)π/M

0
Mγ1

(
bPSK

sin2 θ

)
Mγ̃2

(
bPSK

sin2 θ

)
dθ, (5.55)

PQAM ≈
[

4K

π

∫ π/2

0
− 4K 2

π

∫ π/4

0

]
Mγ1

(
bQAM

2 sin2 θ

)
Mγ̃2

(
bQAM

2 sin2 θ

)
dθ, (5.56)

in which, for simplicity, we use the following notation[
4K

π

∫ π/2

0
− 4K 2

π

∫ π/4

0

]
x(θ)dθ

�= 4K

π

∫ π/2

0
x(θ)dθ − 4K 2

π

∫ π/4

0
x(θ)dθ.
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From (5.55) and (5.56), we can see that the remaining problem is to obtain the MGF
Mγ1(s) and Mγ̃2(s). Since γ1 = P1|hs,d|2/N0 has an exponential distribution with
parameter N0/(P1δ

2
s,d), the MGF of γ1 can be simply given by

Mγ1(s) =
1

1+ s P1δ
2
s,d

N0

. (5.57)

However, it is not easy to get the MGF of γ̃2, which is the harmonic mean of two expo-
nential random variables P1|hs,r|2/N0 and P2|hr,d|2/N0. The MGF can be obtained
by applying a Laplace transform and a solution was presented in [58] in terms of the
hypergeometric function as follows:

Mγ̃2(s) =
16β1β2

3(β1 + β2 + 2
√
β1β2 + s)2

[
4(β1 + β2)

β1 + β2 + 2
√
β1β2 + s

× 2F1

(
3,

3

2
; 5

2
; β1 + β2 − 2

√
β1β2 + s

β1 + β2 + 2
√
β1β2 + s

)

+ 2F1

(
2,

1

2
; 5

2
; β1 + β2 − 2

√
β1β2 + s

β1 + β2 + 2
√
β1β2 + s

)]
, (5.58)

in which β1 = N0/(P1δ
2
s,r), β2 = N0/(P2δ

2
r,d), and 2F1(·, ·; ·; ·) is the hypergeometric

function.3 Because the hypergeometric function 2F1(·, ·; ·; ·) is defined as an integral it
is hard to use in an SER analysis aimed at revealing the asymptotic performance and
optimizing the power allocation. Using an alternative approach, we introduce a simple
closed-form solution for the MGF of γ̃2 as shown in the next subsection.

5.3.2 Simple MGF expression for the harmonic mean

In this subsection, first we obtain a general result on the probability density function
(pdf) for the harmonic mean of two independent random variables. Then, we are able
to determine a simple closed-form MGF expression for the harmonic mean of two
independent exponential random variables.

T H E O R E M 5.3.1 Suppose that X1 and X2 are two independent random variables
with pdf pX1(x) and pX2(x) defined for all x ≥ 0, and pX1(x) = 0 and pX2(x) = 0 for
x < 0. Then the pdf of Z = X1 X2

X1+X2
, the harmonic mean of X1 and X2, is

pZ (z) = z
∫ 1

0

1

t2(1− t)2
pX1(

z

1− t
) pX2(

z

t
)dt ·U (z), (5.59)

in which U (z) = 1 for z ≥ 0 and U (z) = 0 for z < 0.

3 A hypergeometric function with variables α, β, γ , and z is defined as [50]

2F1(α, β; γ ; z) = �(γ )

�(β)�(γ − β)
∫ 1

0
tβ−1(1− t)γ−β−1(1− t z)−αdt,

where �(·) is the Gamma function.



5.3 SER analysis for AF protocol 173

The proof of Theorem 5.3.1 is omitted (as an exercise). Note that there is no spec-
ification for the distributions of the two independent random variables in Theorem
5.3.1. Suppose that X1 and X2 are two independent exponential random variables with
parameters β1 and β2, respectively, i.e.,

pX1(x) = β1 e−β1x ·U (x),
pX2(x) = β2 e−β2x ·U (x).

Then, according to Theorem 5.3.1, the pdf of the harmonic mean Z = X1 X2
X1+X2

can be
simply given as

pZ (z) = z
∫ 1

0

β1β2

t2(1− t)2
e
−
(
β1
1−t+ β2

t

)
z
dt ·U (z). (5.60)

The pdf expression in (5.60) is critical in the following to obtain a simple closed-form
MGF result for the harmonic mean Z .

Let us start calculating the MGF of the harmonic mean of two independent exponen-
tial random variables by substituting the pdf of Z (5.60) into the definition (5.54) as
follows:

MZ (s) =
∫ ∞

0
e−sz z

∫ 1

0

β1β2

t2(1− t)2
e
−
(
β1
1−t+ β2

t

)
z
dtdz

=
∫ 1

0

β1β2

t2(1− t)2

(∫ ∞

0
z e
−
(
β1
1−t+ β2

t +s
)

z
dz

)
dt, (5.61)

in which we switch the integration order. Since∫ ∞

0
z e
−
(
β1
1−t+ β2

t +s
)

z
dz =

(
β1

1− t
+ β2

t
+ s

)−2

,

the MGF in (5.61) can be determined as

MZ (s) =
∫ 1

0

β1β2[
β2 + (β1 − β2 + s)t − st2

]2 dt, (5.62)

which is an integration of a quadratic trinomial and has a closed-form solution [50]. For
notation simplicity, denote α = (β1 − β2 + s)/2, then, for any s > 0, we have∫ 1

0

1

(β2 + 2αt − st2)2
dt

= st − α
2(β2s + α2)(β2 + 2αt − st2)

∣∣∣∣1
0

+ s

4(β2s + α2)
3
2

ln

∣∣∣∣∣−st + α −√β2s + α2

−st + α +√β2s + α2

∣∣∣∣∣
∣∣∣∣∣
1

0

= β2s + α(β1 − β2)

2β1β2(β2s + α2)
+ s

4(β2s + α2)
3
2

ln

(
β2 + α +

√
β2s + α2

)2

β1β2
. (5.63)
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By substituting α = (β1 − β2 + s)/2 into (5.63) and denoting � = 2
√
β2s + α2, we

obtain a simple closed-form MGF for the harmonic mean Z as follows:

MZ (s) = (β1 − β2)
2 + (β1 + β2)s

�2
+ 2β1β2s

�3
ln
(β1 + β2 + s +�)2

4β1β2
, s > 0,

(5.64)

where � = √(β1 − β2)2 + 2(β1 + β2)s + s2. We can see that if β1 and β2 go to zero,
then � can be approximated as s. In this case, the MGF in (5.64) can be simplified as

MZ (s) ≈ β1 + β2

s
+ 2β1β2

s2
ln

s2

β1β2
. (5.65)

Note that in (5.65), the second term goes to zero faster than the first term. As a result,
the MGF in (5.65) can be further simplified as

MZ (s) ≈ β1 + β2

s
. (5.66)

We summarize the above discussion in the following theorem.

T H E O R E M 5.3.2 Let X1 and X2 be two independent exponential random variables
with parameters β1 and β2 respectively. Then, the MGF of Z = X1 X2

X1+X2
is

MZ (s) = (β1 − β2)
2 + (β1 + β2)s

�2
+ 2β1β2s

�3
ln
(β1 + β2 + s +�)2

4β1β2
(5.67)

for any s > 0, in which

� =
√
(β1 − β2)2 + 2(β1 + β2)s + s2. (5.68)

Furthermore, if β1 and β2 go to zero, then the MGF of Z can be approximated as

MZ (s) ≈ β1 + β2

s
. (5.69)

We can see that the closed-form solution in (5.67) does not involve any integration. If
X1 and X2 are i.i.d. exponential random variables with parameter β, then according to
the result in Theorem 5.3.2, the MGF of Z = X1 X2

X1+X2
can be simply given as

MZ (s) = 2β

4β + s
+ 4β2s

�3
0

ln
2β + s +�0

2β
, (5.70)

where s > 0 and �0 =
√

4βs + s2. The approximation in (5.69) will provide a very
simple solution for the SER calculations in (5.55) and (5.56), as shown in the next
subsection.

5.3.3 Asymptotically tight approximation

Now let us apply the result of Theorem 5.3.2 to the harmonic mean of two random vari-
ables X1 = P1|hs,r|2/N0 and X2 = P2|hr,d|2/N0 as we considered in Section 4.1. They
are two independent exponential random variables with parameters β1 = N0/(P1δ

2
s,r)

and β2 = N0/(P2δ
2
r,d), respectively. With the closed-form MGF expression in Theorem
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5.3.2, the SER formulations in (5.55) and (5.56) for AF systems with M-PSK and
M-QAM modulations can be determined respectively as

PPSK ≈ 1

π

∫ (M−1)π/M

0

1

1+ bPSK

β0 sin2 θ

{
(β1 − β2)

2 + (β1 + β2)
bPSK

sin2 θ

�2

+ 2β1β2bPSK

�3 sin2 θ
ln
(β1 + β2 + bPSK

sin2 θ
+�)2

4β1β2

}
dθ, (5.71)

PQAM ≈
[

4K

π

∫ π/2

0
−4K 2

π

∫ π/4

0

]
1

1+ bQAM

2β0 sin2 θ

⎧⎨⎩ (β1 − β2)
2 + (β1 + β2)

bQAM

2 sin2 θ

�2

+ β1β2bQAM

�3 sin2 θ
ln
(β1 + β2 + bQAM

2 sin2 θ
+�)2

4β1β2

⎫⎬⎭ dθ, (5.72)

in which β0 = N0/(P1δ
2
s,d), β1 = N0/(P1δ

2
s,r), β2 = N0/(P2δ

2
r,d), and �2 =

(β1 − β2)
2 + 2(β1 + β2)s +s2 with s = bPSK/ sin2 θ for M-PSK modulation and

s = bQAM/(2 sin2 θ) for M-QAM modulation.
We observe that it is hard to understand AF system performance based on the SER

formulations in (5.71) and (5.72), even though they can be numerically calculated. In the
following, we provide an asymptotically tight approximation for the SER formulations
when all of the channel links hs,d, hs,r, and hr,d are available, i.e., δ2

s,d �= 0, δ2
s,r �= 0,

and δ2
r,d �= 0. For simplicity of discussion, we denote∫

�1

x(θ) dθ
�= 1

π

∫ (M−1)π/M

0
x(θ) dθ, (5.73)

∫
�2

x(θ) dθ
�=
[

4K

π

∫ π/2

0
− 4K 2

π

∫ π/4

0

]
x(θ) dθ, (5.74)

for any function x(θ). Then, the SER formulations in (5.71) and (5.72) can be
expressed as

Ps ≈
∫
�i

1

1+ bP1δ
2
s,d

N0 sin2 θ

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

N0
P1δ

2
s,r
− N0

P2δ
2
r,d

)2

+
(

N0
P1δ

2
s,r
+ N0

P2δ
2
r,d

)
b

sin2 θ

�2

+
2bN 2

0 ln

[
P1 P2δ

2
s,rδ

2
r,d

(
N0

P1δ
2
s,r
+ N0

P2δ
2
r,d
+ b

sin2 θ
+�

)2/(
4N 2

0

)]
P1 P2δ2

s,rδ
2
r,d�

3 sin2 θ

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ dθ,

(5.75)

where i = 1 and b = bPSK, for M-PSK modulation, and i = 2 and b = bQAM/2 for
M-QAM modulation, and
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�2 =
(

N0

P1δ2
s,r
− N0

P2δ
2
r,d

)2

+ 2

(
N0

P1δ2
s,r
+ N0

P2δ
2
r,d

)
b

sin2 θ
+ b2

sin4 θ
.

Let us separate the right-hand side of the above equation (5.75) as two parts as follows:

Ps ≈ J1(P1/N0, P2/N0)+ J2(P1/N0, P2/N0), (5.76)

in which

J1(x, y) =
∫
�i

1

1+ xbδ2
s,d

sin2 θ

⎧⎪⎪⎨⎪⎪⎩
1

xδ2
s,r

(
1

xδ2
s,r
− 1

yδ2
r,d

)
+ b

xδ2
s,r sin2 θ

�2

+ 2b ln y

xyδ2
s,rδ

2
r,d�

3 sin2 θ

}
dθ, (5.77)

J2(x, y) =
∫
�i

1

1+ xbδ2
s,d

sin2 θ

⎧⎪⎪⎨⎪⎪⎩
− 1

yδ2
r,d

(
1

xδ2
s,r
− 1

yδ2
r,d

)
+ b

yδ2
r,d sin2 θ

�2

+
2b ln

[
xδ2

s,rδ
2
r,d

(
1

xδ2
s,r
+ 1

yδ2
r,d
+ b

sin2 θ
+�

)2/
4

]
xyδ2

s,rδ
2
r,d�

3 sin2 θ

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ dθ,

(5.78)

in which i = 1 and b = bPSK for M-PSK modulation, and i = 2 and b = bQAM/2
for M-QAM modulation. Then, we have the following results (leave the proof as an
exercise)

lim
x, y→∞ x2 J1(x, y) = B

b2δ2
s,dδ

2
s,r

, (5.79)

lim
x, y→∞ xy J2(x, y) = B

b2δ2
s,dδ

2
r,d

, (5.80)

where for M-PSK signals, b = bPSK and

B = 3(M − 1)

8M
+ sin 2π

M

4π
− sin 4π

M

32π
; (5.81)

while for M-QAM signals, b = bQAM/2 and

B = 3(M − 1)

8M
+ K 2

π
. (5.82)

Therefore, for large enough x and y, we have the following asymptotically tight
approximations:

J1(x, y) ≈ 1

x2
· B

b2δ2
s,dδ

2
s,r

, (5.83)
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J2(x, y) ≈ 1

xy
· B

b2δ2
s,dδ

2
r,d

, (5.84)

in which approximation errors become insignificant compared to the orders 1/x2 and
1/xy when x and y go to infinity. Replacing x and y in (5.83) and (5.84) with P1/N0 and
P2/N0, respectively, and substituting the results into (5.76), we arrive at the following
result.

T H E O R E M 5.3.3 If all of the channel links hs,d, hs,r, and hr,d are available, i.e.,
δ2

s,d �= 0, δ2
s,r �= 0, and δ2

r,d �= 0, then when P1/N0 and P2/N0 go to infinity, the
SER of AF cooperation systems with M-PSK or M-QAM modulation can be tightly
approximated as

Ps ≈ BN 2
0

b2
· 1

P1δ
2
s,d

(
1

P1δ2
s,r
+ 1

P2δ
2
r,d

)
, (5.85)

where b and B are specified in (5.81) and (5.82) for M-PSK signals and M-QAM
signals, respectively.

Let us compare the SER approximations in (5.71), (5.72), and (5.85) with the SER
simulation result in Figure 5.9 in the case of an AF cooperation systems with QPSK (or
4-QAM) modulation. It is easy to check that for both QPSK and 4-QAM modulations
the parameters B in (5.81) and (5.82) are the same, in which B = 9/32 + 1/4π . We
can see that the theoretical calculation in (5.71) or (5.72) matches the simulation curve,
except for a small difference at low SNR, which is due to the approximation of the
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Fig. 5.9 Comparison of the SER approximations and the simulation result for an AF cooperation systems
with QPSK or 4-QAM signals. It is assumed that δ2s,d = δ2s,r = δ2r,d = 1, N0 = 1, and
P1/P = 2/3 and P2/P = 1/3.
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SNR γ̃2 in (5.51). Furthermore, the simple SER approximation in (5.85) is tight at high
SNR, which is good enough to show the asymptotic performance of the AF cooperation
system. From Theorem 5.3.3, we can see that the AF cooperation system also provides
an overall performance of diversity order two, which is similar to that of DF cooperation
systems.

5.3.4 Optimum power allocation

In this subsection we determine an asymptotic optimum power allocation for AF
cooperation systems based on the tight SER approximation in (5.85) for sufficiently
high SNR.

For a fixed total transmitted power P1+ P2 = P , we need to optimize P1 and P2 such
that the asymptotically tight SER approximation in (5.85) is minimized. Equivalently,
we try to minimize

G(P1, P2) = 1

P1δ
2
s,d

(
1

P1δ2
s,r
+ 1

P2δ
2
r,d

)
.

By taking derivatives in terms of P1, we have

∂G(P1, P2)

∂P1
= 1

P1δ
2
s,d

(
− 1

P2
1 δ

2
s,r

+ 1

P2
2 δ

2
r,d

)
− 1

P2
1 δ

2
s,d

(
1

P1δ2
s,r
+ 1

P2δ
2
r,d

)
.

By setting the above derivation as 0, we have

δ2
s,r(P

2
1 − P1 P2)− 2δ2

r,d P2
2 = 0.

Together with the power constraint P1 + P2 = P , we can solve the above equation and
arrive at the following result.

T H E O R E M 5.3.4 For sufficiently high SNR, the optimum power allocation for AF
cooperation systems with either M-PSK or M-QAM modulation is

P1 =
δs,r +

√
δ2

s,r + 8δ2
r,d

3δs,r +
√
δ2

s,r + 8δ2
r,d

P, (5.86)

P2 = 2δs,r

3δs,r +
√
δ2

s,r + 8δ2
r,d

P. (5.87)

From Theorem 5.3.4, we observe that the optimum power allocation for AF cooperation
systems is not modulation-dependent, unlike that for DF cooperation systems in which
the optimum power allocation depends on the specific M-PSK or M-QAM modulation
as stated in Theorem 5.2.3. This is due to the fact that, in AF cooperation systems,
the relay amplifies the received signal and forwards it to the destination regardless of
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what kind of received signal it is. In DF cooperation systems, the relay forwards infor-
mation to the destination only if the relay correctly decodes the received signal, and
the decoding at the relay requires specific modulation information, which results in the
modulation-dependent optimum power allocation scheme.

On the other hand, the asymptotic optimum power allocation scheme in Theorem
5.3.4 for AF cooperation systems is similar to that in Theorem 5.2.3 for DF cooperation
systems, in the sense that both of them do not depend on the channel link between source
and destination, but instead depend only on the channel links between source and relay
and between relay and destination. Similarly, we can see from Theorem 5.3.4 that the
optimum ratio of the transmitted power P1 at the source over the total power P is less
than 1 and larger than 1/2, while the optimum ratio of the power P2 used at the relay
over the total power P is larger than 0 and less than 1/2. In general, the equal power
strategy is not optimum. For example, if δ2

s,r = δ2
r,d, then the optimum power allocation

is P1 = P/3 and P2 = P/3.

5.3.5 Simulation examples

In this subsection, we consider some examples to illustrate the theoretical analysis for
AF cooperation systems with different modulation signals and different power allo-
cation schemes. We compare the performance of AF cooperation systems using the
optimum power allocation scheme in Theorem 5.3.4 with that of the systems using
the equal power scheme. We also compare the asymptotic tight SER approximation
in (5.85) with the SER simulation curves. Assume that the variance of the noise is 1
(i.e., N0 = 1), and the variance of the channel link between source and destination is
normalized as 1 (i.e., δ2

s,d = 1).
Figure 5.10 provides the simulation results for AF cooperation systems with BPSK

modulation. In case of δ2
s,r = 1 and δ2

r,d = 1 in Figure 5.10(a), we can see that the
performance of the optimum power allocation is slightly better than that of the equal
power case, in which the optimum power ratios are P1/P = 2/3 and P2/P = 1/3
according to Theorem 5.3.4. In the case of δ2

s,r = 1 and δ2
r,d = 10, the optimum power

ratios are P1/P = 0.8333 and P2/P = 0.1667 according to Theorem 5.3.4. We observe
from Figure 5.10(b) that the optimum power allocation scheme outperforms the equal
power scheme with a performance improvement of more than 1.5 dB. Note that all SER
approximations from (5.85) are respectively consistent with the simulation curves at
reasonable high SNR.

The simulation results of AF cooperation systems with QPSK modulation are shown
in Figure 5.11. In the case of δ2

s,r = 1 and δ2
r,d = 1 in Figure 5.11(a), the optimum

power ratios in this case are P1/P = 2/3 and P2/P = 1/3 which are the same as those
for the case of BPSK modulation. From the figure, we can see that the performance of
the optimum power allocation is better than that of the equal power case, and the two
SER approximations are consistent with the simulation curves at high SNR respectively.
In case of δ2

s,r = 1 and δ2
r,d = 10, the optimum power ratios are P1/P = 0.8333

and P2/P = 0.1667 according to Theorem 5.3.4. From Figure 5.11(b), we observe
that the optimum power allocation scheme outperforms the equal power scheme with a
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Fig. 5.10 Performance of AF cooperation systems with BPSK signals: optimum power allocation versus
equal power scheme. (a) δ2s,r = 1 and δ2r,d = 1, (b) δ2s,r = 1 and δ2r,d = 10.

performance improvement of about 2 dB. If the ratio of the channel link quality δ2
r,d/δ

2
s,r

increases, we expect to see a greater improvement in performance of the optimum power
allocation over the equal power case. Moreover, from the figures we can see that in
all of the above simulations, the SER approximations from (5.85) are tight enough at
high SNR.
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Fig. 5.11 Performance of AF cooperation systems with QPSK signals: optimum power allocation versus
equal power scheme. (a) δ2s,r = 1 and δ2r,d = 1, (b) δ2s,r = 1 and δ2r,d = 10.

5.4 Comparison of DF and AF cooperation gains

Based on the asymptotically tight SER approximations and the optimum power allo-
cation solutions established in the previous two sections, we consider in this sec-
tion the overall cooperation gain and diversity order for DF and AF cooperation
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systems, respectively. Then, we compare the cooperation gain between the DF and AF
cooperation protocols.

Let us first focus on the DF cooperation protocol. According to the asymptotically
tight SER approximation (5.35) in Theorem 5.2.2, we know that for sufficiently high
SNR, the SER performance of DF cooperation systems can be approximated as

Ps ≈ N 2
0

b2
· 1

P1δ
2
s,d

(
A2

P1δ2
s,r
+ B

P2δ
2
r,d

)
, (5.88)

where A and B are specified in (5.29)–(5.32) for M-PSK and M-QAM signals, respec-
tively. By substituting the asymptotic optimum power allocation (5.36) and (5.37) into
(5.88), we have

Ps ≈ �−2
DF

(
P

N0

)−2

, (5.89)

where

�DF = 2
√

2 bδs,dδs,rδr,d√
B

(
δs,r +

√
δ2

s,r + 8(A2/B)δ2
r,d

)1/2

(
3δs,r +

√
δ2

s,r + 8(A2/B)δ2
r,d

)3/2
, (5.90)

in which b = bPSK for M-PSK signals and b = bQAM/2 for M-QAM signals. From
(5.89), we can see that the DF cooperation systems can guarantee a performance diver-
sity of order two. Note that the term �DF in (5.90) depends only on the statistics of
the channel links. We call it the cooperation gain of the DF cooperation systems, and it
indicates the best performance gain that we are able to achieve through the DF cooper-
ation protocol with any kind of power allocation. If the link quality between source and
relay is much less than that between relay and destination, i.e., δ2

s,r << δ2
r,d, then the

cooperation gain is approximated as

�DF = bδs,dδs,r
A

, (5.91)

in which A = (M−1)/2M+(sin 2π
M )/4π → 1/2 (for large M) for M-PSK modulation,

or A = (M−1)/2M+ K 2/π → 1/2+1/π when M is large for M-QAM modulation.
For example, in case of QPSK modulation, A = 3/8+ 1/4π = 0.4546.

On the other hand, if the link quality between source and relay is much larger than
that between relay and destination, i.e., δ2

s,r >> δ
2
r,d, then the cooperation gain can be

approximated as

�DF = bδs,dδr,d

2
√

B
, (5.92)

in which B = 3(M−1)/8M+
(
sin 2π

M

)
/4π−

(
sin 4π

M

)
/32π → 3/8 (for large M) for

M-PSK modulation, or B = 3(M−1)/8M+ K 2/π → 3/8+1/π when M is large for
M-QAM modulation. For example, in case of QPSK modulation, B = 9/32+ 1/4π =
0.3608.
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Similarly, for the AF cooperation protocol, from the the asymptotically tight SER
approximation (5.85) in Theorem 5.3.3, we can see that for sufficiently high SNR, the
SER performance of AF cooperation systems can be approximated as

Ps ≈ BN 2
0

b2
· 1

P1δ
2
s,d

(
1

P1δ2
s,r
+ 1

P2δ
2
r,d

)
, (5.93)

where b = bPSK for M-PSK signals and b = bQAM/2 for M-QAM signals, and B
is specified in (5.81) and (5.82) for M-PSK and M-QAM signals respectively. By
substituting the asymptotic optimum power allocation (5.86) and (5.87) into (5.93),
we have

Ps ≈ �−2
AF

(
P

N0

)−2

, (5.94)

�AF = 2
√

2 bδs,dδs,rδr,d√
B

(
δs,r +

√
δ2

s,r + 8δ2
r,d

)1/2

(
3δs,r +

√
δ2

s,r + 8δ2
r,d

)3/2
, (5.95)

which is called the cooperation gain of the AF cooperation systems, and indicates the
best asymptotic performance gain of the AF cooperation protocol with the optimum
power allocation scheme. From (5.94), we can see that AF cooperation systems can
also guarantee a performance diversity of order two, which is similar to that of DF
cooperation systems.

Note that both AF and DF cooperation systems are able to achieve a performance
diversity of order two. In the following, we compare the cooperation gains of the two
cooperation systems. Let us define a ratio λ = �DF/�AF to indicate the performance
gain of the DF cooperation protocol compared with the AF protocol. According to (5.90)
and (5.95), we have

λ =
⎛⎝δs,r +

√
δ2

s,r + 8(A2/B)δ2
r,d

δs,r +
√
δ2

s,r + 8δ2
r,d

⎞⎠1/2⎛⎝ 3δs,r +
√
δ2

s,r + 8δ2
r,d

δs,r +
√

3δ2
s,r + 8(A2/B)δ2

r,d

⎞⎠3/2

, (5.96)

where A and B are specified in (5.29)–(5.32) for M-PSK and M-QAM signals,
respectively.

• If the channel link quality between source and relay is much less than that between
relay and destination, i.e., δ2

s,r << δ
2
r,d, then

λ = �DF

�AF
→
√

B

A
. (5.97)

In the case of BPSK modulation, A = 1/4 and B = 3/16, so λ = √3 > 1. In the case
of QPSK modulation, A = 3/8+1/4π and B = 9/32+1/4π , so λ = 1.3214 > 1. In
the case of 8-PSK modulation, A = 7/16+√2/8π and B = 21/64+√2/8π−1/32π ,
so λ = 1.2393 > 1. In the case of 16-QAM modulation, A = 15/32 + 9/16π and
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B = 45/128 + 9/16π , so λ = 1.1245 > 1. In general, for M-PSK modulation

(M large), A = (M − 1)/2M +
(
sin 2π

M

)
/4π → 1/2 and B = 3(M − 1)/8M +(

sin 2π
M

)
/4π −

(
sin 4π

M

)
/32π → 3/8, so

λ→
√

6

2
≈ 1.2247 > 1.

For M-QAM modulation (M large), A = (M − 1)/2M + K 2/π → 1/2 + 1/π and
B = 3(M − 1)/8M + K 2/π → 3/8+ 1/π ,

λ→
√

3
8 + 1

π

1
2 + 1

π

≈ 1.0175 > 1.

We can see that if δ2
s,r << δ

2
r,d, the cooperation gain of DF systems is always larger

than that of AF systems for both M-PSK and M-QAM modulations. The advantage
of the DF cooperation systems is more significant if M-PSK modulation is used.

• If the channel link quality between source and relay is much better than that between
relay and destination, i.e., δ2

s,r >> δ
2
r,d, from (5.96) we have

λ = �DF

�AF
→ 1.

This implies that if δ2
s,r >> δ

2
r,d, the performance of DF cooperation systems is almost

the same as that of AF cooperation systems for both M-PSK and M-QAM modula-
tions. Since the DF cooperation protocol requires decoding process at the relay, we
may suggest the use of the AF cooperation protocol in this case to reduce the system
complexity.

• If the channel link quality between source and relay is the same as that between relay
and destination, i.e., δ2

s,r = δ2
r,d, we have

λ =
(

1+√1+ 8(A2/B)

4

)1/2 (
6

3+√1+ 8(A2/B)

)3/2

.

In the case of BPSK modulation, A = 1/4 and B = 3/16, so λ ≈ 1.1514 > 1. In the
case of QPSK modulation, A = 3/8+1/4π and B = 9/32+1/4π , so λ ≈ 1.0851 >
1. In the case of 8-PSK modulation, A = 0.4938 and B = 0.3744, so λ = 1.0670 > 1.
In the case of 16-QAM modulation, A = 0.6478 and B = 0.5306, so λ = 1.0378. In

general, for M-PSK modulation (M large), A = (M−1)/2M+
(
sin 2π

M

)
/4π → 1/2

and B = 3(M − 1)/8M +
(
sin 2π

M

)
/4π −

(
sin 4π

M

)
/32π → 3/8, so

λ→
(

1+√1+ 16/3

4

)1/2 ( 6

3+√1+ 16/3

)3/2

≈ 1.0635 > 1.
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For M-QAM modulation (M large), A = (M − 1)/2M + K 2/π → 1/2 + 1/π and
B = 3(M − 1)/8M + K 2/π → 3/8+ 1/π , λ goes to

⎛⎝1+
√

1+ 8( 1
2 + 1

π
)2/( 3

8 + 1
π
)

4

⎞⎠1/2⎛⎝ 6

3+
√

1+ 8( 1
2 + 1

π
)2/( 3

8 + 1
π
)

⎞⎠3/2

which is approximately 1.0058. We can see that if the modulation size is large,
the performance advantage of the DF cooperation protocol is negligible compared
with the AF cooperation protocol. Actually, with QPSK modulation, the ratio of the
cooperation gain is λ ≈ 1.0851 which is already small.

From the above discussion, we can see that the performance of the DF coopera-
tion protocol is always not less than that of the AF cooperation protocol. However, the
performance advantage of the DF cooperation protocol is not significant unless (i) the
channel link quality between the relay and the destination is much stronger than that
between the source and the relay, and (ii) the constellation size of the signaling is small.
These represent a tradeoff between the two cooperation protocols.

The complexity of the AF cooperation protocol is less than that of the DF
cooperation protocol in which decoding process at the relay is required. For high-
data-rate cooperative communications (with large modulation size), we may use the
AF cooperation protocol to reduce the system complexity while the performance is
comparable.

Example 5.3 In this example, we compare the performances of DF and AF coopera-
tion systems with BPSK modulation, as shown in Figure 5.12. In the case of δ2

s,r = 1
and δ2

r,d = 1, the performance of the DF cooperation protocol is better than that of
the AF protocol by about 1dB, as shown in Figure 5.12(a). In this case, the optimum
power ratios for the DF cooperation protocol are P1/P = 0.5931 and P2/P = 0.4069
according to Theorem 5.2.3, while the optimum ratios for the AF protocol are P1/P =
2/3 and P2/P = 1/3 according to Theorem 5.3.4.

In the case of δ2
s,r = 1 and δ2

r,d = 10, from Figure 5.12(b) we can see that the
DF cooperation protocol outperforms the AF protocol with an SER performance of
about 2 dB. In this case, the optimum power ratios for the DF cooperation proto-
col are P1/P = 0.7579 and P2/P = 0.2421, while the optimum ratios for the
AF protocol are P1/P = 0.8333 and P2/P = 0.1667. It seems that the larger the
ratio of the channel link quality δ2

r,d/δ
2
s,r, the greater the performance gain of the DF

cooperation protocol compared with the AF protocol. However, the performance gain
cannot be larger than λ = √

3 ≈ 2.4 dB as shown in (5.97) in the case of BPSK
modulation. �
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Fig. 5.12 Performance comparison of cooperation systems using either the AF or DF cooperation protocol
with BPSK signals. (a) δ2s,r = 1 and δ2r,d = 1, (b) δ2s,r = 1 and δ2r,d = 10.

5.5 Trans-modulation in relay communications

In this section, we consider a method of re-mapping signal constellation points at
the relay nodes to improve the destination SER performance of the DF cooperation
protocol. The constellation reassignment method can be considered as some form of
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complex field coding by trying to increase the Euclidean distance between different
transmitted symbols.

The transceiver model of the DF cooperation protocol was specified at the beginning
of this chapter. We recall that if the relay node is able to decode correctly, it will help
the source in phase 2; otherwise, it will remain idle. Specifically, the received signal at
the destination in phase 2, due to the relay node transmission, is given by

yr,d =
√

Prhr,dxr + ηr,d, (5.98)

where Pr is the relay transmitted power, ηr,d denotes the additive white Gaussian noise at
the destination, and hr,d is the channel coefficient from the relay node to the destination.
Here xr denotes the new constellation point transmitted from the relay node and is
normalized such that E{|xr|2} = 1. For the repetition-based approach, the symbol xr is
the same as the transmitted symbol xs from the source.

We derive in the following an expression of the pairwise symbol error rate (PSER)
between two possible transmitted source symbols. This analysis gives a guideline on
how to design the constellation points at the relay node to improve the system SER
performance. The PSER at the destination node is defined as

Pr {x1 → x2} = Pr {x1 → x2|x1, relay decodes erroneously}
× Pr {relay decodes erroneously}
+ Pr {x1 → x2|x1, relay decodes correctly}
× Pr {relay decodes correctly} , (5.99)

where x1 and x2 are two possible transmitted source symbols. The vector x1 =
[√Ps xs1

√
Prxr1 ]T, where xs1 is the source transmitted constellation point and xr1 is

the relay transmitted constellation point, similarly, x2 = [√Ps xs2

√
Prxr2 ]T. The PSER

expression in (5.99) has two terms depending on the state of the relay node (whether
or not it has decoded correctly). The first term corresponds to the case when the relay
decodes erroneously. This term only depends on the constellation used at the source
node while the second term clearly depends on the constellations used at the source and
relay nodes. We consider the design of the constellation points at the relay node in order
to minimize the PSER.

The use of a maximum likelihood (ML) detector at the receiver is assumed. We
consider minimizing the term

PSERr = Pr {x1 → x2|x1, relay decodes correctly} ,
which corresponds to the case when the relay correctly decodes the source symbol.
Under our system model assumptions, the PSERr of the ML detector can be expressed as

PSERr = E {Pr {q < 0|x1, relay decodes correctly}} , (5.100)

where

q =
[
zH

1 zH
2

] [ I2 0
0 −I2

] [
z1

z2

]
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in which z1 = (diag(x1)− diag(x2))h+ n, z2 = n, h = [hs,d hr,d]T , n = [ηs,d ηr,d]T ,
and I2 is the 2 × 2 identity matrix. It can be shown that the conditional pdf of q in
(5.100), given the channel coefficients and given that x1 was transmitted and the relay
decoded correctly, is Gaussian. The PSERr can be proved to be given by

PSERr = E

{
Q

(√
1

2N0

(
Ps |hs,d|2|xs1 − xs2 |2 + Pr|hr,d|2|xr1 − xr2 |2

))}
, (5.101)

where Q(u) = (1/
√

2π)
∫∞

u exp(−t2/2)dt is the Gaussian Q-function. The expecta-
tion in (5.101) is with respect to the channel state information (CSI). Using the special
property of the Gaussian Q-function as Q(u) = 1/π

∫ π/2
0 exp(−u2/2 sin2 θ)dθ and

averaging over the exponential distribution of the squared magnitude of the channel
gains, it can proved that the PSERr is given by

PSERr = 1

π

∫ π/2

0

1(
1+ Psδ

2
s,d|xs1−xs2 |2
4N0 sin2 θ

) · 1(
1+ Prδ

2
r,d|xr1−xr2 |2
4N0 sin2 θ

)dθ. (5.102)

An upper bound on PSERr can be obtained by neglecting the one term in the denom-
inator of the terms inside the integration of (5.102). The PSERr can now be upper
bounded as

PSERr ≤ 3N 2
0

δ2
s,dδ

2
r,d Ps Pr|xs1 − xs2 |2|xr1 − xr2 |2

. (5.103)

In order to minimize the PSER, symbols that have adjacent constellation points in
the source constellation are assigned nonadjacent constellation points in the relay con-
stellation assignment and vice versa. So instead of using repetition at the relay node
(i.e., using the same constellation as the source node) we can do constellation reas-
signment at the relay node to better separate the symbols to maximize the product
|xs1 − xs2 |2|xr1 − xr2 |2. The constellation reassignment scheme can improve the system
PSER performance, and hence the SER performance, without increasing the complexity
of the system.

The most common constellations used in communication systems are BPSK, QPSK,
16-QAM, and 64-QAM. For BPSK, constellation reassignment at the relay nodes is
meaningless since the BPSK constellation has only two points. For QPSK, the perfor-
mance gains of using constellation reassignment are not significant and we do not show
the results for that case. For 16-QAM and 64-QAM constellations, one possible way to
do the constellation reassignment at the relay nodes is to perform an exhaustive search
over all possible relay constellation assignments and select the one that maximizes the
minimum value of the product |xs1− xs2 |2|xr1− xr2 |2 over all possible pairs of transmit-
ted symbols. However, the exhaustive search is extremely complex–for example, for the
single-relay case, the number of possible constellation assignments at the relay node is
16! = 2.0923 × 1013 for the 16-QAM constellation and 64! = 1.2689 × 1089 for the
64-QAM constellation. This renders the exhaustive search impractical for constellation
reassignment at the relay node. Therefore, we resort to the use of heuristic approaches
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Fig. 5.13 Trans-modulation for 16-QAM constellation. (a) Source constellation, (b) Relay constellation.

for constellation reassignment at the relay nodes. For example, for the 16-QAM con-
stellations in Figure 5.13, if we look at the source constellation as a 4 × 4 matrix, we
first rearrange the rows and then the columns of that matrix to ensure that any two adja-
cent rows (columns) in the source constellation matrix are non-adjacent in the resulting
matrix, which will be used as the relay constellation. This approach ensures that adja-
cent source constellation points are non-adjacent in the relay constellation assignment
and, hence, improves the system SER performance.

Example 5.4 We present some simulation examples to show the performance gains
using constellation reassignment. Figures 5.13 and 5.14 show the constellations used at
the source and relay nodes for 16-QAM and 64-QAM constellations, respectively. The
constellation assignment for the 64-QAM constellation is shown only along one (real)
axis and the same reassignment is done along the other (complex) axis. Figure 5.15
shows the SER versus SNR, defined as SN R = (Ps + Pr)/N0, for the 16-QAM and
64-QAM single-relay DAF system, where we assume equal power allocation between
the source node and the relay node. The channel variance between the source and the
destination is taken to be 1 in all cases. We consider two cases: relay close to source
(δ2

s,r = 10, δ2
r,d = 1) and relay close to destination (δ2

s,r = 1, δ2
r,d = 10). From Fig-

ure 5.15, it is clear that for the 16-QAM constellation a gain of about 2 dB is achieved
for the case where the relay is close to the source. For the 64-QAM constellation, we
observe a gain of about 3 dB for the case where the relay is close to the source. For the
case where the relay is close to the source, the relay will decode correctly with a high
probability. Hence, the use of constellation reassignment at the relay node can greatly
improve the system performance in this case compared to the repetition-based approach.

For the case where the relay is close to the destination, we observe that, for both
16-QAM and 64-QAM constellations, there is no significant performance gain using
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Fig. 5.14 Trans-modulation for 64-QAM constellation. (a) Source constellation (real axis), (b) Relay
constellation (real axis).
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Fig. 5.15 SER for a single-relay DAF system using 16-QAM and 64-QAM constellations.

the constellation reassignment scheme as compared to the repetition-based scheme. In
this case, and under relay transmission, the distance between two possible transmitted
symbols will be dominated by the distance resulting from the relay constellation. Trans-
mitted symbols are most likely to be mistaken with their adjacent symbols in the relay
node constellation. �

5.6 Chapter summary and bibliographical notes

In this chapter, the SER performance analysis for the uncoded cooperation systems
with either the DF or AF cooperation protocol was presented. For DF cooperation sys-
tems, a closed-form SER formulation explicitly for systems with PSK and QAM signals
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was developed. An SER upper bound as well as an approximation were also estab-
lished to reveal the asymptotic performance of DF cooperation systems, in which the
SER approximation is asymptotically tight at high SNR. Based on the asymptotically
tight SER approximation, an optimum power allocation for DF cooperation systems was
determined. For AF cooperation systems, in order to obtain a closed-form SER formu-
lation, a simple closed-form MGF expression for the harmonic mean of two exponential
random variables was obtained at first. By taking advantage of the simple MGF expres-
sion, an asymptotic tight SER approximation for AF cooperation systems with PSK
and QAM signals was established. Also, based on the tight SER approximation, an
optimum power allocation for AF cooperation systems was determined. Moreover, the
performances of cooperation systems using the DF and AF protocols were compared.
Finally, a method of re-mapping signal constellation points at the relay to improve the
SER performance of the DF protocol was discussed.

Based on the theoretical and simulation results, several observations can be made.
First, the equal power strategy [109] is good, but in general not optimum, in the coop-
eration systems using either the DF or AF protocol, and the optimum power allocation
depends on the channel link quality. Second, in the case where all channel links are
available in DF or AF cooperation systems, the optimum power allocation does not
depend on the direct link between source and destination, but depends only on the chan-
nel links between source and relay and between relay and destination. Specifically, if
the link quality between source and relay is much less than that between relay and des-
tination, i.e., δ2

s,r << δ
2
r,d, then we should put the total power at the source and do not

use the relay. On the other hand, if the link quality between source and relay is much
larger than that between relay and destination, i.e., δ2

s,r >> δ2
r,d, then the equal power

strategy at the source and the relay tends to be optimum. Third, the performance of the
cooperation systems using the DF protocol is better than those using the AF protocol.
However, the performance gain varies with different modulation types. The larger the
signal constellation size, the lower the performance gain. In the case of BPSK modula-
tion, the performance gain cannot be larger than 2.4 dB; and for QPSK modulation, it
cannot be larger than 1.2 dB. Therefore, for high data-rate cooperative communications
(with large signal constellation size), we may use the AF cooperation protocol to reduce
system complexity while maintaining a comparable performance.

The basic idea of cooperative communications can be traced back to the 1970s [224,
225], in which a basic three-terminal communication model was first introduced and
studied by van der Meulen in the context of mutual information. A more thorough
capacity analysis of the relay channel was provided later in [25], and there have been
more recent works that further address the information-theoretic aspect of the relay
channel, for example [99] on achievable capacity and coding strategies for wireless
relay channels, [151] on the capacity region of a degraded Gaussian relay channel with
multiple relay stages, [33] on the capacity of relay channels with orthogonal channels,
and so on.

Recently, many efforts have been focused on the design of cooperative diversity pro-
tocols in order to combat the effects of severe fading in wireless channels. Specifically,
in [108, 109], various cooperation protocols were proposed for wireless networks and
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extensive outage probability performance analysis has been presented for such coopera-
tion systems. The concept of user cooperation diversity was also proposed in [179, 180],
where a specific two-user cooperation scheme was investigated for CDMA systems and
a substantial performance gain was demonstrated over the non-cooperative approach.
In [92], a coded two-user cooperation scheme was proposed by taking advantage of the
existing channel codes, in which the coded information of each user is divided into two
parts: one part is transmitted by the user itself and the other sent by its cooperator.

Note that in order to analyze the SER performance of AF cooperation systems, we
have to investigate the statistics of the harmonic mean of two random variables, which
are related to the instantaneous SNR at the destination [58]. A moment-generating
function of the harmonic mean of two independent exponential random variables was
derived in [58] by applying the Laplace transform and the hypergeometric functions
[50]. However, the result involves an integration of the hypergeometric functions and
it is hard to use for analyzing AF cooperation systems. The simple closed-form MGF
expression for the harmonic mean derived in this chapter is useful beyond the SER
analysis. The analysis of AF and DF cooperation systems discussed in this chapter was
published in [207] and [204]. Interested readers may refer to [168] for more details on
trans-modulation.

Exercises

5.1 Prove the claims in (5.27) and (5.28), i.e., show the following results

lim
x→∞ x2 I1(x) = A2

b2δ2
s,dδ

2
s,r

,

lim
x, y→∞ xy I2(x, y) = B

b2δ2
s,dδ

2
r,d

,

where I1(x) and I2(x, y) are defined in (5.25) and (5.26), respectively, and the
constants b, A, and B are specified in (5.29)–(5.32) for M-PSK and M-QAM
modulation, respectively. Moreover, based on the above results, prove the claim
in Theorem 5.2.2.

5.2 Let X be a random variable with pdf pX (x) for all x ≥ 0 and pX (x) = 0 for
x < 0. Then, the pdf of Y = 1/X is

pY (y) = 1

y2
pX

(
1

y

)
·U (y).

5.3 Let X1 and X2 be two independent random variables with pdf pX1(x) and pX2(x)
defined for all x . Then, the pdf of the sum Y = X1 + X2 is

pY (y) =
∫ ∞

−∞
pX1(y − x) pX2(x)dx,

which is the convolution of pX1(x) and pX2(x).
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5.4 Prove the result in Theorem 5.3.1. Suppose that X1 and X2 are two indepen-
dent random variables with pdf pX1(x) and pX2(x) defined for all x ≥ 0, and
pX1(x) = 0 and pX2(x) = 0 for x < 0. Then the pdf of Z = X1 X2

X1+X2
, the

harmonic mean of X1 and X2, is

pZ (z) = z
∫ 1

0

1

t2(1− t)2
pX1(

z

1− t
) pX2(

z

t
)dt ·U (z),

in which U (z) = 1 for z ≥ 0 and U (z) = 0 for z < 0.
5.5 By applying the closed-form MGF expression in Theorem 5.3.2, show the SER

formulations in (5.71) and (5.72) for AF systems with M-PSK andM-QAM
modulations, respectively.

5.6 Prove the claims in (5.79) and (5.80), i.e., show the following results

lim
x, y→∞ x2 J1(x, y) = B

b2δ2
s,dδ

2
s,r

,

lim
x, y→∞ xy J2(x, y) = B

b2δ2
s,dδ

2
r,d

,

where J1(x, y) and J2(x, y) are defined in (5.77) and (5.78), respectively, and
the constants b and B are specified in (5.81) and (5.82) for M-PSK and M-QAM
modulation, respectively.

5.7 Prove the results in Theorem 5.3.4, i.e., show that for sufficiently high SNR, the
optimum power allocation for AF cooperation systems with either M-PSK or
M-QAM modulation is

P1 =
δs,r +

√
δ2

s,r + 8δ2
r,d

3δs,r +
√
δ2

s,r + 8δ2
r,d

P,

P2 = 2δs,r

3δs,r +
√
δ2

s,r + 8δ2
r,d

P.

5.8 (Simulation project) Consider a simplified network with a source node, a
relay node and a destination node. The source–destination channel hs,d, the
source–relay channel hs,r, and the relay–destination channel hr,d are modeled
as independent zero-mean, complex Gaussian random variables with variances
δ2

s,d, δ2
s,r and δ2

r,d, respectively. Assume that δ2
s,r = 1 and δ2

r,d = 1. We compare
performances of the AF and DF cooperation protocols with QPSK modulation.
(a) Determine the optimum power allocation at the source and the relay for the

DF cooperation protocol.
(b) Determine the optimum power allocation at the source and the relay for the

AF cooperation protocol.
(c) Simulate both the DF and AF protocols with corresponding optimum power

allocations, and compare their performances.
(d) Repeat (a), (b), and (c) for the case of δ2

s,r = 1 and δ2
r,d = 10.



6 Multi-node cooperative
communications

In the previous chapter, the symbol error rate performance of single-relay cooperative
communications was analyzed for both the decode-and-forward and amplify-and-
forward relaying strategies. This chapter builds upon the results in the previous chapter
and generalizes the symbol error rate performance analysis to the multi-relay scenario.

Decode-and-forward relaying will be considered first, followed by the amplify-and-
forward case. In both scenarios, exact and approximate expressions for the symbol error
rate will be derived. The symbol error rate expressions are then used to characterize an
optimal power allocation strategy among the relays and the source node.

6.1 Multi-node decode-and-forward protocol

We begin by presenting a class of cooperative decode-and-forward protocols for arbi-
trary N -relay wireless networks, in which each relay can combine the signal received
from the source along with one or more of the signals transmitted by previous relays.
Then, we focus on the performance of a general cooperation scenario and present an
exact symbol error rate (SER) expressions for both M-ary phase shift keying (PSK) and
quadrature amplitude modulation (QAM) signalling. We also consider an approximate
expression for the SER of a general cooperation scenario that is shown to be tight at
high enough SNR. Finally, we study optimal power allocation for the class of cooper-
ative diversity schemes, where the optimality is determined in terms of minimizing the
SER of the system.

6.1.1 System model and protocol description

We consider an arbitrary N -relay wireless network, where information is to be transmit-
ted from a source to a destination. Due to the broadcast nature of the wireless channel,
some relays can overhear the transmitted information and thus can cooperate with the
source to send its data. The wireless link between any two nodes in the network is
modeled as a Rayleigh fading narrowband channel with additive white Gaussian noise
(AWGN). The channel fades for different links are assumed to be statistically indepen-
dent. This is a reasonable assumption as the relays are usually spatially well separated.
The additive noise at all receiving terminals is modeled as zero-mean, complex Gaus-
sian random variables with variance N0. For medium access, the relays are assumed to
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transmit over orthogonal channels, thus no inter-relay interference is considered in the
signal model.

The cooperation strategy we are considering employs a selective decode-and-forward
protocol at the relaying nodes. Each relay can measure the received SNR and for-
wards the received signal if the SNR is higher than some threshold. For mathematical
tractability of symbol error rate calculations we assume the relays can judge whether the
received symbols are decoded correctly or not and only forwards the signal if decoded
correctly otherwise remains idle.This assumption will be shown via simulations to be
very close to the performance of the practical scenario of comparing the received SNR
to a threshold, specially when the relays operate in a high SNR regime, as for example
when the relays are selected close to the source node. The rationale behind this is that
when the relays are closer to the source node, or more generally operate in a high SNR
regime, the channel fading becomes the dominant source of error, and hence measuring
the received SNR gives a very good judgement on whether the received symbol can
be decoded correctly or not with high probability. Various scenarios for the coopera-
tion among the relays can be implemented. A general cooperation scenario, denoted as
C(m) (1 ≤ m ≤ N − 1), can be implemented in which each relay combines the signals
received from the m previous relays along with that received from the source. The sim-
plest scenario C(1) among the class of cooperative protocols is depicted in Figure 6.1, in
which each relay combines the signal received from the previous relay and the source.
The most complicated scenario C(N − 1) is depicted in Figure 6.2, in which each relay
combines the signals received from all of the previous relays along with that from the
source. This is the most sophisticated scenario and should provide the best performance
in the class of cooperative protocols {C(m)}N−1

m=1 , as in this case each relay utilizes the
information from all previous phases of the protocol. In all of the considered coopera-
tion scenarios, the destination coherently combines the signals received from the source
and all of the relays. In the sequel, we focus on presenting the system model for a
general cooperative scheme C(m) for any 1 ≤ m ≤ N − 1.

s

r1

r2

rk

Virtual (N + 1)×1 MIMO system

rk +1

rN

d

Fig. 6.1 Illustrating cooperation under C(1): the (k + 1)-th relay combines the signals received from the
source and the k-th relay.
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Virtual (N + 1)×1 MIMO system
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d

Fig. 6.2 Illustrating cooperation under C(N − 1): the (k + 1)-th relay combines the signals received from
the source and all of the previous relays.

For a general scheme C(m), 1 ≤ m ≤ N−1, each relay decodes the information after
combining the signals received from the source and the previous m relays. The cooper-
ation protocol has (N + 1) phases. In phase 1, the source transmits the information, and
the received signal at the destination and the i-th relay can be modeled, respectively, as

ys,d =
√

P0hs,dx + ns,d,

ys,ri =
√

P0hs,ri x + ns,ri , 1 ≤ i ≤ N , (6.1)

where P0 is the power transmitted at the source, x is the transmitted symbol with unit
power, hs,d ∼ C N (0, σ 2

s,d) and hs,ri ∼ C N (0, σ 2
s,ri ) are the channel fading coefficients

between the source and the destination, and i-th relay, respectively, and C N (α, σ 2)

denotes a circularly symmetric complex Gaussian random variable with mean α and
variance σ 2. The terms ns,d and ns,ri denote the AWGN. In phase 2, if the first relay
correctly decodes, it forwards the decoded symbol with power P1 to the destination,
otherwise it remains idle.

In general, during phase l, 2 ≤ l ≤ N , the l-th relay combines the received signals
from the source and the previous min{m, l − 1} relays using a maximal-ratio-combiner
(MRC) as follows1

yrl =
√

P0h∗s,rl ys,rl +
l−1∑

i=max(1,l−m)

√
P̂i h

∗
ri ,rl yri ,rl , (6.2)

where hri ,rl ∼ C N (0, σ 2
ri ,rl ) is the channel fading coefficient between the i-th and the

l-th relays. In (6.2), yri ,rl denotes the signal received at the l-th relay from the i-th relay,
and can be modeled as

yri ,rl =
√

P̂i hri ,rl x + nri ,rl , (6.3)

1 The max(1, l − m) function is used to make sure that if l < m then the combining starts at the first relay.
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where P̂i is the power transmitted at relay i in phase (i + 1), and P̂i = Pi if relay
i correctly decodes the transmitted symbol, otherwise P̂i = 0. The l-th relay uses
yrl in (6.2) as the detection statistics. If relay l decodes correctly it transmits with
power P̂l = Pl in Phase (l + 1), otherwise it remains idle. Finally, in phase (N + 1),
the destination coherently combines all of the received signals using an MRC as
follows

yd =
√

P0h∗s,dys,d +
N∑

i=1

√
P̂i h

∗
ri ,dyri ,d. (6.4)

For fair comparison purpose, the total transmitted power is fixed as P0 + ∑N
i=1

Pi = P .

6.1.2 Exact SER performance analysis

In this subsection, we present the SER performance analysis for a general cooperative
scheme C(m) for any 1 ≤ m ≤ N − 1. Exact SER expressions of this general scheme
are presented for systems with both M-PSK and M-QAM modulation. Some simulation
examples are also discussed at the end of this subsection.

First, we introduce some terminologies that will be used throughout the analysis. For
a given transmission, each relay can be in one of two states: either it decoded correctly
or not. Let us define a 1× n, 1 ≤ n ≤ N , vector Sn to represent the states of the first n
relays for a given transmission. The k-th entry of the vector Sn denotes the state of the
k-th relay as follows:

Sn[k] =
{

1 if relay k correctly decodes,

0 otherwise,
1 ≤ k ≤ n. (6.5)

Since the decimal value of the binary vector Sn can take on values from 0 to 2n − 1, for
convenience we denote the state of the network by an integer decimal number. Let

Bx,n =
(
Bx,n[1], Bx,n[2], . . . , Bx,n[n]

)
(6.6)

be the 1× n binary representation of a decimal number x , with Bx,n[1] being the most
significant bit. So, SN = Bx,N indicates that the k-th relay, 1 ≤ k ≤ N , is in state
SN [k] = Bx,N [k].

We consider a general cooperation scheme C(m), 1 ≤ m ≤ N − 1, in which the k-th
(1 ≤ k ≤ N ) relay coherently combines the signals received from the source along with
the signals received from the previous min{m, k − 1} relays. The state of each relay in
this scheme depends on the states of the previous m relays, i.e., whether these relays
decoded correctly or not. This is due to the fact that the number of signals received at
each relay depends on the number of relays that decoded correctly from the previous m
relays. Hence, the joint probability of the states is given by

P(SN ) = P(SN [1])P(SN [2] | SN [1]) · · · P(SN [N ] | SN [N − 1], . . . , SN [N − m]).
(6.7)
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Conditioning on the network state, which can take 2N values, the probability of error
at the destination given the channel state information (CSI) can be calculated using the
law of total probability as follows:

Pe|CSI =
2N−1∑
i=0

Pr(e | SN = Bi,N )Pr(SN = Bi,N ), (6.8)

where e denotes the event that the destination decoded in error. The summation in the
above equation is over all possible states of the network.

Now, let us compute the terms in (6.8). The destination collects the copies of the
signal transmitted in the previous phases using an MRC (6.4). The resulting SNR at
thedestination can be computed as

SNRd =
P0 | hs,d |2 +∑N

j=1 Pj Bi,N [ j] | hr j ,d |2
No

, (6.9)

where Bi,N [ j] takes value 1 or 0 and determines whether the j-th relay has decoded
correctly or not. The k-th relay coherently combines the signals received from the source
and the previous m relays. The resulting SNR can be calculated as

SNRm
rk
= P0 | hs,rk |2 +

∑k−1
j=max(1,k−m) Pj Bi,N [ j] | hr j ,rk |2

No
. (6.10)

If M-PSK modulation is used in the system, with instantaneous SNR γ , the SER with
the channel state information is given by

PPSK
CSI = �PSK(γ ) � 1

π

∫ (M−1)π/M

0
exp

(
− bPSKγ

sin2(θ)

)
dθ, (6.11)

where bPSK = sin2(π/M). If M-QAM (M = 2k with k even) modulation is used in the
system, the corresponding conditional SER can be expressed as

PQAM
CSI = �QAM(γ ) � 4C Q(

√
bQAMγ )− 4C2 Q2(

√
bQAMγ ), (6.12)

in which C = 1 − 1/
√

M , bQAM = 3/(M − 1), and Q(x) is the complementary
distribution function (CDF) of the Gaussian distribution.

Let us focus on computing the SER in the case of M-PSK modulation, and the same
procedure is applicable for the case of M-QAM modulation. From (6.9), and for a given
network state SN = Bi,N , the conditional SER at the destination can be computed as

Pr(e|SN = Bi,N ) = �PSK (SNRd) . (6.13)

Denote the conditional probability that the k-th relay is in state Bi,N [k] given the states of
the previous m relays by Pm

k,i . From (6.10), this probability can be computed as follows:

Pm
k,i � Pr(SN [k] = Bi,N [k] | SN [k − 1] = Bi,N [k − 1], . . . , SN [k − m]
= Bi,N [k − m])

=
{
�PSK(SNRm

rk ), if Bi,N [k] = 0,

1−�PSK(SNRm
rk ), if Bi,N [k] = 1.

(6.14)
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To compute the average SER, we need to average the probability in (6.8) over all channel
realizations, i.e., PSER(m) = ECSI

[
Pe|CSI

]
. Using (6.7), (6.13), and (6.14), PSER(m)

can be expanded as follows

PSER(m) =
2N−1∑
i=0

ECSI

[
�PSK (SNRd)

N∏
k=1

Pm
k,i

]
. (6.15)

Since the channel fades between different pairs of nodes in the network are statistically
independent by the virtue that different nodes are not co-located, the quantities inside
the expectation operator in the above equation are functions of independent random
variables, and thus can be further decomposed as

PSER(m) =
2N−1∑
i=0

{
ECSI [�PSK (SNRd)]

N∏
k=1

ECSI
[
Pm

k,i

]}
. (6.16)

The above analysis is applicable to the M-QAM case by replacing the function �PSK(·)
by �QAM(·).

Since the channels between the nodes are modeled as Rayleigh fading channels, the
absolute norm square of any channel realization hi, j between any two nodes i and j in
the network has an exponential distribution with mean σ 2

i, j . Hence, ECSI[�q(γ )] can be
expressed as

ECSI[�q(γ )] =
∫
γ

�q(γ ) f (γ )dγ (6.17)

where f (γ ) is the probability density function of the random variable γ , and q = 1 (q =
2) correspond to M-PSK (M-QAM), respectively. If γ is an exponentially distributed
random variable with mean γ , then it can be shown [187] that ECSI[�q(γ )] is given by

ECSI
[
�q (γ )

] = Fq

(
1+ bqγ

sin2(θ)

)
, (6.18)

where Fq(·) and the constant bq are defined as

F1(x(θ)) = 1

π

∫ (M−1)π/M

0

1

x(θ)
dθ, b1 = bpsk

F2(x(θ)) = 4C

π

∫ π/2

0

1

x(θ)
dθ − 4C2

π

∫ π/4

0

1

x(θ)
dθ, b2 = bQAM

2
. (6.19)

In order to get the above expressions, we use two special properties of the Q(·) function,
specifically,

Q(x) = 1

π

∫ π/2

0
exp

(
− x2

2 sin2(θ)

)
dθ (6.20)

Q2(x) = 1

π

∫ π/4

0
exp

(
− x2

2 sin2(θ)

)
dθ (6.21)

for x ≥ 0.
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Averaging over all the Rayleigh fading channel realizations, the SER at the destina-
tion for a given network state Bi,N is given by

ECSI(�q(SNRd)) = Fq

⎡⎣(1+ bq P0σ
2
s,d

No sin2(θ)

)
N∏

j=1

(
1+

bq Bi,N [ j]Pjσ
2
r j ,d

No sin2(θ)

)⎤⎦ . (6.22)

Similarly, the probability that the k-th relay is in state Bi,N [k] given the states of the
previous m relays is given by

ECSI
[
Pm

k,i

] = Gm
k (Bi,N [k]), (6.23)

where Gm
k (·) is defined as

Gm
k (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Fq

[(
1+ bq P0σ

2
s,rk

No sin2(θ)

)∏k−1
j=max(1,k−m)

(
1+ bq Bi,N [ j]Pjσ

2
r j ,rk

No sin2(θ)

)]
,

if x = 0,

1− Fq

[(
1+ bq P0σ

2
s,rk

No sin2(θ)

)∏k−1
j=max(1,k−m)

(
1+ bq Bi,N [ j]Pjσ

2
r j ,rk

No sin2(θ)

)]
,

if x = 1.
(6.24)

in which Fq(·) and the constant bq are specified in (6.19). As a summary, the SER in
(6.16) of the cooperative multi-node system employing scenario C(m) with M-PSK or
M-QAM modulation can be determined from (6.22), (6.23), and (6.24) in the following
theorem.

T H E O R E M 6.1.1 The SER of an N-relay decode-and-forward cooperative diversity
network utilizing protocol C(m), 1 ≤ m ≤ N − 1, and M-PSK or M-QAM modulation
is given by

PSER(m) =
2N−1∑
i=0

Fq

⎡⎣(1+ bq P0σ
2
s,d

No sin2(θ)

)
N∏

j=1

(
1+

bq Bi,N [ j]Pjσ
2
r j ,d

N0 sin2(θ)

)⎤⎦
N∏

k=1

Gm
k (Bi,N [k]), (6.25)

where the functions Fq(·) and Gm
k (·) are defined in (6.19) and (6.24), respectively.

Example 6.1 We illustrate the validity of the theoretical results by some simulation
examples. Let us focus on the cooperative protocol C(1). The number of relays is taken
to be N = 1, 2, 3, in addition to the source and the destination nodes. We considered
two simulation setups:

• In the first setup we simulate the SER performance under the assumption that the relay
correctly judges whether the received signal is decoded correctly or not, i.e., no error
propagation, which is the model analyzed in the chapter.
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• In the second setup, we consider a more practical scenario in which each relay com-
pares the instantaneous received SNR to a threshold and hence decides whether to
forward the received signal or not, and thus error propagation is allowed (the threshold
is taken equal to 3 dB here and is selected by experiment).

The relays are considered closer to the source than the destination. The channel variance
depends on the distance l and propagation path-loss α as follows σ 2 ∝ l−α , and α = 3
in our simulations. The channel gains are as follows: σ 2

s,ri = 8σ 2
s,d, and σ 2

ri ,d
= σ 2

s,d.
The noise variance is taken to be N0 = 1. The total transmitted power in each case is
considered fixed to P .

Figure 6.3 depicts the SER versus P/N0 performance of cooperation scenario C(1)
with QPSK. As shown in the figure, the performance curves of the two previously
described simulation setups are very close for different numbers of relays. This vali-
dates that the model for selective relaying assumed for mathematical tractability has a
performance close to that of practical selective relaying when comparing the SNR to a
threshold. The intuition behind this is, as illustrated before, that when the relays in gen-
eral operate in a high SNR regime, in this case the relays are closer to the source node,
the error propagation from the relays becomes negligible, which is due to the fact that
the channel outage event (the SNR is less than the threshold) becomes the dominating
error event.

The performance of direct transmission without any relaying is also shown in
Figure 6.3 as a benchmark for a no-diversity scheme. Moreover, the exact SER expres-
sion from the theorem is depicted as a benchmark. It is clear from the depicted figure
that the analytical SER expression in (6.25) for scenario C(1) exactly matches the simu-
lation results for each case. This confirms the theoretical analysis. The results also reveal
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Fig. 6.3 SER versus SNR for two different scenarios. The first is the simulated SER for the model in
which the relays know whether each symbol is decoded correctly or not. The second is the
simulated SER for a practical scenario in which the relay forwards the decoded symbol based on
comparing the received SNR with a threshold. Also the exact SER expression in (6.25) is plotted
as “+.” The cooperation protocol utilized is C(1) and the modulation scheme is QPSK.
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that the cooperative diversity protocols can achieve full diversity gain in the number of
cooperating terminals, which can be seen from the slopes of the performance curves,
which become steeper with an increasing number of relays. �

6.1.3 SER approximation

In the previous subsection, we provided exact expressions for the SER of a general
cooperative scheme C(m), 1 ≤ m ≤ N − 1, for arbitrary N -relay networks with either
M-PSK or M-QAM modulation. The derived SER expressions, however, involve 2N

terms and integral functions. In this subsection, we provide approximate expressions
for the SER performance of the class of cooperative diversity schemes. The approxi-
mation is derived at high SNR and yields simple expressions that can provide insights
to help understand the factors that affect system performance, which helps in designing
different network functions as power allocation, scheduling, routing, and node selection.

6.1.3.1 SER approximation for general cooperative protocol
One can see that any term in the exact SER formulation (6.25) in Theorem 6.1.1 consists
of the product of two quantities:

• The first is

Fq

⎡⎣(1+ bq P0σ
2
s,d

No sin2(θ)

)
N∏

j=1

(
1+

bq Bi,N [ j]Pjσ
2
r j ,d

No sin2(θ)

)⎤⎦ , (6.26)

which corresponds to the conditional SER at the destination for a given network
state Bi,N .

• The second is the probability of the network being in that state, and is given by∏N
k=1 Gm

k (Bi,N [k]).
At high enough SNR, the probability of error Fq(·) is sufficiently small compared to 1,
thus we can assume that 1 − Fq(·) � 1. Hence, the only terms in the second quantity∏N

k=1 Gm
k (Bi,N [k]) that will count are those corresponding to relays that have decoded

in error. For convenience, we make the following definition: let �i (n,m) denote the
subset of nodes that decode correctly from node max(1, n−m) to node n− 1, when the
network was in state Bi,N . More specifically,

�i (n,m) � {relay j : s.t.Bi,N [ j] = 1,max(1, n − m) ≤ j ≤ n − 1.} (6.27)

Then, the SER formulation (6.25) in Theorem 6.1.1 can be approximated as

PSER(m) �
2N−1∑
i=0

Fq

⎡⎣(1+ bq P0σ
2
s,d

No sin2(θ)

)
N∏

j=1

(
1+

bq Bi,N [ j]Pjσ
2
r j ,d

No sin2(θ)

)⎤⎦
·

∏
k∈�c(N+1,N )

Gm
k (Bi,N [k]), (6.28)

where�c is the complementary set of�, i.e., the set of nodes that decoded erroneously.
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First, we simplify the first term corresponding to the SER at the destination. Using
the definition of Fq in (6.19), and ignoring all the 1’s in Fq(·) in (6.28), the conditional
SER at the destination for a given network state Bi,N can be approximated as

Fq

⎡⎣(1+ bq P0σ
2
s,d

No sin2(θ)

)
N∏

j=1

(
1+

bq Bi,N [ j]Pjσ
2
r j ,d

No sin2(θ)

)⎤⎦
� N 1+|�i (N+1,N )|

o gq(1+ | �i (N + 1, N ) |)
b1+|�i (N+1,N )|

q P0σ
2
s,d

∏
j∈�i (N+1,N ) Pjσ

2
r j ,d

, (6.29)

where | �i (N+1, N ) | denotes the cardinality of the set�i (N+1, N ), i.e., the number
of nodes that decode correctly, which also denotes the number of signal copies trans-
mitted from the N relays to the destination at network state Bi,N . The function gq(·) in
(6.29) is specified as

gq(x) =
⎧⎨⎩

1
π

∫ (M−1)π/M
0 sin2x (θ)dθ, for M-PSK, q = 1

4C
π

[∫ π/2
0 sin2x (θ)dθ − C

∫ π/4
0 sin2x (θ)dθ

]
, for M-QAM, q = 2.

(6.30)
Let us write the transmitter powers allocated at the source and different relays as a

ratio of the total available power P as follows: P0 = a0 P , and Pi = ai P, 1 ≤ i ≤ N ,
in which the power ratios are normalized as a0 +∑N

i=1 ai = 1. One can then rewrite
(6.29) in terms of the power allocation ratios as follows:

Fq

⎡⎣(1+ bq P0σ
2
s,d

No sin2(θ)

)
N∏

j=1

(
1+

bq Bi,N [ j]Pjσ
2
r j ,d

No sin2(θ)

)⎤⎦
� (No/P)1+|�i (N+1,N )| gq(1+ | �i (N + 1, N ) |)

b1+|�i (N+1,N )|
q a0σ

2
s,d

∏
j∈�i (N+1,N ) a jσ

2
r j ,d

. (6.31)

Note that the SNR term (No/P) in (6.31) is of order (1+ | �i (N + 1, N ) |). This is
intuitively meaningful since the destination receives (1+ | �i (N + 1, N ) |) copies of
the signal, in which the term 1 is due to the copy from the source. Thus (6.31) decays
as SNR−(1+|�i (N+1,N )|) at high SNR.

At the k-th relay, 1 ≤ k ≤ N , the conditional SER for a given network state Bi,N can
be similarly approximated as

Fq

⎡⎣(1+ bq P0σ
2
s,rk

No sin2(θ)

)
k−1∏

j=max(1,k−m)

(
1+ bq Bi,N [ j]Pjσ

2
r j ,rk

No sin2(θ)

)⎤⎦
� (No/P)1+|�i (k,m)|gq(1+ | �i (k,m) |)

b1+|�i (k,m)|
q a0σ 2

s,rk

∏
j∈�i (k,m) a jσ 2

r j ,rk

, (6.32)

where | �i (k,m) |) is the number of relays that decodes correctly from the previous
min(k − 1,m) relays.
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The SNR in the above expression is of order 1+ | �i (k,m) |. From (6.32), the
product

∏
k∈�c

i (N+1,N ) Gm
k (Bi,N [k]) in (6.28) is given by

∏
k∈�c

i (N+1,N )

Gm
k (Bi,N [k]) =

∏
k∈�c

i (N+1,N )

(No/P)1+|�i (k,m)|gq(1+ | �i (k,m) |)
b1+|�i (k,m)|

q a0σ 2
s,rk

∏
j∈�i (k,m) a jσ 2

r j ,rk

,

(6.33)

in which the SNR is of order
∑

k∈�c
i (N+1,N )(1+ | �i (k,m) |) =| �c

i (N + 1, N ) | +∑
k∈�c

i (N+1,N ) | �i (k,m) |. Substituting (6.31) and (6.33) into (6.28), we get

PSER(m) �∑2N−1
i=0

(N0/P)di gq (1+|�i (N+1,N )|)
b

di
q a

1+|�c
i (N+1,N )|

0 σ 2
s,d

∏
j∈�i (N+1,N ) a jσ

2
r j ,d

·
∏

k∈�c
i (N+1,N ) gq (1+|�i (k,m)|)∏

k∈�c
i (N+1,N ) σ

2
s,rk

∏
l∈�i (k,m)

alσ
2
rl ,rk
, (6.34)

where

di = 1+ | �i (N + 1, N ) | + | �c
i (N + 1, N ) | +

∑
k∈�c

i (N+1,N )

| �i (k,m) | . (6.35)

From (6.34), we can see that the SNR is of order di . Since | �i (N + 1, N ) | +
| �c

i (N + 1, N ) |= N , the order di can be lower bounded as follows:

di = 1+ N +
∑

k∈�c
i (N+1,N )

| �i (k,m) |≥ N + 1, (6.36)

in which the equality holds if and only if∑
k∈�c

i (N+1,N )

| �i (k,m) |= 0. (6.37)

Thus the smallest order of the SNR is N + 1.
The equality in (6.36) holds if and only if | �i (k,m) |= 0, for any k ∈ �c

i (N +
1, N ), and 0 ≤ i ≤ 2N −1. Essentially, this means that the equality in (6.36) is satisfied
if and only if for each relay k that decodes erroneously, the m preceding relays must
also have decoded erroneously. One can think of this condition as a chain rule, and this
leads to the conclusion that the equality holds if and only if for each relay k that decodes
in error all the previous relays must have decoded in error. As a result, the only network
states that will contribute in the SER expression with terms of order N + 1 in the SNR
are those of the form

SN = B2n−1,N , 0 ≤ n ≤ N . (6.38)

For example, a network state of the form SN = [0, . . . , 0, 1, . . . , 1] will contribute to
a term in the SER with SNR raised to the order N + 1, and a network state SN =
[0, . . . , 0, 1, 1, 0, 1, . . . , 1] will contribute to a term in the SER with SNR raised to an
exponent larger than (N + 1) depending on m. Therefore, only N + 1 states of the
network have SER terms that decay as 1/SNRN+1 and the rest of the network states
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decay with faster rates, hence these N + 1 terms will dominant the SER expression at
high enough SNR.

In order to write the approximate expression for the SER corresponding to these
N + 1 terms, we need to note the following points that can be deduced from the above
analysis. As described above, in order for the equality in (6.36) to hold, the following
set of conditions must be satisfied:

• First, since for any relay that decodes erroneously all the previous m relays must have
decoded in error, we have

�i (k,m) = �, (6.39)

for all k ∈ �c
i (N + 1, N ), where � is the empty set.

• Second, for these N + 1 states that satisfy the equality in (6.36) the set �c
i (N + 1, N )

takes one of the following forms:

�c
i (N + 1, N ) ∈ {�, {1}, {1, 2}, . . . , {1, 2, . . . , N }} . (6.40)

For example, �c
i (N + 1, N ) = {1, 2, . . . , k} denotes the state in which only the first k

relays decoded erroneously. Accordingly, its cardinality, denoted by | �c
i (N + 1, N ) |,

takes one of the following values:

| �c
i (N + 1, N ) |∈ {0, 1, 2, . . . , N } . (6.41)

Thus, only the N + 1 states determined from the above conditions will contribute to the
SER expression at high SNR because they decay as 1/SNRN+1, which is the slowest
decaying rate as seen from (6.36). From (6.34), (6.39), (6.40), and (6.41), the conditional
SER for any of these states, e.g., �c

i (N + 1, N ) = {1, 2, . . . , k}, can be determined as
follows:

SERk(m) =
(No/P)N+1gq(N − k + 1)gk

q(1)

bN+1
q σ 2

s,da1+k
o
∏

j∈�i (N+1,N ) a jσ
2
r j ,d

∏k
l=1 σ

2
s,rl

. (6.42)

Summing the above expression over the N+1 states in (6.40), we can further determine
the approximate expression for the SER in the following theorem.

T H E O R E M 6.1.2 At high enough SNR, the SER of an N relay decode-and-forward
cooperative diversity network employing cooperation scheme C(m) and utilizing
M-PSK or M-QAM modulation can be approximated by

PSER(m) � (No/P)N+1

bN+1
q σ 2

s,d

N+1∑
j=1

gq(N − j + 2)g j−1
q (1)

a j
0

∏N
i= j aiσ

2
ri ,d

∏ j−1
l=1 σ

2
s,rl

. (6.43)

A very important point to be noticed from the above theorem is that the approximated
SER expression in (6.43) does not depend on m, the class parameter. Hence, the whole
class of cooperative diversity protocols {C(m)}N−1

m=1 shares the same asymptotic perfor-
mance at high enough SNR. The results obtained illustrate that utilizing the simplest
scheme, namely, scenario C(1), results in the same asymptotic SER performance as the
most sophisticated scheme, namely, C(N − 1). This motivates us to utilize scenario
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C(1) as a cooperative protocol for multinode wireless networks employing decode-and-
forward relaying. The simplicity behind scenario C(1) is due to the fact that it does not
require each relay to estimate the CSI for all the previous relays as in scenario C(N−1).
It only requires each relay to know the CSI to the previous relay and the destination, thus
simplifying the channel estimation computations.

In the following, we determine roughly the savings in the computations needed for
channel estimation when using scenario C(1) as opposed to scenario C(N − 1) by com-
puting the number of channels needed to be estimated in each case. The number of
channels needed to be estimated in scenario C(1) is given by

nh,1 = 3N , (6.44)

where N is the number of relays forwarding for the source. This value accounts for the
N + 1 channels estimated at the destination and 2N − 1 channels estimated by the N
relays; the first relay estimates only one channel. In scenario C(N − 1), the k-th relay
estimates k channels, and thus the amount of computations for this case is given by

nh,N−1 = 1

2

[
N 2 + 3N + 1

]
. (6.45)

From (6.44) and (6.45), the savings in the computations needed for channel estimation
when using scenario C(1) as opposed to scenario C(N − 1) is given by

nh,1

nh,N−1
= 6N

N 2 + 3N + 1
. (6.46)

The above ratio approaches 0 in the limit as N tends to ∞. Hence, utilizing sce-
nario C(1) will reduce the protocol complexity while having the same asymptotic
performance as the best possible scenario.

6.1.3.2 Diversity order and cooperation gain
The philosophy behind employing cooperative diversity techniques in wireless net-
works is to form virtual MIMO systems from separated single-antenna terminals. The
aim behind this is to emulate the performance gains that can be achieved in point-to-
point communications when employing MIMO systems. Two well known factors that
describe the performance of the system are the diversity order and coding gain of the
transmit diversity scheme. To define these terms, the SER can be written in the following
form:

PSER ∼ (� · SNR)−d . (6.47)

The constant � which multiplies the SNR denotes the coding gain of the scheme, and
the exponent d denotes the diversity order of the system. In the cooperative diversity
schemes considered in this chapter, the relays simply repeat the decoded information,
and thus we do not really have the notion of coding; although it can still be seen as a
repetition coding scheme. Hence, we will denote the constant� that multiplies the SNR
by the cooperation gain. From (6.43), the following observations can be deduced from
the previous relation
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• It is clear that the diversity order of the system is given by d = N + 1, which indi-
cates that the cooperative diversity schemes described in Section 6.1.1 achieves full
diversity order in the number of cooperating terminals; the source and the N relays.

• The cooperation gain of the system is given by

� =
⎡⎣ 1

bN+1
q σ 2

s,d

N+1∑
j=1

gq(N − j + 2)g j−1
q (1)

a j
0

∏N
i= j aiσ

2
ri ,d

∏ j−1
l=1 σ

2
s,rl

⎤⎦−1/(N+1)

. (6.48)

Example 6.2 In this example, the performance of the presented protocols is compared
against the approximate SER expressions.Without loss of generality, the channel gains
are assumed to be unity and the noise variance is taken to be N0 = 1. Figure 6.4 consid-
ers scenario C(1) and depicts the SER performance versus P/N0 for QPSK signalling.
The transmitting power P is fixed for different number of cooperating relays in the net-
work. The results reveal that the derived approximations for the SER are tight at high
enough SNR. Regarding scenario C(N − 1), we considered the N = 3 relays case.
Figure 6.5 depicts the SER performance for QPSK and 16-QAM modulation. The
results for scenario C(1) under the same simulation setup are included for comparison.
It can be seen from the results that there is a very small gap between the SER perfor-
mance of scenarios C(1) and C(N − 1), and that they almost merge together at high
enough SNR. This confirms our observations that utilizing scenario C(1) can deliver the
required SER performance for a fairly wide range of SNR. Hence, saving a lot in terms
of channel estimation, thus computational complexity, requirements to implement the
protocol. �

4 6 8 10 12 14 16 18 20 22 24

Direct
1 relay − simulation
1 relay − approx SER
2 relays − simulation
2 relays − approx SER
3 relays − simulation
3 relays − approx SER
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Fig. 6.4 Comparison between the approx. SER in (6.43), and the simulated SER for different numbers of
relays. The cooperation protocol utilized is C(1) and the modulation scheme is QPSK.
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C(N−1) QPSK
C(1) 16QAM
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Fig. 6.5 Comparison between the performance of schemes C(1) and C(N − 1) for both QPSK and
16-QAM modulation, N = 3.

6.1.3.3 Bandwidth efficiency versus diversity gain
Up to this point, we did not take into account the bandwidth (BW) efficiency as another
important factor to determine the performance besides the SER. Increasing the number
of relays reduces the BW efficiency of the system, as the source uses only a fraction of
the total available degrees of freedom to transmit the information. There is a tradeoff
between the diversity gain and the BW efficiency of the system, as higher diversity gain
is usually translated into utilizing the available degrees of freedom to transmit more
copies of the same message, which reduces the BW efficiency of the system. In order
to have a fair comparison, we will fix the BW efficiency throughout the simulations.
In order to achieve this, larger signal constellations are utilized with larger number of
cooperating relays. For the direct transmission case, BPSK is used as a benchmark to
achieve a bandwidth efficiency of 1 bit/channel use. QPSK is used with the N = 1 relay
case, 8PSK with N = 2 relays and 16-QAM with N = 3 relays. In all of the aforemen-
tioned cases, the achieved BW efficiency is 1 bit/channel use. Figure 6.6 depicts the
BER versus SNR per bit in dB for N = 1, 2, 3 relays along with the direct transmission
case. The results reveal that, at low SNR, a lower number of nodes delivers a better
performance due to the BW efficiency loss incurred through utilizing a larger number
of cooperating nodes.

Another important point of concern is how the performance of cooperative diversity
compares to that of time diversity without relaying under the same bandwidth efficiency.
For example, if the target diversity gain is N + 1 then cooperation requires the employ-
ment of N relays, while in time diversity the source simply repeats the information
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Fig. 6.6 BER performance comparison between different numbers of cooperating relays taking into
account the BW efficiency, C(1).

for N + 1 successive time slots. Two factors can lead to cooperation yielding better
performance than time diversity:

• The first is that the cooperation gain of cooperative diversity (6.48) can be consid-
erably higher than that of time diversity if the propagation path loss is taken into
account. This is because the relay nodes are usually closer to the destination node
than the source itself, which results in a lower propagation path loss in the relay–
destination links compared to the source–destination link. This is a natural gain
offered by cooperation because of the distributed natural of the formed virtual array,
and this is the same reason multihop communications offer more energy efficient
transmission in general.

• The second factor that can lead to cooperation being a more attractive scheme than
time diversity is that the spatial links between different nodes in the network fade
independently, again because of the distributed nature of the formed virtual array,
which leads to full diversity gain. In time diversity, however, full diversity gain is
not guaranteed as there might be time correlation between successive time slots. This
correlation is well modeled by a first-order Markov chain [226].

To illustrate these further we compare the SER performance of time and cooperative
diversity in Figure 6.7. The desired diversity gain is 3. The time correlation factor for the
first-order Markov model is taken to be equal to ρ = 0.9, 0.7, 0.3, 0.1. The two relays
are taken in different positions as illustrated in the figure to illustrate different coding
gains. It is clear from Figure 6.7 that cooperative diversity can offer better performance
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Fig. 6.7 Comparison between the SER performance of time diversity without any relaying and
cooperative diversity. Two relays are utilized for cooperation and three time slots for time
diversity. The first-order Markov model is utilized to account for time correlation, and the
positions of different relays are depicted with the source–destination distance normalized.

than time diversity because of the higher possible coding gain that depends on the relay
positions, and the degradation in the achieved performance of time diversity due to the
correlation factor ρ.

6.1.4 Optimal power allocation

In this subsection, we discuss an optimal power allocation strategy for the multi-node
cooperative scenarios considered in the previous subsections. The approximated SER
formula derived in (6.43) is a function of the power allocated at the source and the
N relays. For a fixed transmission power budget P , the power should be allocated
optimally at the different nodes in order to minimize the SER.

Since the approximation in (6.43) is tight at high enough SNR, we use it to deter-
mine the asymptotic optimum power allocation. We also drop the parameter m since the
asymptotic SER performance is independent of it. The SER can be written in terms of
the power ratios allocated at the transmitting nodes as follows:

PSER �
(

P

N0

)−(N+1) 1

bN+1
q σ 2

s,d

N+1∑
j=1

gq(N − j + 2)g j−1
q (1)

a j
0

∏N
i= j aiσ

2
ri ,d

∏ j−1
k=1 σ

2
s,rk

. (6.49)

The nonlinear optimization problem can be formulated as follows:

aopt = arg min
a

PSER (6.50)

s.t. ai ≥ 0 (0 ≤ i ≤ N ),
∑N

i=0 ai = 1,
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where a = [a0, a1, . . . , aN ] is the power allocating vector. The Lagrangian of this
problem can be written as

L = PSER + ν
(

N∑
i=0

ai − 1

)
−

N∑
j=0

β j a j (6.51)

where the β’s act as slack variables.
Although this nonlinear optimization problem should, in general, be solved numer-

ically, there are some insights which can be drawn out of it. Applying first-order
optimality conditions, we can show that the optimum power allocation vector aopt must
satisfy the following necessary conditions:

∂PSER

∂ai
= ∂PSER

∂a j
, i, j ∈ {0, 1, 2, . . . , N }. (6.52)

Next, we solve these equations simultaneously to get the relations between the opti-
mal power allocations at different nodes. To simplify the notations, let μ j denote the
constant quantity inside the summation in (6.49), i.e.,

μ j =
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The derivative of the SER with respect to a0 is given by

∂PSER

∂a0
=

N+1∑
j=1

− jμ j

a j+1
0

∏N
i= j ai

, (6.54)

while the derivative with respect to ak , 1 ≤ k ≤ N , is given by

∂PSER

∂ak
=

k∑
j=1

−μ j

a j
0 ak
∏N

i= j ai

, (6.55)

where the summation is to the k-th term only as ak does not appear in the terms from
k + 1 to N . Using (6.52), we equate the derivatives of the SER with respect to any two
consecutive variables ak and ak+1, 1 ≤ k ≤ N − 1, as follows:

k∑
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a j
0 ak
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i= j ai

=
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. (6.56)

Rearranging the terms in the above equation we get

ak+1 − ak

akak+1

k∑
j=1

μ j

a j
0

∏N
i= j ai

= μk+1

a j
0 ak+1

∏N
i=k+1 ai

. (6.57)

Since both sides of the above equation are positive, we conclude that ak+1 ≥ ak for any
k = 1, 2, . . . , N . Similarly, we can show that ao ≥ ak for all 1 ≤ k ≤ N . Hence, solving
the optimality conditions simultaneously we get the following relationships between the
powers allocated at different nodes:

P0 ≥ PN ≥ PN−1 ≥ · · · ≥ P1. (6.58)
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The above set of inequalities demonstrates an important concept: power is allocated
at different nodes according to the received signal quality at the node. We refer to the
quality of the signal copy at a node as the reliability of the node, thus the more reliable
the node the greater the power that is allocated to it. To further illustrate this concept,
the N + 1 cooperative nodes form a virtual (N + 1) × 1 MIMO system. The differ-
ence between this virtual array and a conventional point-to-point MIMO system is that
in conventional point-to-point communications all the antenna elements at the trans-
mitter are allocated at the same place and hence all the antenna elements can acquire
the original signal. In a virtual array, the antenna elements constituting the array (the
cooperating nodes) are not allocated at the same place and the channels among them are
noisy. The source is the most reliable node as it has the original copy of the signal and
thus it should be allocated the highest share of the power.

According to the cooperation protocol presented in this chapter, each relay combines
the signal received from the source and the previous relays. As a result, each relay is
more reliable than the previous relay, and hence the N -th relay is the most reliable node
and is allocated the largest ratio of the power after the source, while the first relay is
the least reliable and is allocated the smallest ratio of the transmitted power. Another
important point to notice is that the channel quality of the direct link between the source
and the destination σ 2

s,d is a common factor in the μ j ’s that appear in (6.57), hence the
optimal power allocation does not depend on it.

To illustrate the effect of relay position on the values of the optimal power allocation
ratios at the source and relay nodes, we consider a two-relay scenario in Figure 6.8. The
two relays are taken in three different positions, close to the source, close to the desti-
nation, and in the middle between the source and the destination. In the first scenario,
almost equal power allocation between the three nodes is optimal. When the relays are
closer to the destination, more power is allocated to the source node, but still the second
relay has a higher portion of the power relative to the first one. Similarly, in the last sce-
nario the last relay has more power than the first one. These results show that the further
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Fig. 6.8 Optimal power allocation for N = 2 relays under different relays positions.
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the relays are from the source node the less the power that is allocated to the relays as
they become less reliable, while as the relays become closer to the source, equal power
allocation becomes near optimal.

There are a few special cases of practical interest that permit a closed-form solution
for the optimization problem in (6.50), and they are discussed in the following examples

Example 6.3 For the N = 1 relay scenario, the optimization problem in (6.50) admits
closed-form expression. The SER for this case is simply given as

PSER =
(

P

N0

)−2 1

b2
qσ

2
s,d

(
gq(2)

a0a1σ
2
r1,d

+ g2
q(1)

a2
0σ

2
s,r1

)
. (6.59)

Solving the optimization problem for this case leads to the following solution for the
optimal power allocation:

a0 =
σs,r1 +

√
σ 2

s,r1 + 8
g2

q (1)
gq (2)

σ 2
r1,d

3σs,r1 +
√
σ 2

s,r1 + 8
g2

q (1)
gq (2)

σ 2
r1,d

,

a1 = 2σs,r1

3σs,r1 +
√
σ 2

s,r1 + 8
g2

q (1)
gq (2)

σ 2
r1,d

. (6.60)

�

To study the effect of relay position on the optimal power allocation, we depict in
Figure 6.9 the SER performance of a single relay scenario versus the power allocation
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Fig. 6.9 SER versus power allocation ratio at the source node for different relay positions.
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at the source node a0 for different relay positions. The first observation that the fig-
ure reveals is that the SER performance is relatively flat around equal power allocation
when the relay is not very close to the destination. Another observation to notice here is
that as the relay becomes closer to the destination, the value of the optimal power allo-
cation at the source node a0 approaches 1, which means that as the relay node becomes
less reliable more power should be allocated to the source node.

Example 6.4 The propagation path-loss and networks with linear topologies will be
taken into account here. The channel attenuation between any two nodes σ 2

i, j depends

on the distance between these two nodes di, j as follows: σ 2
i, j ∝ d−α , where α is the

propagation constant. For a linear network topology, the most significant channel gains
are for the channels between the source and the first relay σ 2

s,r1 , and between the last
relay and the destination σ 2

rN ,d
, the other channel gains are considerably smaller than

these two channels. In the SER expression in (6.43), these two terms appear as a product
in all the terms except the first and the last. Hence these two terms dominate the SER
expression, and we can further approximate the SER in this case as follows:

PSER � (No/P)N+1

bN+1
q σ 2

s,d

[
gq(N + 1)

a0
∏N

i=1 aiσ
2
ri ,d

+ gN+1
q (1)

aN+1
0

∏N
i=1 σ

2
s,ri

]
. (6.61)

Taking the power constraint into consideration, the Lagrangian of the above problem
can be written as

L(a) = μ1

ao
∏N

i=1 ai
+ μN+1

aN+1
o

+ λ
(

N∑
i=0

ai − 1

)
. (6.62)

Taking the partial derivatives of the Lagrangian with respect to a j , 1 ≤ j ≤ N , and
equating with 0, we get

a j = μ1

λao
∏N

i=1 ai
. (6.63)

Thus, we deduce that the power allocated to all of the relays is the same. Let the constant
κ be defined as follows:

κ = P0 − Pj

Pj
. (6.64)

From the above definition, along with the power constraint, we get

Pj = 1

1+ κ + N
P,

P0 = 1+ κ
1+ κ + N

P. (6.65)

To find the optimum value for κ , substitute (6.65) into the expression for the SER in
(6.61) to get

PSER � μ1(1+ κ)N (1+ κ + N )N+1 + μN+1(1+ κ + N )N+1

(1+ κ)N+1
. (6.66)
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Differentiating (6.66) and equating to 0, we can find that the optimum κ satisfies the
equation κ(1+ κ)N = A, in which A is a constant given by

A = (N + 1)
gN+1

q (1)
∏N

i=1 σ
2
ri ,d

gq(N + 1)
∏N

i=1 σ
2
s,ri

. (6.67)

�

From the above analysis, the optimal power allocation for a linear network can be found
in the following theorem.

T H E O R E M 6.1.3 The optimal power allocation for a linear network that minimizes
the SER expression in (6.61) is as follows:

P0 = 1+ κ
1+ κ + N

P, Pi = 1

1+ κ + N
P, 1 ≤ i ≤ N , (6.68)

where κ is found through solving the equation κ(1+ κ)N = A, in which A is a constant

given by (N + 1)
gN+1(1)

∏N
i=1 σ

2
ri ,d

g(N+1)
∏N

i=1 σ
2
s,ri

.

The above theorem agrees with the optimality conditions we found for the general prob-
lem in (6.58). Also, it shows an interesting property that in linear network topologies
equal power allocation at the relays is asymptotically optimal.

Example 6.5 The cooperating relays can be chosen to be closer to the source than to
the destination, in order for the N + 1 cooperating nodes to mimic a multi-input-single-
output (MISO) transmit antenna diversity system. This case is of special interest because
decode-and-forward relaying can be a capacity achieving scheme when the relays are
taken to be closer to the source and it has the best performance compared to amplify-
and-forward and compress-and-forward relaying in this case. In order to model this
scenario in our SER formulation, we will consider the channel gains from the source
to the relays to have higher gains than those from the relays to the destination, i.e.,
σ 2

s,ri � σ 2
ri ,d

for 1 ≤ i ≤ N . Taking this into account, the approximate SER expression
in (6.43) can be further approximated as

PSER � N N+1
0 gq(N + 1)

bN+1
q σ 2

s,d P N+1a0
∏N

i=1 aiσ
2
ri ,d

. (6.69)

It is clear from the above equation that the SER depends equally on the power allocated
to all nodes including the source, and thus the optimal power allocation strategy for this
case is simply given by

P0 = Pi = P

N + 1
, 1 ≤ i ≤ N . (6.70)
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This result is intuitively meaningful as all the relays are located near to the source
and thus they all have high reliability and are allocated equal power as if they form
a conventional antenna array. �

Example 6.6 Now we consider the opposite scenario in which all the relays are located
near the destination. In this case the channels between the relays and the destination
are of a higher quality, higher gain, than those between the source and the relays, i.e.,
σ 2

ri ,d
� σ 2

s,ri for 1 ≤ i ≤ N . In this case the SER can be approximated as

PSER � N N+1
0 g(1)N+1

bN+1
q σ 2

s,d P N+1
0

∏N
k=1 σ

2
s,rk

. (6.71)

The SER in the above equation is not a function of the power allocated at the coop-
erating relays, and thus the optimal power allocation in this case is simply P0 = P ,
i.e., allocating all the available power at the source. This result is very interesting as it
reveals a very important concepts: If the relays are located closer to the destination than
to the transmitter then direct transmission can lead better performance than decode-and-
forward relaying. This is also consistent with the results in [99] in which it was shown
that the performance of the decode-and-forward strategy degrades significantly when
the relays get closer to the destination. This result can be intuitively interpreted as fol-
lows: the further the relays are from the source the more noisy the channels between
them and the less reliable the signals received by those relays, to the extent that we can
not rely on them on forwarding copies of the signal to the destination. �

6.1.4.1 Numerical examples
In this subsection, we present some numerical results to verify the analytical results for
the optimal power allocation problem for the considered network topologies. The effect
of the geometry on the channel links qualities is taken into consideration. We assume
that the channel variance between any two nodes is proportional to the distance between
them, more specifically σ 2

i, j ∝ d−αi, j , where α is determined by the propagation environ-
ment is taken equal to 4 throughout our simulations. We provide comparisons between
the optimal power allocation via exhaustive search to minimize the SER expression in
(6.43), and optimal power allocation provided by the closed-form expressions provided
in this section.

First, for the linear network topology, we consider a uniform linear network, i.e.,
ds,r1 = dr1,r2 = · · · = drN ,d. The variance of the direct link between the source and
the destination is taken to be σ 2

s,d = 1. Table 6.1 demonstrates the results for N = 3
relays. Second, for the case when all the relays are near the source, the channel links
are taken to be: σ 2

s,ri = σ 2
ri ,r j

= 10, while σ 2
s,d = σ 2

ri ,d
= 0.1. Finally, for the case

when all of the relays are near the destination, the channel link qualities are taken to
be: σ 2

s,d = σ 2
s,ri = 0.1, while σ 2

ri ,r j
= σ 2

ri ,d
= 10. Table 6.2 illustrates the results for

N = 3 relays for the two previous cases. In all of the provided numerical examples it is
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Table 6.1 Comparison between optimal power allocation via exhaustive
search and analytical results. N= 3 relays, uniform network topology.

Exhaustive search Analytical results

P0 = 0.31P P0 = 0.31P
P1 = 0.23P P1 = 0.23P
P2 = 0.23P P2 = 0.23P
P3 = 0.23P P3 = 0.23P

Table 6.2 Comparison between optimal power allocation via exhaustive search and analytical results.
N= 3 relays: (a) all relays near the source; (b) all relays near the destination.

(a) Exhaustive search Analytical results (b) Exhaustive search Analytical results

P0 = 0.25P P0 = 0.25P P0 = 0.875P P0 = P
P1 = 0.25P P1 = 0.25P P1 = 0.015P P1 = 0
P2 = 0.25P P2 = 0.25P P2 = 0.035P P2 = 0
P3 = 0.25P P3 = 0.25P P3 = 0.075P P3 = 0

clear that the optimal power allocations obtained via exhaustive search agree with that
via analytical results for all the considered scenarios. In addition, the numerical results
show that the optimal power allocation obtained via exhaustive search has the same
ordering as the one we got in (6.58).

6.2 Multi-node amplify-and-forward protocol

In the second part of this chapter, we focus on a multi-node amplify-and-forward strat-
egy. Different from the decode-and-forward protocol, an amplify-and-forward protocol
does not suffer from the error propagation problem because the relays do not perform
any hard-decision operation on the received signal. We first describe the multi-node
amplify-and-forward protocol in detail and then analyze its SER performance. Finally,
we consider the outage probability of the multi-node amplify-and-forward protocol, as
well as the mutual information of the system.

The multi-node amplify-and-forward system model is shown in Figure 6.10. In the
following, we will consider two relaying strategies. In the first scenario, each relay
forwards only the source’s signal to the the destination, while in the second scenario
each relay forwards a combined signal from the source and previous relays.

6.2.1 Source-only amplify-and-forward relaying

6.2.1.1 System model and protocol description
We first consider a source-only multi-node amplify-and-forward relaying strategy, i.e.,
each relay forwards only the source’s signal to the the destination, in which cooperation
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Source Destination

Relay 1 Relay 2 Relay N
Orthogonal
channelsPhase 1

Phase 2

Fig. 6.10 Multi-node amplify-and-forward system model.

is done in two phases. In phase 1, the source broadcasts its information to the destination
and N relay nodes. The received signals ys,d and ys,ri at the destination and the i-th relay
can be written, respectively, as

ys,d =
√

P0hs,dx + ns,d, (6.72)

ys,ri =
√

P0hs,ri x + ns,ri , (6.73)

for i = 1, 2, . . . , N , in which P0 is the transmitted source power, ns,d and ns,ri denote
the additive white Gaussian noise at the destination and the i-th relay, respectively, and
hs,d and hs,ri are the channel coefficients from the source to the destination and the i-th
relay node, respectively. Each relay amplifies the received signal from the source and
re-transmits it to the destination. The received signal at the destination node in phase 2
due to the i-th relay transmission is given as

yri ,d =
√

Pi√
P0|hs,ri |2 + N0

hri ,dys,ri + nri ,d, (6.74)

where Pi is the i-th relay node power. The channel coefficients hs,d , hs,ri , and hri ,d

are modeled as zero-mean, complex Gaussian random variables with variances σ 2
s,d,

σ 2
s,ri , and σ 2

ri ,d
, respectively, at the receiving nodes but not at the the transmitting nodes.

The noise terms are modeled as zero-mean, complex Gaussian random variables with
variance N0. Jointly combining the signal received from the source in phase 1 and those
from the relays in phase 2, the destination detects the transmitted symbols by use of
maximum-ratio combining.

6.2.1.2 SER performance analysis
In the following, we derive a closed form SER expression for the source-only amplify-
and-forward cooperation protocol with M-PSK and square M-QAM signals. With the
knowledge of the channel state information, the output of the MRC detector at the
destination can be written as

yd = αsys,d +
N∑

i=1

αi yri ,d, (6.75)
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where αs = √P0h∗s,d/N0 and

αi =

√
P0 Pi

P0|hs,ri |2+N0
h∗s,ri h

∗
ri ,d(

Pi |hri ,d|2
P0|hs,ri |2+N0

+ 1

)
N0

.

If we assume that the transmitted symbol x has an average energy of 1, then the SNR
at the MRC detector output is

SNRd = γs +
N∑

i=1

γi (6.76)

where γs = P0|hs,d|2/N0, and

γi = 1

N0

P0 Pi |hs,ri |2|hri ,d|2
P0|hs,ri |2 + Pi |hri ,d|2 + N0

. (6.77)

The instantaneous SNR γi can be tightly upper bounded as

γ̃i = 1

N0

P0 Pi |hs,ri |2|hri ,d|2
P0|hs,ri |2 + Pi |hri ,d|2

, (6.78)

which is the harmonic mean of P0|hs,ri |2/N0 and Pi |hri ,d|2/N0. The SER of M-PSK
and M-QAM conditional on the channel state information are defined before in (6.11)
and (6.12), respectively.

Let us denote the MGF of a random variable Z as

MZ (s) =
∫ ∞

−∞
exp(−sz)PZ (z)dZ . (6.79)

Averaging the conditional SER over the Rayleigh fading channels, the SER of the M-
PSK signals and M-QAM signals can be given, respectively, as

PSER ≈ 1

π

∫ (M−1)π/M

0
Mγs

(
bPSK

sin2 θ

) N∏
i=1

Mγ̃i

(
bPSK

sin2 θ

)
dθ, (6.80)

PSER ≈ 4C

π

∫ π/2

0
Mγs

(
bQAM

2 sin2 θ

) N∏
i=1

Mγ̃i

(
bQAM

2 sin2 θ

)
dθ

− 4C2

π

∫ π/4

0
Mγs

(
bQAM

2 sin2 θ

) N∏
i=1

Mγ̃i

(
bQAM

2 sin2 θ

)
dθ, (6.81)

in which we use the SNR approximation γ̃i (6.78) instead of γi .
The MGF of γs, which is an exponential random variable, can be simply given by

Mγs =
1

1+ s P0σ
2
s,d

N0

. (6.82)

The challenge is how to get the MGF of γ̃i . We follow the same approach of analyzing
the SER performance of the single-relay amplify-and-forward protocol as presented in
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the previous chapter. The approach relies on a key result as follows. If X1 and X2 are
two independent exponential random variables with parameters β1 and β2 respectively,
and Z = X1 X2

X1+X2
is the harmonic mean of X1 and X2, then the MGF of Z is

MZ (s) = (β1 − β2)
2 + (β1 + β2)s

�2

+2β1β2s

�3
ln
(β1 + β2 + s +�)2

4β1β2
, (6.83)

where

� =
√
(β1 − β2)2 + 2(β1 + β2)s + s2.

With β1 = N0/P0σ
2
s,ri and β2 = N0/Piσ

2
ri ,d

, at high SNR, for any relay both β1 and β2

go to zero, and � goes to s. Thus, The MGF in (6.83) can be approximated as

MZ (s) ≈ β1 + β2

s
+ 2β1β2

s2
ln

s2

β1β2
. (6.84)

At enough high SNR, the MGF can be further simplified as

MZ (s) ≈ β1 + β2

s
. (6.85)

Substituting the above MGF approximation into (6.80), we arrive at the following result.

T H E O R E M 6.2.1 At enough high SNR, the SER of the source-only amplify-and-
forward cooperative protocol with N relay nodes employing M-PSK or M-QAM signals
can be approximated as

PSER ≈ g(N )N N+1
0

bN+1
.

1

P0σ
2
s,d

N∏
i=1

P0σ
2
s,ri + Piσ

2
ri ,d

P0 Piσ 2
s,riσ

2
ri ,d

, (6.86)

where, in the case of M-PSK signals, b = bPSK and

g(N ) = 1

π

∫ (M−1)π/M

0
sin2(N+1) θdθ; (6.87)

while, in the case of M-QAM signals, b = bQAM/2 and

g(N ) = 4C

π

∫ π/2

0
sin2(N+1) θdθ − 4C2

π

∫ π/4

0
sin2(N+1) θdθ. (6.88)

It is clear that the source-only protocol achieves full diversity of order N + 1. We show
the tightness of the SER approximated expression derived in the above theorem in the
following example.

Example 6.7 Figures 6.11–6.13 show the performance of the relaying protocol with
QPSK (4-QAM) modulation for one, two, and three relay nodes and various channel
conditions, respectively. An equal power allocation between the source and the relay
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Fig. 6.11 SER performance for QPSK constellation (σ 2
s,d = 1, σ 2

s,ri = 1, σ 2
ri ,d

= 1, equal power).
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Fig. 6.12 SER performance for QPSK constellation with relays close to the source
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s,ri = 10, σ 2

ri ,d
= 1, equal power).
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Fig. 6.13 SER performance for QPSK constellation with relays close to the destination
(σ 2

s,d = 1, σ 2
s,ri = 1, σ 2

ri ,d
= 10, equal power).

nodes is assumed. From the figure, it is clear that the derived SER approximation is
tight at high SNR for QPSK constellation. �

6.2.2 MRC-based amplify-and-forward relaying

6.2.2.1 System model and protocol description
In this subsection, we address the MRC-based multi-node amplify-and-forward relaying
strategy. For simplicity of presentation, we will focus on the scenario of two relay nodes,
but the extension to N relay nodes is straightforward. With two relaying nodes, the
protocol is implemented in three phases as follows:

• In phase 1, the source broadcasts its information to the destination and the two relay
nodes.

• In phase 2, the first relay helps the source by amplifying the source signal and sending
it to the destination and the second relay.

• In phase 3, the second relay applies an MRC detector on the two received signals from
the previous two phases and forwards the amplified MRC signal to the destination.

In general, we have N + 1 phases for a system with N relay nodes, in which each relay
applies an MRC detector on the signals that it receives from the source and all previous
relays. The MRC detector has the advantage of maximizing the SNR at the output of
the detector under the condition that the noise components of the combined signals are
uncorrelated.

Let us focus on the two-relay scenario. The received signals at the destination and the
relays in phase 1 are the same as those in the source-only amplify-and-forward scenario.
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In phase 2, the received signal at the destination due to the first relay transmission is also
the same as in the source-only scenario. However, the received signal at the second relay
due to the first relay transmission is given as

yr1,r2 =
√

P1√
P0|hs,r1 |2 + N0

hr1,r2 ys,r1 + nr1,r2 , (6.89)

where the inter-relay channel, hr1,r2 , is modeled as a zero-mean, complex Gaussian ran-
dom variable with variance σ 2

r1,r2 . In phase 3, the second relay applies an MRC detector
on the signals received in phases 1 and 2, and the output of the MRC detector can be
written as

ỹ = α̃sys,r2 + α̃1yr1,r2 , (6.90)

where α̃s = √P0h∗s,r2/N0 and

α̃1 =

√
P0 P1

P0|hs,r1 |2+N0
h∗s,r1h∗r1,r2(

P1|hr1,r2 |2
P0|hs,r1 |2+N0

+ 1

)
N0

.

The received signal at the destination in phase 3 is given by

yr2,d =
√

P2hr2,d
ỹ√

K 2 + K
+ nr2,d, (6.91)

where

K =
P0 P1

P0|hs,r1 |2+N0
|hs,r1 |2|hr1,r2 |2(

P1|hr1,r2 |2
P0|hs,r1 |2+N0

+ 1

)
N0

+ P0|hs,r2 |2
N0

. (6.92)

Finally, the destination applies an MRC detector on the signals that it receives from all
phases and jointly detects the information from the source.

6.2.2.2 Performance analysis
In this subsection, we try to gain some insight into the performance of the MRC-based
amplify-and-forward protocol. We again focus on the two-relay scenario. The analysis
can be similarly extended to the case of more relay nodes. With the knowledge of the
channel state information, the output of the MRC detector in the two-relay case can be
written as

yd = αsys,d + α1yr1,d + α2yr2,d, (6.93)

where αs, α1 are the same as the source-only amplify-and-forward protocol and α2 is
given by

α2 =
√

P2h∗r2,d
K√

K 2+K

P2|hr2,d|2 K
K 2+K

+ N0
.

The SER analysis of the protocol is very complicated and a close-form analysis is not
tractable.
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We may think the performance of the MRC-based protocol would be better than that
of the source-only protocol since the relays put more efforts in forwarding signals. How-
ever, simulations show that this is not the case. The reason behind this is that the system
suffers from the noise propagation problem. For the simple example of two relays net-
work, the noise terms at the destination in phases 2 and 3 contain a contribution from
the noise generated at the first relay, ns,r1 in phase 1. So the noise components in the
received signals during the several phases are no more uncorrelated and the MRC detec-
tor is no more optimal. This noise propagation problem causes a degradation in the SER
performance of the protocol. The problem is more severe for increased number of relays
because we will have more noise components that will propagate to the destination. The
optimum receiver in this case is to apply a pre-whitening on the received signals and
then apply the MRC detector. Although the source-only amplify-and-forward protocol
is less complex than the MRC-based amplify-and-forward protocol, we will show that it
can give approximately the same, if not better in some cases, SER performance. This is
because the benefit we get from applying an MRC detector at each relay node is dimin-
ished by the noise propagation problem. To see the effect of the noise propagation on
the MRC-based protocol, we consider two extreme scenarios for the two-relay network
and compare the performance of the two protocols under these two scenarios:

(i) |hr1,d| = 0: In this case, we do not have the noise propagation problem because the
noise term ns,r1 will be received only once in phase 3. In this case the SNR at the
destination of the MRC-based protocol can be written as

SNRMRC � P0|hs,d|2
N0

+ K
P2|hr2,d|2

N0

K + P2|hr2,d|2
N0

. (6.94)

Similarly, the SNR at the destination of the source-only protocol can be written as

SNRsource-only �
P0|hs,d|2

N0
+

P0|hs,r2 |2
N0

.
P2|hr2,d|2

N0

P0|hs,r2 |2
N0

+ P2|hr2,d|2
N0

. (6.95)

Clearly, SNRMRC > SNRsource-only because K >
P0|hs,r2 |2

N0
. Intuitively, because

we do not have noise propagation in this case, it is better for relay 2 to combine
the signals it receives from both the source and relay 1 using the MRC detector to
maximize the SNR at its output instead of using the source signal only. Under this
scenario the MRC-based protocol is better than the source-only protocol because it
results in a higher SNR at the destination.

(ii) |hr1,d| >>, |hr2,d| >>, |hr1,r2 | >> and |hs,r2 | = 0: In this case, the relay–
destination links can be approximated to be noise free. The output of the destination
detector in the MRC-based protocol can be written as

yMRC �
(

P0|hs,d|2
N0

+ 2
P0|hs,r1 |2

N0

)
x +

√
P0h∗s,d
N0

ns,d (6.96)

+2
√

P0h∗s,r1
N0

ns,r1 , (6.97)
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because the signal at the first relay in phase 1 is transmitted twice in phases 2 and 3.
The output of the destination detector in the source-only protocol can be written as

ysource-only �
(

P0|hs,d|2
N0

+ P0|hs,r1 |2
N0

)
x (6.98)

+
√

P0h∗s,d
N0

ns,d +
√

P0h∗s,r1
N0

ns,r1 . (6.99)

Clearly, we have

SNRsource-only �
P0|hs,d|2

N0
+ P0|hs,r1 |2

N0
(6.100)

> SNRMRC �

(
P0|hs,d|2

N0
+ 2

P0|hs,r1 |2
N0

)2

P0|hs,d|2
N0

+ 4
P0|hs,r1 |2

N0

. (6.101)

In this case, the source-only protocol achieves better performance than the MRC-
based protocol. This is because the MRC-based protocol combines the same signal
twice (the signals received in phases 2 and 3). Thus, in this case, the noise propa-
gation problem is highly severe and causes a high degradation in the system SER
performance.

Although the above two scenarios occur with zero probability, they can give some
insights about how the system performance is affected by the different channels mag-
nitudes. From the above two scenarios, intuition suggests that the source-only protocol
will give better performance than the MRC-based protocol if the relays become closer to
the destination. Moreover, the MRC-based protocol requires more channels to estimate
at each relay node, which increases the overhead in the network required for channel
estimation. Finally, the MRC-based protocol may have a higher delay because each
relay node must wait for the transmission of all of the previous relay nodes, while in the
source-only amplify-and-forward protocol, all the relays can forward the source data at
the same time using FDM, for example.

6.2.3 Outage analysis and optimum power allocation

In this subsection, we investigate the outage performance of the source-only multi-node
amplify-and-forward relaying protocol and determine its optimum power allocation.

We recall that in the source-only relaying protocol, the received signal at the
destination in phase 2 due to the i-th relay transmission is given by

yri ,d = hri ,dβi ys,ri + nri ,d, (6.102)

and βi is a scaling factor that satisfies the power constraint

βi ≤
√

Pi

P0|hs,ri |2 + N0
. (6.103)
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The output of the MRC detector is given by

yd = αsys,d +
N∑

i=1

αi yri ,d, (6.104)

where αs = √
P0h∗s,d/N0 and αi =

√
P0βi h∗ri ,dh∗s,ri

(β2
i |hri ,d|2+1)N0

. We can write yd in terms of the

source signal x as

yd =
(

P0|hs,d|2
N0

+
N∑

i=1

P0β
2
i |hri ,d|2|hs,ri |2

(β2
i |hri ,d|2 + 1)N0

)
x +

√
P0h∗s,d
N0

ns,d

+
N∑

i=1

√
P0βi h∗ri ,dh∗s,ri

(β2
i |hri ,d|2 + 1)N0

(nri ,d + hri ,dβi ns,ri ). (6.105)

The SNR at the MRC detector output is

SNRd = γs +
N∑

i=1

γi (6.106)

where γs = P0|hs,d|2/N0, and

γi = P0β
2
i |hri ,d|2|hs,ri |2

(β2
i |hri ,d|2 + 1)N0

. (6.107)

For simplicity, let us denote an (N + 1)× 1 vector

y = [ys,d, yr1,d, . . . , yrN ,d]T. (6.108)

Then, for given x and channel state information, the probability density function (pdf)
of y follows an exponential distribution. Moreover, yd is a sufficient statistic for x , i.e.,

py/x,yd (y/x, yd) = py/yd (y/yd), (6.109)

where py/x,yd (y/x, yd) is pdf of y given x and yd , and py/yd (y/yd) is the pdf of y given
yd . Since yd is a sufficient statistics for x , then the mutual information between x and y
equals the mutual information between x and yd , that is

I (x; yd) = I (x; y). (6.110)

Then the average mutual information for amplify-and-forward IAF satisfies

IAF ≤ I (x; yd) ≤ log

(
1+ P0|hs,d|2

N0
+

N∑
i=1

P0β
2
i |hri ,d|2|hs,ri |2

(β2
i |hri ,d|2 + 1)N0

)
, (6.111)

with equality for x being a zero-mean, circularly symmetric complex Gaussian ran-
dom variable. It is clear that (6.111) is increasing in βi ’s, so to maximize the mutual
information the constraint in (6.103) should be satisfied with equality, yielding

IAF = log

(
1+ |hs,d|2SNRs,d +

N∑
i=1

f
(
|hs,ri |2SNRs,ri , |hri ,d|2SNRri ,d

))
,
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where SNRs,d = SNRs,ri = P0/N0 and SNRri ,d = Pi/N0 for all i = 1, 2, . . . , N , and

f (v, u) = uv

u + v + 1
.

6.2.3.1 Outage analysis
The outage probability for spectral efficiency R is defined as

Pout
AF (R) = Pr

{
1

N + 1
IAF < R

}
, (6.112)

and the 1/(N + 1) factor comes from the fact that the relays help the source through N
uses of orthogonal channels. Using the notation

p = [P0, P1, P2, . . . , PN ]T, (6.113)

equation (6.112) can be rewritten as

Pout
AF (p, R) = Pr

{(
P0

N0
|hs,d|2 +

N∑
i=1

f

(
P0

N0
|hs,ri |2,

Pi

N0
|hri ,d|2

))
<
(
2(N+1)R − 1

)}
.

At high SNR, we can neglect the 1 in the denominator of the function f (u, v), and it
follows that the outage probability is given by

Pout
AF (p, R) � Pr

{(
P0

N0
|hs,d|2 +

N∑
i=1

P0
N0
|hs,ri |2 Pi

N0
|hri ,d|2

P0
N0
|hs,ri |2 + Pi

N0
|hri ,d|2

)
<
(
2(N+1)R − 1

)}
.

Denote some random variables

w1 = P0

N0
|hs,d|2

wi+1 =
P0
N0
|hs,ri |2 Pi

N0
|hri ,d|2

P0
N0
|hs,ri |2 + Pi

N0
|hri ,d|2

, ∀i ∈ [1, N ]. (6.114)

The outage probability is now given as

Pout
AF (p, R) � Pr

⎧⎨⎩
N+1∑
j=1

w j < (2
(N+1)R − 1)

⎫⎬⎭ . (6.115)

The random variable w1 has an exponential distribution with rate

λ1 = N0

P0σ
2
s,d

. (6.116)

To calculate the outage probability in (6.115), we consider an approach based on
approximating the harmonic mean of two exponential random variables by an expo-
nential random variable.

Note that each w j for j ∈ [2, N + 1] is a harmonic mean of two exponential random
variables. The CDF of w j , j = 2, . . . , N + 1 can be given as

Pw j (w) = Pr
{
w j < w

} = 1− 2w
√
ζ j1ζ j2e−w(ζ j1+ζ j2)K1(2w

√
ζ j1ζ j2), (6.117)
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where

ζ j1 = N0

P0σ 2
s,r j−1

ζ j2 = N0

Pj−1σ 2
s,r j−1

(6.118)

and K1(·) is the first-order modified Bessel function of the second kind. The func-
tion K1(·) can be approximated as K1(x) � 1/x for small x , from which we can
approximate the CDF of w j at high SNR as

Pw j (w) = Pr
{
w j < w

} � 1− e−w(ζ j1+ζ j2), (6.119)

which is the CDF of an exponential random variable of rate

λ j = N0

P0σ 2
s,r j−1

+ N0

Pj−1σ
2
r j−1,d

. (6.120)

Define a random variable W as

W =
N+1∑
j=1

w j , (6.121)

the CDF of W , assuming the λi ’s to be distinct, can be obtained as

Pr {W ≤ w} �
N+1∑
k=1

⎛⎝ N+1∏
m=1,m �=k

λm

λm − λk

⎞⎠ (1− e−λkw). (6.122)

The outage probability can be expressed in terms of the CDF of W as

Pout
AF (p, R) � Pr

{
W ≤ (2(N+1)R − 1)

}
. (6.123)

The CDF of W can now be written as

Pr {W ≤ w} =
N+1∑
k=1

⎛⎝ N+1∏
m=1,m �=k

λm

λm − λk

⎞⎠(N+1∑
n=1

(−1)n+1λn
k
wn

n!

)
+ H.O.T., (6.124)

where H.O.T. stands for the higher order terms. Rearranging the terms in (6.124) we get

Pr {W ≤ w} =
N+1∑
n=1

⎛⎝N+1∑
k=1

⎛⎝ N+1∏
m=1,m �=k

λm

λm − λk

⎞⎠ λn
k

⎞⎠ (−1)n+1w
n

n!
+ H.O.T. (6.125)

In order for the system to achieve a diversity of order (N + 1), the coefficients of wn

have to be zero for all n ∈ [1, N ]. This requirement can be reformulated in a matrix
form as
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⎡⎢⎢⎢⎣
λ1 . . . λN+1

λ2
1 . . . λ2

N+1
...

...
...

λN+1
1 . . . λN+1

N+1

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

V

⎡⎢⎢⎢⎢⎣
∏N+1

m=2
λm

λm−λ1∏N+1
m=1,m �=2

λm
λm−λ2

...∏N
m=1

λm
λm−λN+1

⎤⎥⎥⎥⎥⎦
︸ ︷︷ ︸

q

=

⎡⎢⎢⎢⎣
0
0
...

c1

⎤⎥⎥⎥⎦ . (6.126)

To prove (6.126), let us consider the following equations:

Va = [0, 0, . . . , 1]T︸ ︷︷ ︸
c

, (6.127)

where c1 is some non-zero constant, and q = c1a. Note that as the columns of
the V matrix are scaled versions of the columns of a Vandermonde matrix, i.e., it
is a nonsingular matrix, the solution for the system of equations in (6.127) can be
found as

a = V−1c = 1

det(V)
adj(V)c. (6.128)

where adj(V) is the adjoint matrix of V. The determinant of a Vandermonde matrix is
given by

det

⎡⎢⎢⎢⎣
1 1 . . . 1
λ1 λ2 . . . λN+1
...

...
...

...

λN
1 λN

2 . . . λN
N+1

⎤⎥⎥⎥⎦ =
N+1∏
k=1

N+1∏
m>k

(λm − λk), (6.129)

from which we can express the determinant of the V matrix as

det(V) =
⎛⎝N+1∏

j=1

λ j

⎞⎠ N+1∏
k=1

N+1∏
m>k

(λm − λk). (6.130)

Due to the structure of the c vector, we are only interested in the last column of the
adj(V) matrix. The i-th element of the a vector can be obtained as

ai =
(−1)N+i−1

(∏N+1
j=1, j �=i λ j

)∏N+1
k=1,k �=i

∏N+1
m>k,m �=i (λm − λk)(∏N+1

j=1 λ j

)∏N+1
k=1

∏N+1
m>k (λm − λk)

= (−1)N

λi

N+1∏
j=1, j �=i

1

(λ j − λi )
. (6.131)

From (6.131), it is clear that q = c1a where

c1 = (−1)N
N+1∏
i=1

λi . (6.132)
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Using the CDF of W defined in (6.125), The outage probability can now be
expressed as

Pout
AF (p, R) � Pr

{
W < (2(N+1)R − 1)

}
= 1

(N + 1)!

(
N+1∏
i=1

λi

)(
2(N+1)R − 1

)N+1 + H.O.T.

(6.133)

Based on the λi ’s from (6.116), we get

Pout
AF (p, R) ∼ 1

(N + 1)! .
1

P0σ
2
s,d

.

N∏
i=1

P0σ
2
s,ri + Piσ

2
ri ,d

P0 Piσ 2
s,riσ

2
ri ,d

(
2(N+1)R − 1

)N+1
N N+1

0 .

(6.134)

From the expression in (6.134), let P be the total power and let P0 = a0 P and
Pi = ai P where a0 +∑N

i=1 ai = 1, a0 > 0, ai > 0, i = 1, . . . , N . Denote the SNR
as SNR = P/N0, the diversity order of the system, based on the outage probability, is
defined as

dout
AF = lim

SNR→∞−
log Pout

AF (SNR, R)

log SNR
= N + 1. (6.135)

So the system achieves a diversity of order N + 1, in terms of outage probability, for N
relay nodes helping the source. For the special case of single relay node (N = 1) and
let SNR = P0/N0 = P1/N0, we get

Pout
AF (SNR, R) ∼ 1

2
.

1

σ 2
s,d

.
σ 2

s,r1 + σ 2
r1,d

σ 2
s,r1σ

2
r1,d

(
22R − 1

SNR

)2

. (6.136)

6.2.3.2 Optimal power allocation
The optimal power allocation is based on minimizing the outage probability expression
in (6.134) under a total power constraint. Ignoring the constant factor from the outage
probability, the optimization problem can be formulated as

popt = arg min
p

1

P N+1
0

N∏
i=1

P0σ
2
s,ri + Piσ

2
ri ,d

Pi
,

s.t. P0 +
N∑

i=1

Pi ≤ P, Pi ≥ 0 ∀i, (6.137)

where P is the maximum allowable total power for one symbol transmission.
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It can be easily shown that the cost function in (6.137) is convex in p over the convex
feasible set defined by the linear power constraints. The Lagrangian of this optimization
problem can be written as

L = 1

P N+1
0

N∏
i=1

P0σ
2
s,ri + Piσ

2
ri ,d

Pi
(6.138)

+ λ̃
(

P0 +
N∑

i=1

Pi − P

)
+

N∑
i=1

μi (0− Pi ), (6.139)

where the μ’s serve as the slack variables. To minimize the outage bound, it is clear that
we must have Pi > 0 for all i . Then, the complementary slackness imply that μi = 0 for
all i . Denote an N × 1 vector a = [a0, a1, . . . , aN ], where a0 = P0/P and ai = Pi/P
for any i ∈ [1, N ]. Since the log function is a monotone function, the Lagrangian of the
optimization problem in (6.137) can be given as

f = − log a0 +
N∑

i=1

log

(
1

ai
σ 2

s,ri +
1

a0
σ 2

ri ,d

)
+ λ̃(aT1N+1 − 1), (6.140)

where 1N+1 is an all 1 (N + 1) × 1 vector. Applying first-order optimality conditions,
aopt must satisfy

∂ f

∂a0
= ∂ f

∂ai
= 0, ∀i ∈ [1, N ] , (6.141)

from which we get

1

a0

⎡⎣1+
N∑

j=1

σ 2
r j ,d

σ 2
r j ,d
+ a0

a j
σ 2

s,r j

⎤⎦ = 1

ai

[
σ 2

s,ri

σ 2
s,ri + ai

a0
σ 2

ri ,d

]
. (6.142)

Since a0 > 0 and a j > 0, then we can easily show that a0 > ai , i.e., P0 > Pi ∀i ∈
[1, N ]. This is due to the fact that the source power appears in all the SNR terms in
(6.134) either through the source–destination direct link or through the harmonic mean
of the source–relay and relay–destination links.

Using (6.141) we have

1

a j

[
σ 2

s,r j

σ 2
s,r j
+ a j

a0
σ 2

r j ,d

]
= 1

ai

[
σ 2

s,ri

σ 2
s,ri + ai

a0
σ 2

ri ,d

]
, ∀i, j. (6.143)

Define ci = ai/a0 = Pi/P0, ∀i = 1, . . . , N and using (6.142), we get

σ 2
ri ,d

σ 2
s,ri

c2
i + ci − c = 0, ∀i ∈ [1, . . . , N ] , (6.144)

for some constant c. From (6.142), c should satisfy the following equation

f (c) = c − 1

1+∑N
j=1

σ 2
r j ,d

σ 2
r j ,d
+ 1

c j (c)
σ 2

s,r j

= 0. (6.145)
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Table 6.3 Optimal power allocation for one and two relays (σ 2
s,d = 1 in all cases).

σ 2
s,ri = 10,σ 2

ri ,d
= 1 σ 2

s,ri = 1,σ 2
ri ,d

= 10
Relays close to the source Relays close to the destination

One relay P0/P = 0.5393 P0/P = 0.8333
P1/P = 0.4607 P1/P = 0.1667

Two relays P0/P = 0.3830 P0/P = 0.75
P1/P = P2/P = 0.3085 P1/P = P2/P = 0.125

Since Pi < P0, ∀i , then ci < 1, ∀i . Hence, using (6.144), we have c ∈ (0, 1 +
mini (σ

2
ri ,d
/σ 2

s,ri ). Therefore, so we have reduced the (N+1)-dimensional problem to a
single dimension search over the parameter c, which can be done using a simple numer-
ical search or any other standard method such as the Newton’s method. Convexity of
both the cost function and the feasible set in (6.137) imply global optimality of the
solution of (6.145) over the desired feasible set.

Example 6.8 Table 6.3 gives numerical results for the optimal power allocation for one
and two relays helping the source. From the table, it is clear that equal power alloca-
tion is not optimal. As the relays get closer to the source, the equal power allocation
scheme tends to be optimal. If the relays are close to the destination, the optimal power
allocation can result in a significant performance improvement. �

Example 6.9 In this example, the tightness of the derived outage probability approx-
imation is studied for the system with one, two, and three relay nodes, respectively.
Figure 6.14 shows the outage probability versus SNRnorm, defined as

SNRnorm = SNR

2R − 1
, (6.146)

which is the SNR normalized by the minimum SNR required to achieve spectral effi-
ciency R. In Figure 6.14, R = 1 is used. For the single-relay case, all the channel
variances are taken to be 1. For the case of two relay nodes, all the channel variances
are taken to be 1 except that between the source and the second relay which is taken
to be σ 2

s,r2 = 10; meaning that the second relay is close to the source. For the case of
three relay nodes, all the channel variances are taken to be 1 except σ 2

s,r2 = 10, and
that between the source and the third relay is σ 2

s,r3 = 5. From Figure 6.14 it is clear the
the bound in (6.134) is tight at high SNR and that the multi-node amplify-and-forward
protocol achieves full diversity of order N + 1 in terms of outage probability. �
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Fig. 6.14 Outage probability for a one-, two-, and three-nodes amplify-and-forward relay network.
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Fig. 6.15 Comparison of the SER for QPSK modulation using equal power allocation and the optimal
power allocation for relays close to the destination.

Example 6.10 In this example, the gain of the optimal power allocation and the equal
power allocation is compared. Figure 6.15 shows a comparison for a case that relays are
close to the destination (σ 2

s,r1 = σ 2
s,r2 = 1, σ 2

r1,d
= σ 2

r2,d
= 10, and σ 2

s,d = 1). From the



234 Multi-node cooperative communications

figure, we can see that, using the optimal power allocation scheme, we can get about
1 dB improvement for the single relay case and about 2 dB improvement for the two
relays case over the equal power assignment scheme. �

6.3 Chapter summary and bibliographical notes

In this chapter, we discussed cooperative diversity protocols for multi-node wireless net-
works employing either decode-and forward or amplify-and-forward relaying strategy.
In the first part of the chapter, we focused on a class of multi-node decode-and-forward
relaying protocols. This class of protocols consists of schemes in which each relay can
combine the signals arriving from an arbitrary but fixed number of previous relays along
with that received from the source. We derived exact SER expressions for a general
cooperation scheme for both M-PSK and M-QAM modulation. We also discussed SER
approximations, which are shown to be tight at high enough SNR. The theoretical anal-
ysis reveals a very interesting result: this class of cooperative protocols shares the same
asymptotic performance at high enough SNR. Thus the performance of a simple coop-
eration scenario in which each relay combines the signals arriving from the previous
relay and the source is asymptotically exactly the same as that for the most complicated
scenario in which each relay combines the signals arriving from all the previous relays
and the source. The analysis also reveals that the described protocols achieve full diver-
sity gain in the number of cooperating terminals. Moreover, we addressed the optimal
power allocation problem and showed that the optimum power allocated at the nodes
for an arbitrary network follow a certain ordering and do not depend on the quality of
the direct link between the source and the destination.

In the second part of the chapter, we considered two kinds of multi-node amplify-and-
forward relaying protocols. We compared the performances of the source-only amplify-
and-forward protocol and the MRC-based amplify-and-forward protocol. Although the
MRC-based protocol is more complex, it gives approximately the same performance
as the simple source-only amplify-and-forward protocol due to the noise propagation
problem. relays inter-channels which is difficult to achieve in wireless environment
and represents a large overhead in the network. We provided an SER analysis for the
source-only amplify-and-forward protocol that leads to a closed-form SER expression
that can be written in the form of integral functions by directly substituting for the MGF
functions. We also provided a simple SER approximation that is shown to be tight at
high SNR. Furthermore, by forming an SER performance upper bound on any amplify-
and-forward protocol, we showed that the source-only amplify-and-forward protocol
achieves this bound if the relays are close to the source. Based on the SER upper bound,
we determined an optimal power allocation between the source and the relays. We
also provided an outage probability analysis for the source-only amplify-and-forward
protocol and showed that the source-only amplify-and-forward protocol with N relay
nodes.
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The problem of SER performance analysis for multi-node amplify-and-forward
relaying was studied in [152], in which the authors presented an approximate analy-
sis and they considered the first term of the McLaurin series expansion of the SER
around SNR = 0. The approach presented in this chapter has some similarities with
the approach in [6] but differs in the way that the signal is normalized at each relay.
In [6], the authors normalized the signal at the relays by a factor that can cause exces-
sive increase in the signal peak in the case of deep fades. The approximations presented
in this chapter are also tighter than the bound in [6]. Some protocols for multi node
cooperative communications were presented in [156].

In [109], the outage probability of the single-relay amplify-and-forward network was
obtained by considering the high SNR behavior of the outage probability based on the
limiting behavior of the cumulative distribution function (CDF) of certain combinations
of exponential random variables. We also considered the high SNR behavior of the
outage probability of the multi-node source-only amplify-and-forward protocol. The
case considered in [109] can be considered as a special case of the analysis presented
in this chapter with N = 1. The study of multi-node cooperative communication can be
found in [163, 176].

Exercises

6.1 The symbol error rate for a general decode-and-forward scenario C(m) in which
each relay combines the signals from the previous m relays and the source was
analyzed for 1 ≤ m ≤ N .
(a) Find the symbol error rate for the scenario C(0) in whicheach relay only

decodes the signal from the source.
(b) Find the asymptotic symbol error rate performance of C(0) at high SNR.

Does this scheme also achieve full diversity gains.
(c) Find the optimal power allocation in case of C(0).

6.2 Find the symbol error rate performance for a time diversity scheme, in which
the source transmits the same message in three consecutive time slots. Assume a
first-order Markov model for the time correlation as follows

hs,d(t + 1) = ρhs,d(t)+
√
(1− ρ2)n

where hs,d(t) is the channel gain at time t , and ρ is the correlation coefficient.
The channel is modeled as a Rayleigh flat-fading channel with unit variance.

Plot the symbol error rate expression versus the SNR for different values of ρ.
6.3 Consider a symmetric network scenario in which all channels have identical

statistics. Find the optimal power allocation among the relays and the source.
Find the optimal power allocation for the following two scenarios:

(a) A three-relay decode-and-forward network in which a C(1) scheme is used;
(b) a three-relay source-only amplify-and-forward network.



236 Multi-node cooperative communications

6.4 Write a Matlab code to compare the BPSK bit error rate performance of N = 2-
relay C(1) decode-and-forward protocol and N = 2-relay source-only amplify-
and-forward protocols. Assume the source–destination channel variance to be
equal to 1. Take N = 2, 3, 4. Consider the following three cases:
(a) All relays close to the source.
(b) All relays close to the destination.
(c) All relays are at mid-distance between the source and the destination.
For all of the previous cases assume the channel variance between any two relays
to be equal to 1. What is the effects of increasing N to 3 on the performance gap
between the two schemes?

6.5 Consider a multi-relay decode-and-forward protocol. For an average SNR of
20 dB per symbol and a spectral efficiency of 1 bps/Hz. Find the minimum num-
ber of relays to achieve a bit error rate of 10−4. Assume a unit variance between
the source and the destination and that all relays are close to the source with all
inter-relay channel variance being equal to 1.
(a) What is the corresponding number of relays for amplify-and-forward

relaying?
(b) Repeat for a bit error rate requirement of 10−6.
(c) Find the minimum number of relays in all of the previous cases when the

relays are closer to the destination.
6.6 Compare the bit error rate performance of a 2 × 1 Alamouti scheme and a

one-relay decode-and-forward system under the following scenarios assuming
an exponential propagation path-loss with exponent 3 and BPSK modulation.
Assume the channel variance for a unit distance is normalized to 1.
(a) The relay is at the mid-point of the source–destination link with the source–

destination separation equal to 1 and 2.
(b) The source–destination channel variance is 2 and the relay is located 0.25

from the source node.
(c) The source–destination separation distance is 2 and the relay is located 0.25

from the destination.
6.7 As shown in this chapter, cooperation provides both spatial diversity gains and

power gains due to its multi-hop nature. Time diversity schemes on the other hand
can only provide diversity gains. Consider a source–destination pair separated
with distance d . Calculate the bit error rate (BER) of binary phase shift keying
(BPSK) for the following two transmission schemes.
(a) A direct transmission scheme in which the source uses a two-repetition code

under an average power constraint P per bit. In this repetition coding, a bit
is transmitted twice in two consecutive time slots. Assume flat fading i.i.d.
channel.

(b) A cooperative diversity scheme in which the source transmits in the first slot
and the relay uses amplify-and-forward to forward the bit in the second time
slot.
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6.8 The relay state vector SN , which represents whether each relay has decoded
correctly or not, was defined as

Sn[k] =
{

1 if relay k correctly decodes,

0 otherwise,
1 ≤ k ≤ n.

Find the probability mass function of the vector SN .
6.9 The outage probability for the amplify-and-forward scenario was specified as

Pout
AF (p, R) � Pr

{
W < (2(N+1)R − 1)

}
= 1

(N + 1)!

(
N+1∏
i=1

λi

)(
2(N+1)R − 1

)N+1 + H.O.T.

in (6.133). Prove this expression.



7 Distributed space–time and
space–frequency coding

The main drawback of the multi-node decode-and-forward (DF) protocol and the multi-
node amplify-and-forward (AF) protocol, presented in Chapter 5, is the loss in the data
rate as the number of relay nodes increases. The use of orthogonal subchannels for the
relay node transmissions, either through TDMA or FDMA, results in a high loss of
the system spectral efficiency. This leads to the use of what is known as distributed
space–time coding (DSTC) and distributed space–frequency coding (DSFC), where
relay nodes are allowed to simultaneously transmit over the same channel by emu-
lating a space–time or a space–frequency code. The term distributed comes from the
fact that the virtual multi-antenna transmitter is distributed between randomly located
relay nodes. Employing DSTCs or DSFCs reduces the data rate loss due to relay nodes
transmissions without sacrificing the system diversity order, as will be seen in this
chapter.

7.1 Distributed space–time coding (DSTC)

In this section, the design of distributed space–time codes for wireless relay networks
is considered. The two-hop relay network model depicted in Figure 7.1, where the sys-
tem lacks a direct link from the source to destination node, is considered. Distributed
space–time (space–frequency) coding can be achieved through node cooperation to
emulate multiple antennas transmitter. First, the decode-and-forward protocol, in which
each relay node decodes the symbols received from the source node before retrans-
mission, is considered. A space–time code designed to achieve full diversity and
maximum coding gain over MIMO channels is shown to achieve full diversity but
does not necessarily maximize the coding gain if used with the decode-and-forward
protocol. Next, the amplify-and-forward protocol is considered; each relay node can
only perform simple operations such as linear transformation of the received signal
and then amplify the signal before retransmission. A space–time code designed to
achieve full diversity and maximum coding gain over MIMO channels is shown to
achieve full diversity and maximum coding gain if used with the amplify-and-forward
protocol.

Next, the design of DSTC that can mitigate the relay nodes synchronization errors is
considered. Most of the work on cooperative transmission assume perfect synchroniza-
tion between the relay nodes, which means that the relays’ timings, carrier frequencies,
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Source Destination

hs,r1 Relay 2

Relay 1

Relay n

hs,r2

hs,rn

hr1,d

hr2,d

hrn,d

Fig. 7.1 Simplified system model for the two-hop distributed space–time codes.

and propagation delays are identical. Perfect synchronization is difficult to achieve
among randomly located relay nodes. To simplify the synchronization in the network,
a diagonal structure is imposed on the space–time code used. The diagonal structure of
the code bypasses the perfect synchronization problem by allowing only one relay to
transmit at any time slot (assuming TDMA). Hence, it is not necessary to synchronize
simultaneous in-phase transmissions of randomly located relay nodes, which greatly
simplifies the synchronization among the relay nodes.

7.1.1 DSTC with the DF protocol

In this section, the system model for DSTC with decode-and-forward cooperation
protocol is presented, and a system performance analysis is provided.

7.1.1.1 System model
The source node is assumed to have n relay nodes assigned for cooperation as shown in
Figure 7.1. The system has two phases given as follows. In phase 1, the source transmits
data to the relay nodes with power P1. The received signal at the k-th relay is modeled as

ys,rk =
√

P1hs,rk s+ vs,rk , k = 1, 2, . . . , n, (7.1)

where s is an L × 1 transmitted data vector with a power constraint ||s||2F ≤ L , where
|| · ||2F denotes the Frobenius norm and hs,rk ∼ CN (0, δ2

s,rk ) denotes the channel gain
between the source node and the k-th relay node. The channel gains from the source
node to the relay nodes are assumed to be independent. All channel gains are fixed
during the transmission of one data packet and can vary from one packet to another, i.e.,
a block flat-fading channel model is assumed. In (7.1), vs,ri ∼ CN (0, N0In) denotes
additive white Gaussian noise (AWGN), where In denotes the n × n identity matrix.

The n relay nodes try to decode the received signals from the source node. Each relay
node is assumed to be capable of deciding whether or not it has decoded correctly. If a
relay node decodes correctly, it will forward the source data in the second phase of the
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cooperation protocol; otherwise, it remains idle. This can be achieved through the use
of cyclic redundancy check (CRC) codes. This performance can also be approached by
setting a SNR threshold at the relay nodes, and the relay will only forward the source
data if the received SNR is larger than that threshold. For the analysis in this section,
the relay nodes are assumed to be synchronized either by a centralized or a distributed
algorithm.

In phase 2, the relay nodes that have decoded correctly re-encode the data vector s
with a pre-assigned code structure. In the subsequent development, no specific code
design will be assumed, instead a generic space–time (ST) code structure is considered.
The ST code is distributed among the relays such that each relay will emulate a single
antenna in a multiple-antenna transmitter. Hence, each relay will generate a column in
the corresponding ST code matrix. Let Xr denote the K × n space–time code matrix
with K ≥ n. Column k of Xr represents the code transmitted from the k-th relay node.
The signal received at the destination is given by

yd =
√

P2Xr DIhd + vd , (7.2)

where

hd =
[
hr1,d, hr2,d, . . . , hrn ,d

]T (7.3)

is an n×1 channel gains vector from the n relays to the destination, hrk ,d ∼ CN (0, δ2
rk ,d
),

and P2 is the relay node power. Without loss of generality, equal power allocation among
the relay nodes is assumed. The channel gains from the relay nodes to the destination
node are assumed to be statistically independent as the relays are spatially separated.
The K × 1 vector vd ∼ CN (0, N0IK ) denotes AWGN at the destination node.

The state of the k-th relay, i.e., whether it has decoded correctly or not, is denoted
by the random variable Ik (1 ≤ k ≤ n), which takes values 1 or 0 if the relay decodes
correctly or erroneously, respectively. Let

I = [I1, I2, . . . , In]T (7.4)

denote the state vector of the relay nodes and nI denote the number of relay nodes that
have decoded correctly corresponding to a certain realization I. The random variables
Ik’s are statistically independent as the state of each relay depends only on its channel
conditions to the source node, which are independent from other relays. The matrix

DI = diag(I1, I2, . . . , In) (7.5)

in (7.2) is defined as the state matrix of the relay nodes. An energy constraint is imposed
on the generated ST code such that ||Xr ||2F ≤ L , and this guarantees that the transmitted
power per source symbol is less than or equal to P1 + P2.

7.1.1.2 Performance analysis
In this section, the pairwise error probability (PEP) performance analysis for the coop-
eration scheme described in Section 7.1.1.1 is provided. The diversity and coding gain
achieved by the protocol are then analyzed.
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One can see that the random variable Ik is a Bernoulli random variable. Therefore,
the probability distribution of Ik is given by

Ik =
{

0 with probability = 1− (1− SERk)
L

1 with probability = (1− SERk)
L ,

where SERk is the un-coded SER at the k-th relay node and is modulation dependent.
For M-ary quadrature amplitude modulation (M-QAM, M = 2p with p even), the exact
expression for SERk can be shown to be upper-bounded by

SERk ≤ 2N0g

bP1δ2
s,rk

, (7.6)

where b = 3/(M − 1) and

g = 4R

π

∫ π/2

0
sin2 θdθ − 4R2

π

∫ π/4

0
sin2 θdθ, (7.7)

in which

R = 1− 1√
M
. (7.8)

The destination is assumed to have perfect channel state information as well as the
relay nodes state vector. The destination applies a maximum likelihood (ML) receiver,
which is based on a minimum distance rule. The conditional pairwise error probability
(PEP) is given by

Pr (X1 → X2|I, hd)

= Pr
(
‖yd −

√
P2X1DIhd‖2

F > ‖yd −
√

P2X2DIhd‖2
F |I, hd , X1 was transmitted

)
,

(7.9)

where X1 and X2 are two possible transmitted codewords. The conditional PEP can be
expressed as quadratic form of a complex Gaussian random vector as

Pr (X1 → X2|I, hd) = Pr (q < 0|I, hd) , (7.10)

where

q = [ zH
1 zH

2

] [ In 0
0 −In

] [
z1

z2

]
,

z1 =
√

P2 (X1 − X2)DIhd + vd , (7.11)

and

z2 = vd . (7.12)

The random vectors hd and I are mutually independent as they arise from independent
processes. First, the conditional PEP was averaged over the channel realizations hd . By
defining the signal matrix

CI = (X1 − X2)DIdiag(δ2
r1,d, δ

2
r2,d, . . . , δ

2
rn ,d)DI (X1 − X2)

H , (7.13)
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the conditional PEP in (7.10) can be tightly upper-bounded, using equation (2.13), by

Pr (X1 → X2|I) ≤

(
2�(I)− 1
�(I)− 1

)
N�(I)0

P�(I)2

∏�(I)
i=1 λ

I
i

, (7.14)

where �(I) is the number of nonzero eigenvalues of the signal matrix and λI
i ’s are the

nonzero eigenvalues of the signal matrix corresponding to the state vector I. The
nonzero eigenvalues of the signal matrix are the same as the nonzero eigenvalues of
the matrix

� (X1,X2) = diag(δr1,d, δr2,d, . . . , δrn ,d)DI�(X1,X2)DIdiag(δr1,d, δr2,d, . . . , δrn ,d),

where

�(X1,X2) = (X1 − X2)
H (X1 − X2) . (7.15)

The employed space–time scheme is assumed to achieve full diversity and maximum
coding gain over MIMO channels, which means that the matrix �(X1,X2) is full
rank of order n for any pair of distinct codewords X1 and X2. Achieving maximum
coding gain means that the minimum of the products

∏n
i=1 λi , where the λi ’s are

the eigenvalues of the matrix �(X1,X2), is maximized over all the pairs of distinct
codewords.

Clearly, if the matrix �(X1,X2) has a rank of order n then the matrix � (X1,X2)

will have a rank of order nI, which is the number of relays that have decoded correctly.
Equation (7.14) can now be rewritten as

Pr (X1 → X2|I) ≤

(
2nI − 1
nI − 1

)
NnI

0

PnI
2

∏nI
i=1 λ

I
i

. (7.16)

Next, the conditional PEP is averaged over the relays’ state vector I. The dependence
of the expression in (7.16) on I appears through the set of nonzero eigenvalues

{
λI

i

}nI
i=1,

which depends on the number of relays that have decoded correctly and their realiza-
tions. The state vector I of the relay nodes determines which columns from the ST code
matrix are replaced with zeros and thus affect the resulting eigenvalues.

The probability of having a certain realization of I is given by

Pr(I) =
⎛⎝ ∏

k∈C R(I)

(1− SERk)
L

⎞⎠⎛⎝ ∏
k∈E R(I)

(
1− (1− SERk)

L
)⎞⎠ , (7.17)

where C R(I) is the set of relays that have decoded correctly and E R(I) is the set of
relays that have decoded erroneously corresponding to the I realization. For simplicity
of presentation symmetry is assumed between all relays, i.e., is δ2

s,rk = δ2
s,r and δ2

rk ,d
=

δ2
r,d for all k. Averaging over all realizations of the states of the relays, gives the PEP at

high SNR as
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PEP = Pr(X1 → X2)

≤
n∑

k=0

(
(1− SER)L

)k (
1− (1− SER)L

)n−k ∑
I: nI=k

(
2k − 1
k − 1

)
Nk

0

Pk
2

∏k
i=1 λ

I
i

, (7.18)

where SER is now the symbol error rate at any relay node due to the symmetry
assumption.

The diversity order of a system determines the average rate with which the error
probability decays at high enough SNR. In order to compute the diversity order of the
system, the PEP in (7.18) is rewritten in terms of the SNR defined as SNR = P/N0,
where P = P1 + P2 is the transmitted power per source symbol. Let P1 = αP and
P2 = (1 − α)P , where α ∈ (0, 1). Substituting these definitions along with the SER
expressions at the relay nodes from (7.6) into (7.18) and considering high SNR, the PEP
can be upper-bounded as

Pr(X1 → X2 ) ≤ SNR−n
n∑

k=0

(
2Lg

bαδ2
s,r

)n−k ∑
I: nI=k

(
2k − 1
k − 1

)
(1− α)k ∏k

i=1 λ
I
i

,
(7.19)

where at high SNR

1− (1− SER)L ≈ LSER (7.20)

and upper-bounding 1− LSER by 1. The diversity gain is defined as

d = lim
SNR→∞−

log(PEP(SNR))

log(SNR)
. (7.21)

Applying this definition to the PEP in (7.19), when the number of cooperating nodes is
n, gives

dDF = lim
SNR→∞−

log(PEP(SNR))

log(SNR)
= n. (7.22)

Hence, any code that is designed to achieve full diversity over MIMO channels will
achieve full diversity in the distributed relay network if it is used in conjunction with
the decode-and-forward protocol.

If full diversity is achieved, the coding gain is

CDF =

⎛⎜⎜⎜⎝
n∑

k=0

(
2ng

bαδ2
s,r

)n−k ∑
I: nI=k

(
2k − 1
k − 1

)
(1− α)k ∏k

i=1 λ
I
i

⎞⎟⎟⎟⎠
− 1

n

, (7.23)

which is a term that does not depend on the SNR. To minimize the PEP bound the coding
gain of the distributed space–time code needs to be maximized. This is different from the
determinant criterion in the case of MIMO channels as discussed in Chapter 2. Hence,
a space–time code designed to achieve full diversity and maximum coding gain over
MIMO channels will achieve full diversity but not necessarily maximizing the coding
gain if used in a distributed fashion with the decode-and-forward protocol. Intuitively,



244 Distributed space–time and space–frequency coding

the difference is due to the fact that in the case of distributed space–time codes with
decode-and-forward protocol, not all of the relays will always transmit their correspond-
ing code matrix columns. The design criterion used in the case of distributed space–time
codes makes sure that the coding gain is significant over all sets of possible relays that
have decoded correctly. Although it is difficult to design codes to maximize the coding
gain as given by (7.23), this expression gives insight on how to design good codes. The
code design should take into consideration the fact that not all of the relays will always
transmit in the second phase.

Example 7.1 In this example, a simple design of DSTC with the decode-and-forward
protocol is considered. Consider the case of two relay nodes emulating the Alamouti
scheme. In the first phase, the source broadcasts the data vector s = [s1, s2]T, where
s1 and s2 are carved from any QAM constellation. In phase 2, relay nodes emulate a
two-antenna transmitter and transmit the 2× 2 code given by(

s1 s∗2
s2 −s∗1

)
,

where the i-th row is transmitted by the i-th relay node. If a relay nodes decodes in error
in phase 1, it will remain idle (i.e., transmits zeros) in phase 2.

We will have four possible states for the relay nodes after phase 1, each of which will
depend on which relay(s) decoded correctly or erroneously after phase 1. The first state
will correspond to the case when both relays erroneously decoded the source symbol.
Under the assumption of having independent relay nodes channels, then the probability
of error corresponding to that event will behave as∝ 1/SNR2 at high SNRs. The second
state will correspond to the case when the first relay decodes correctly and the other
relay decodes erroneously. The probability of that event will behave as 1/SNR (which
corresponds to the probability of error at the second relay node). In this state, relay 1
will transmit its part of the code while relay 2 remains idle. The probability of error at
the destination node corresponding to that state will behave as ∝ 1/SNR since we only
a transmission from one relay node at the destination. Hence, the contribution of this
state to the destination SER will behave as ∝ 1/SNR2 at high SNRs (since it will be the
multiplication of the probability of the state and the destination error corresponding to
this state). The third state, which corresponds to the case when the first relay decodes
erroneously and the second relay decodes correctly, will be similar to the second state.
In the fourth state, which corresponds to both relays decoding correctly, the destination
error will behave as ∝ 1/SNR2 at high SNRs due to the use of Alamouti scheme as the
coding scheme at the relay nodes. Therefore, the overall destination error expression
will behave as ∝ 1/SNR2 at high SNRs. In this case, closed from expressions for the
SER can be derived (see Exercise 7.2). �

From the above example, we can see that the Alamouti scheme, which achieves full
diversity over MIMO channels, can be used in a distributed fashion to achieve full
diversity over relay channels.
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7.1.2 DSTC with the AF protocol

In this section, the distributed space–time coding based on the amplify-and-forward
protocol is introduced. The relays do not perform any hard decision operation on the
received data vectors. The system model is presented and a performance analysis is
provided.

7.1.2.1 System model
The system has two phases as follows. In phase 1, if n relays are assigned for coopera-
tion, the source transmits data to the relays with power P1 and the signal received at the
k-th relay is as modeled in (7.1) with L = n. Without loss of generality, symmetry of
the relay nodes is assumed, i.e., hs,rk ∼ CN (0, δ2

s,r), ∀k and hrk ,d ∼ CN (0, δ2
r,d), ∀k.

In the amplify-and-forward protocol, relay nodes do not decode the received signals.
Instead, the relays can only amplify the received signal and perform simple operations
such as permutations of the received symbols or other forms of unitary linear transfor-
mations. Let Ak denote the n × n unitary transformation matrix at the k-th relay node.

Each relay will normalize the received signal by the factor
√
(P2/n)/(P1δ2

s,r + N0) to

satisfy a long-term power constraint. It can be easily shown that this normalization will
give a transmitted power per symbol of P = P1 + P2.

The n × 1 received data vector from the relays at the destination node can be
modeled as

yd =
√

P2/n

P1δ2
s,r + N0

X̃r hd + vd , (7.24)

where hd =
[
hr1,d, hr2,d, . . . , hrn ,d

]T is an n × 1 vector channel gains from the n relays
to the destination and hri ,d ∼ CN (0, δ2

r,d), X̃r is the n × n code matrix given by

X̃r =
[
hs,r1A1s, hs,r2A2s, . . . , hs,rn Ans

]
,

and vd denotes additive white Gaussian noise. Each element of vd has the distribution of

CN
(

0, N0

(
1+ P2/n

P1δ2
s,r + N0

n∑
i=1

|hri ,d|2
))

,

and vd accounts for both the noise propagated from the relay nodes as well as the noise
generated at the destination. It can be easily shown that restricting the linear transfor-
mations at the relay nodes to be unitary causes the elements of the vector vd to be
independent.

Now, the received vector in (7.24) can be rewritten as

yd =
√

P2 P1/n

P1δ2
s,r + N0

Xr h+ vd , (7.25)

where

h = [ hs,r1hr1,d, hs,r2hr2,d, . . . , hs,rn hrn ,d
]T (7.26)
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and

Xr = [A1s,A2s, . . . ,Ans] (7.27)

plays the role of the space–time codeword.

7.1.2.2 Performance analysis
In this section, a pairwise error probability analytical framework is used to derive the
code design criteria. The PEP of mistaking X1 by X2 can be upper-bounded by the
following Chernoff bound:

Pr(X1 → X2) ≤

E

{
exp

⎛⎝− P1 P2/n

4N0

(
P1δ2

s,r + N0 + P2
n

∑n
i=1 |hri ,d|2

)hH(X1 − X2)
H(X1 − X2)h

⎞⎠}.
(7.28)

Averaging over the source-to-relay channel coefficients, which are complex Gaussian
random variables, gives

Pr(X1 → X2) ≤Ehr1,d,...,hrn ,d
det−1

[
In +

δ2
s,r P1 P2/n

4N0

(
P1δ2

s,r + N0 + P2
n

∑n
i=1 |hri ,d|2

)
(X1 − X2)

H(X1 − X2)diag(|hr1,d|2, |hr2,d|2, . . . , |hrn ,d|2)
]
,

(7.29)

where In is the n × n identity matrix. Define the matrix

M = δ2
s,r P1 P2/n

4N0

(
P1δ2

s,r + N0 + P2
n

∑n
i=1 |hri ,d|2

)�(X1,X2)

diag(|hr1,d|2, |hr2,d|2, . . . , |hrn ,d|2).
(7.30)

The bound in (7.29) can be written in terms of the eigenvalues of M as

Pr(X1 → X2) ≤ Ehr1,d,...,hrn ,d

1∏n
i=1(1+ λMi )

, (7.31)

where λMi is the i-th eigenvalue of the matrix M. If P1 = αP and P2 = (1 − α)P ,
where P is the power per symbol for some α ∈ (0, 1) and define SNR = P/N0, the
eigenvalues of M increase with the increase of the SNR. Now assuming that the matrix
M has full rank of order n, the following approximations hold at high SNR:
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n∏
i=1

(1+ λMi )

� 1+
n∏

i=1

λMi

= 1+
⎛⎝ δ2

s,r P1 P2/n

4N0

(
P1δ2

s,r + N0 + P2
n

∑n
i=1 |hri ,d|2

)
⎞⎠n

n∏
i=1

λi

n∏
i=1

|hri ,d|2

�
n∏

i=1

⎛⎝1+ δ2
s,r P1 P2/n

4N0

(
P1δ2

s,r + N0 + P2
n

∑n
i=1 |hri ,d|2

)λi |hri ,d|2
⎞⎠ , (7.32)

where the λi ’s are the eigenvalues of the matrix�(X1,X2). The determinant of a matrix
equals the product of the matrix eigenvalues and the determinant of the multiplication
of two matrices equals the product of the individual matrices’ determinants.

The PEP in (7.31) can now be approximated at high SNR as

Pr(X1 → X2)

≤ Ehr1,d,...,hrn ,d

1∏n
i=1(1+ δ2

s,r P1 P2/n

4N0

(
P1δ

2
s,r+N0+ P2

n

∑n
i=1 |hri ,d|2

)λi |hri ,d|2)
. (7.33)

Consider now the term h = ∑n
i=1 |hri ,d|2 in (7.33), which can be reasonably approx-

imated as
∑n

i=1 |hri ,d|2 ≈ nδ2
r,d, especially for large n (by the strong law of large

numbers). Averaging the expression in (7.33) over the exponential distribution of |hri ,d|2
gives

Pr(X1 → X2) ≤
n∏

i=1

⎛⎝ (δ2
s,rδ

2
r,d P1 P2/n)λi

4N0

(
P1δ2

s,r + N0 + P2δ
2
r,d

)
⎞⎠−1

×
n∏

i=1

⎡⎣− exp

⎛⎝−4N0

(
P1δ

2
s,r + N0 + P2δ

2
r,d

)
(δ2

s,rδ
2
r,d P1 P2/n)λi

⎞⎠
×Ei

⎛⎝−4N0

(
P1δ

2
s,r + N0 + P2δ

2
r,d

)
(δ2

s,rδ
2
r,d P1 P2/n)λi

⎞⎠⎤⎦ , (7.34)

where Ei(.) is the exponential integral function defined as

Ei(μ) =
∫ μ

−∞
exp(t)

t
dt, μ < 0. (7.35)

The exponential integral function can be approximated as μ tends to 0 as

− Ei(μ) ≈ ln

(
− 1

μ

)
, μ < 0. (7.36)
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At high SNR (high P), we have

exp

⎛⎝−4N0

(
P1δ

2
s,r + N0 + P2δ

2
r,d

)
(δ2

s,rδ
2
r,d P1 P2/n)λi

⎞⎠ ≈ 1, (7.37)

and using the approximation for the Ei(.) function provides the bound in (7.1.2.2) as

Pr(X1 → X2)

≤
n∏

i=1

⎛⎝ (δ2
s,rδ

2
r,d P1 P2/n)λi

4N0

(
P1δ2

s,r + P2δ
2
r,d

)
⎞⎠−1

n∏
i=1

ln

⎛⎝ (δ2
s,rδ

2
r,d P1 P2/n)λi

4N0

(
P1δ2

s,r + P2δ
2
r,d

)
⎞⎠ . (7.38)

Let P1 = αP and P2 = (1−α)P , where P is the power per symbol, for some α ∈ (0, 1).
With the definition of the SNR as SNR = P/N0, the bound in (7.38) can be given as

Pr(X1 → X2) ≤ aAF
1∏n

i=1 λi
SNR−n

n∏
i=1

(ln(SNR)+ ln (Ci ))

� aAF
1∏n

i=1 λi
SNR−n (ln(SNR))n , (7.39)

where

Ci =
(δ2

s,rδ
2
r,dα(1− α)/n)λi

4
(
αδ2

s,r + (1− α)δ2
r,d

) , i = 1, . . . , n,

are constant terms that do not depend on the SNR and aAF is a constant that depends on
the power allocation parameter α and the variances of the channels. The ln (Ci ) terms
are neglected at high SNRs resulting in the last bound in (7.39). The diversity order of
the system can be calculated as

dAF = lim
SNR→∞−

log(PEP)

log(SNR)
= n. (7.40)

The system will achieve a full diversity of order n if the matrix M is full rank, that is the
code matrix �(X1,X2) must be full rank of order n over all distinct pairs of codewords
X1 and X2. It can be easily shown, following the same approach, that if the code matrix
�(X1,X2) is rank deficient, then the system will not achieve full diversity. So any code
that is designed to achieve full diversity over MIMO channels will achieve full diversity
in the case of amplify-and-forward distributed space–time coding scheme.

If full diversity is achieved, the coding gain is given as

CAF =
(

aAF
1∏n

i=1 λi

)− 1
n

.

To maximize the coding gain of the amplify-and-forward distributed space–time codes
the product

∏n
i=1 λi needs to be maximized, which is the same as the determinant cri-

terion used over MIMO channels as presented in Chapter 2. So if a space–time code
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is designed to maximize the coding gain over MIMO channels, it will also maximize
the coding gain if it can be used in a distributed fashion with the amplify-and-forward
protocol.

7.1.3 Synchronization-aware distributed DSTC

In this section, the design of distributed space–time codes that relax the stringent syn-
chronization requirement is considered. Most of the work on cooperative transmission
assumed perfect synchronization between the relay nodes, which means that the relays’
timings, carrier frequencies, and propagation delays are identical. To simplify the syn-
chronization in the network a diagonal structure is imposed on the space–time code
used (refer to the diagonal space–time codes presented in Section 2.1.2). Figure 7.2
shows the time frame structure for the conventional decode-and-forward (amplify-and-
forward) distributed space–time codes and the diagonal distributed space–time codes
(DDSTCs). The diagonal structure of the code bypasses the perfect synchronization
problem by allowing only one relay to transmit at any time slot. Hence, synchroniz-
ing simultaneous in-phase transmissions of randomly distributed relay nodes is not
necessary. This greatly simplifies the synchronization since nodes can maintain slot
synchronization, which means that coarse slot synchronization is available. For exam-
ple, any synchronization scheme that is used for TDMA systems can be employed to
achieve synchronization in the network. However, fine synchronization is more difficult
to be achieved. Guard intervals are introduced to ensure that the transmissions from dif-
ferent relays are not overlapped. One relay is allowed to consecutively transmit its part
of the space–time code from different data packets. This allows the overhead introduced
by the guard intervals to be neglected. Figure 7.3 shows the effect of propagation delay

Relay 1 Relay 2 Relay nSource node transmission

(b)

In-phase transmissions of relay nodesSource node transmission

Phase 1 transmission

(a)

Phase 2 transmission

Phase 1 transmission Phase 2 transmission

Fig. 7.2 Time frame structure for (a) decode-and-forward (amplify-and-forward)-based system, (b)
DDSTC-based system.
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Sampling point

Signal from first relay
Signal from second relay

Fig. 7.3 Baseband signals (each is raised cosine pulse-shaped) from two relays at the receiver.

on the received signal from two relays. The sampling time in Figure 7.3 is the optimum
sampling time for the first relay signal, but clearly it is not optimal for the second relay
signal.

7.1.3.1 System model
In this subsection, the system model with n relay nodes, which helps the source by
emulating a diagonal STC, is introduced. The system has two phases with the time
frame structure shown in Figure 7.2(b). In phase 1, the received signals at the relay
nodes are modeled as in (7.1) with L = n.

In phase 2, the k-th relay applies a linear transformation tk to the received data vector,
where tk is an 1× n row vector, as

yrk = tkys,rk

= √P1hs,rk tks+ tkvs,rk

= √P1hs,rk xk + vrk , (7.41)

where xk = tks and vrk = tkvs,rk . If the linear transformations are restricted to have unit
norm, i.e., ||tk ||2 = 1 for all k, then vrk is CN (0, N0). The relay then multiplies yrk by
the factor

βk ≤
√

P2

P1|hs,rk |2
(7.42)

to satisfy a power constraint of P = P1+ P2 transmitted power per source symbol. The
received signal at the destination due to the k-th relay transmission is given by

yk = hrk ,dβk

√
P1hs,rk xk + hrk ,dβkvrk + ṽk

= hrk ,dβk

√
P1hs,rk xk + zk, k = 1, . . . , n, (7.43)
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where ṽk is modeled as CN (0, N0) and hence, zk , given the channel coefficients is
CN (0, (β2

k |hrk ,d|2 + 1)N0), k = 1, . . . , n.

7.1.3.2 Performance Analysis
In this subsection, the code design criterion of the DDSTC based on the PEP analysis
is derived. In the following, the power constraint in (7.42) is set to be satisfied with
equality.

Now, we start deriving a PEP upper bound to derive the code design criterion. Let σ 2
k

denote the variance of zk in (7.43) and is given as

σ 2
k =

(
P2|hrk ,d|2
P1|hs,rk |2

+ 1

)
N0, k = 1, . . . , n. (7.44)

Then, define the codeword vector x from (7.41) as

x =
[
tT1 , t

T
2 , . . . , t

T
n

]T
︸ ︷︷ ︸

T

s = Ts, (7.45)

where T is an n × n linear transformation matrix. From x define the n × n code matrix
X = diag(x), which is a diagonal matrix with the elements of x on its diagonal. Let
y = [y1, y2, . . . , yn]T denote the received data vector at the destination node as given
from (7.43).

Using our system model assumptions, the pdf of y given the source data vector s and
the channel state information (CSI) is given by

p(y|s,CSI) =
(

n∏
i=1

1

πσ 2
i

)
exp

⎛⎝− n∑
i=1

1

σ 2
i

∣∣∣∣∣yi −
√

P1 P2

P1|hs,ri |2
hs,ri hri ,dxi

∣∣∣∣∣
2
⎞⎠ . (7.46)

From which, the maximum likelihood (ML) decoder can be expressed as

arg max
s∈S

p(y|s,CSI) = arg min
s∈S

n∑
i=1

1

σ 2
i

∣∣∣∣∣yi −
√

P1 P2

P1|hs,ri |2
hs,ri hri ,dxi

∣∣∣∣∣
2

, (7.47)

where S is the set of all possible transmitted source data vectors.
The PEP of mistaking X1 by X2 can be upper-bounded as

Pr(X1 → X2) ≤ E {exp (λ[ln p(y|s2)− ln p(y|s1)])} , (7.48)

where X1 and X2 are the code matrices corresponding to the source data vectors s1 and
s2, respectively. Equation (7.48) applies for any λ, which is a parameter that can be
adjusted to get the tightest bound. Now, the PEP can be written as

Pr(X1 → X2) ≤ E

{
exp

(
− λ
[ n∑

i=1

1

σ 2
i

(√
P1 P2

P1|hs,ri |2
hs,ri hri ,d(x1i − x2i )z

∗
i

+
√

P1 P2

P1|hs,ri |2
h∗s,ri h

∗
ri ,d(x1i − x2i )

∗zi + P1 P2

P1|hs,ri |2
|hs,ri |2|hri ,d|2|x1i − x2i |2

)])}
,

(7.49)
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where the expectation is over the noise and channel coefficients statistics and xi j is the
j-th element of the i-th code vector.

To average the expression in (7.49) over the noise statistics, define the receiver noise
vector z = [z1, z2, . . . , zn]T, where zi ’s are as defined in (7.43). The pdf of z given the
channel state information is given by

p(z|CSI ) =
(

n∏
i=1

1

πσ 2
i

)
exp

(
−

n∑
i=1

1

σ 2
i

zi z
∗
i

)
. (7.50)

Taking the expectation in (7.49) over z given the channel coefficients yields

Pr(X1 → X2)

≤ E

{
exp

(
−λ(1− λ)

n∑
i=1

1

σ 2
i

P1 P2

P1|hs,ri |2
(
|hs,ri |2|hri ,d|2|x1i − x2i |2

))

×
∫

z

(
n∏

i=1

1

πσ 2
i

)
exp

(
−

n∑
i=1

1

σ 2
i

|zi + λ
√

P1 P2

P1|hs,ri |2
hs,ri hri ,d(x1i − x2i )|2

)
dz
}

= E

{
exp

(
−λ(1− λ)

n∑
i=1

1

σ 2
i

P1 P2

P1|hs,ri |2
(
|hs,ri |2|hri ,d|2|x1i − x2i |2

))}
.

(7.51)

Choose λ = 1/2 that maximizes the term λ(1−λ), i.e., minimizes the PEP upper bound.
Substituting for σ 2

i ’s from (7.44), the PEP can be upper-bounded as

Pr(X1 → X2) ≤ E

{
exp

(
−1

4

n∑
i=1

P1|hs,ri |2 P2|hri ,d|2
(P1|hs,ri |2 + P2|hri ,d|2)N0

|x1i − x2i |2
)}

. (7.52)

To get the expression in (7.52), let us define the variable

γi = P1|hs,ri |2 P2|hri ,d|2
(P1|hs,ri |2 + P2|hri ,d|2)N0

, i = 1, . . . , n,

which is the scaled harmonic mean1 of the two exponential random variables
P1|hs,ri |2/N0 and P2|hri ,d|2/N0. Averaging the expression in (7.52) over the channel
coefficients, the upper bound on the PEP can be expressed as

Pr(X1 → X2) ≤
n∏

i=1,x1i �=x2i

Mγi

(
1

4
|x1i − x2i |2

)
, (7.53)

where Mγi (.) is the moment-generating function (MGF) of the random variable γi .
Using the result in Chapter 4 (Equation (4.66)), the MGF for γi can be approximated at
high enough SNR to be

Mγi (s) �
ζi

s
, (7.54)

1 The scaling factor is 1/2 since the harmonic mean of two numbers, g1 and g2, is 2g1g2
g1+g2

.
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where

ζi = N0

P1δ2
s,r
+ N0

P2δ
2
r,d

.

The PEP can now be upper-bounded as

Pr(X1 → X2)

≤ Nn
0

⎛⎝ n∏
i=1,x1i �=x2i

(
1

P1δ2
s,r
+ 1

P2δ
2
r,d

)⎞⎠⎛⎝ n∏
i=1,x1i �=x2i

1

4
|x1i − x2i |2

⎞⎠−1

.
(7.55)

Let P1 = αP and P2 = (1−α)P , where P is the power per symbol, for some α ∈ (0, 1)
and define SN R = P/N0. The diversity order dDDSTC of the system is

dDDSTC = lim
SNR→∞−

log(PEP)

log(SNR)
= min

m �= j
rank(Xm − X j ), (7.56)

where Xm and X j are two possible code matrices. To achieve a diversity order of n,
the matrix Xm − X j should be of full rank for any m �= j (that is xmi �= x ji ∀m �=
j, ∀i = 1, . . . , n). Intuitively, if two code matrices exist for which the rank of the
matrix Xm − X j is not n this means that they have at least one diagonal element that is
the same in both matrices. Clearly, this element can not be used to decide between these
two possible transmitted code matrices and hence, the diversity order of the system is
reduced. This criterion implies that each element in the code matrix is unique to that
matrix and any other matrix will have a different element at that same location and this
is really the source of diversity. Furthermore, to minimize the PEP bound in (7.55) we
need to maximize

min
m �= j

(
n∏

i=1

|xmi − x ji |2
)1/n

, (7.57)

which is called the minimum product distance of the set of symbols s =
[s1, s2, . . . , sn]T. This is the same criteria used to design full-rate, full-diversity space–
frequency codes in Chapter 3. We can use the design presented in Chapter 3 to design
the DDSTC.

Example 7.2 In this example, the performance of the different schemes with two relays
helping the source are compared. In the simulations, the variance of any source–relay
or relay–destination channel is taken to be 1. Figure 7.4 shows the simulations for two
decode-and-forward systems using the Alamouti scheme (DF Alamouti) and the diago-
nal STC (DF DAST), distributed space–time codes based on the linear dispersion (LD)
space–time codes (LD-DSTC) [93] which are based on the AF scheme, and the DDSTC.
In the LD-DSTC, the relay nodes apply linear transformations to the received data vec-
tors. The linear dispersion matrices at the relay nodes are designed to guarantee that full
diversity is achieved at the destination node. In Figure 7.4, the orthogonal distributed
space–time codes (O-DSTC) in [94, 97] are simulated. The O-DSTC are similar to the
LD-DSTC in the way the code is constructed. However, the design of the dispersion
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Fig. 7.4 BER for two relays with data rate 1 bit/sym.
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Fig. 7.5 BER for three relays with data rate 1 bit/sym.

matrices at the relay nodes in the case of O-DSTC is done in a way to reduce the com-
plexity of the detector at the receiver. For the case of two relays, O-DSTC reduces to
the Alamouti-based DSTC.

All of the above systems have a data rate of (1/2). QPSK modulation is used, which
means that a rate of one transmitted bit per symbol (1 bit/sym) is achieved. Figure 7.5
shows the simulation results for two decode-and-forward systems using the G3 ST block
code presented in Chapter 2 and the diagonal STC (DF DAST), LD-DSTC, and the
DDSTC. For fair comparison the number of transmitted bits per symbol is fixed to be
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1 bit/sym. The G3 ST block code has a data rate of (1/2) [211], which results in an
overall system data rate of (1/3). Therefore, 8-PSK modulation is employed for the
system that uses the G3 ST block code. For the other three systems QPSK modulation
is used as these systems have a data rate of (1/2). Clearly, the decode-and-forward-
based schemes outperform the amplify-and-forward-based schemes but this is under
the assumption that each relay node can decide whether it has decoded correctly or
not. Intuitively, the decode-and-forward will deliver signals that are less noisy to the
destination. The noise is suppressed at the relay nodes by transmitting a noise-free ver-
sion of the signal. The amplify-and-forward delivers more noise to the destination due
to noise propagation from the relay nodes. However, the amplify-and-forward based
schemes have the advantage of simple processing at the relay nodes, which makes the
design of relay nodes simpler in this case compared to the decode-and-forward-based
schemes. �

Example 7.3 In this example, the effect of the synchronization errors on the system
BER performance is investigated. Figure 7.6 shows the case of having two relays help-
ing the source and propagation delay mismatches of T2 = 0.2T, 0.4T, and 0.6T ,
where T is the time slot duration. Raised cosine pulse-shaped waveforms were used
with roll-off factor of 0.2 and QPSK modulation. Figure 7.7 shows the case of having
three relays helping the source for different propagation delay mismatches. A decode-
and-forward (DF) system using the G3 ST block code of [211] and the DDSTC were
compared. For fair comparison the number of transmitted bits per symbol is fixed to be
1 bit/sym. Again, the G3 ST block code has a data rate of (1/2) [211], which results in an
overall system data rate to be (1/3). Therefore, 8-PSK modulation is employed for the
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Fig. 7.6 BER performance with propagation delay mismatch: two-relay case.
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system that uses the G3 ST block code. For the DDSTC, QPSK modulation is used as
the system has a data rate of (1/2). Raised cosine pulse-shaped waveforms with a roll-
off factor of 0.2 are used. It is clear that the synchronization errors can severely reduce
the system BER performance. The DDSTC bypasses this problem by allowing only one
relay transmission at any time slot. The diagonal structure of the code mitigates the
effect of time synchronization mismatches. �

7.2 Distributed space–frequency coding (DSFC)

In this section, we will consider the design of distributed space–frequency coding
(DSFC) for broadband multipath fading channels to exploit the frequency diversity of
the channel. The presence of multipaths in broadband channels provides another means
for achieving diversity across the frequency axis. Exploiting the frequency axis diver-
sity can highly improve the system performance by achieving higher diversity orders.
The main problem for the wireless relay network is how to design space–frequency
codes distributed among spatially separated relay nodes while guaranteeing to achieve
full diversity at the destination node. The spatial separation of the relay nodes presents
other challenges for the design of DSFCs such as time synchronization and carrier offset
synchronization.

In this section, we will present some structures for distributed space–frequency codes
(DSFCs) over wireless broadband relay networks. The presented DSFCs are designed to
achieve the frequency and cooperative diversities of the wireless relay channels. The use
of DSFCs with the decode-and-forward (DF) and amplify-and-forward (AF) protocols
is considered. The code design criteria to achieve full diversity, based on the pairwise
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error probability (PEP) analysis, are derived. For DSFC with the DF protocol, a two-
stage coding scheme, with source node coding and relay nodes coding, is presented.
We derive sufficient conditions for the code structures at the source and relay nodes to
achieve full diversity of order N L , where N is the number of relay nodes and L is the
number of paths per channel. For the case of DSFC with the AF protocol, a structure for
distributed space–frequency coding will be presented and sufficient conditions for that
structure to achieve full diversity will then be derived.

7.2.1 DSFC with the DF protocol

In this section, the design and performance analysis for DSFCs with the DF protocol
are presented. A two-stage structure is presented for the DSFCs with the DF protocol

7.2.1.1 System model
In this section, the system model is presented. The following notations are used: diag(y)
is the T × T diagonal matrix with the elements of y on its diagonal, where y is a T × 1
vector.

Without loss of generality, we assume a two-hop relay channel model, where there
is no direct link from the source node to the destination node. The case when a direct
link exists between the source node and the destination node will be discussed in Sec-
tion 7.2.3. A schematic system model is depicted in Figure 7.8. The system is based on
OFDM modulation with K subcarriers. The channel between the source node and the
n-th relay node is modeled as a multipath fading channel with L paths as

hs,rn (τ ) =
L∑

l=1

αs,rn (l)δ(τ − τl), (7.58)

Source Destination

Relay 1

Relay N

Wireless multipath
fading channel

Wireless multipath
fading channel

Wireless multipath
fading channel

Wireless multipath
fading channel

Fig. 7.8 Simplified system model for the distributed space–frequency codes.
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where τl is the delay of the l-th path, δ(·) is the Dirac delta function, and αs,rn (l) is the
complex amplitude of the l-th path. The αs,rn (l)’s are modeled as zero-mean, complex
Gaussian random variables with variance E

[|αs,rn (l)|2
] = σ 2(l). We assume symme-

try between the relay nodes for simplicity of presentation; the analysis can be easily
extended to the asymmetric case. The channels are normalized such that the chan-
nel variance

∑L
l=1 σ

2(l) = 1. A cyclic prefix is introduced to convert the multipath
frequency-selective fading channels to flat fading subchannels.

The system has two phases as follows. In phase 1, the source node broadcasts the
information to the N relays. The received signal in the frequency domain on the k-th
subcarrier at the n-th relay node is given by

ys,rn (k) =
√

P1 Hs,rn (k)s(k)+ vs,rn (k), k = 1, . . . , K ; n = 1, . . . , N , (7.59)

where P1 is the transmitted source node power, Hs,rn (k) is the channel attenuation of the
source node to the n-th relay node channel on the k-th subcarrier, s(k) is the transmitted
source node symbol on the k-th subcarrier with E

{|s(k)|2} = 1, and vs,rn (k) is the n-th
relay node additive white Gaussian noise on the k-th subcarrier that is modeled as zero-
mean circularly symmetric complex Gaussian random variable with variance N0/2 per
dimension. The subcarrier noise terms are statistically independent assuming that the
time-domain noise samples are statistically independent and identically distributed.2 In
(7.59), Hs,rn (k) is given by

Hs,rn (k) =
L∑

l=1

αs,rn (l)e
−j2π(k−1)� f τl , k = 1, . . . , K , (7.60)

where � f = 1/T is the subcarrier frequency separation and T is the OFDM symbol
duration. We assume perfect channel state information at any receiving node but no
channel information at transmitting nodes.

In phase 2, relays that have decoded correctly in phase 1 will forward the source node
information. Each relay is assumed to be able to decide whether it has decoded correctly
or not. This can be achieved through the use of error detecting codes such as the cyclic
redundancy codes (CRC).

The transmitted K × N space–frequency (SF) codeword from the relay nodes is
given by

Cr =

⎛⎜⎜⎜⎝
Cr(1, 1) Cr(1, 2) · · · Cr(1, N )
Cr(2, 1) Cr(2, 2) · · · Cr(2, N )
...

...
. . .

...

Cr(K , 1) Cr(K , 2) · · · Cr(K , N )

⎞⎟⎟⎟⎠ , (7.61)

2 FFT, which is used to transform the received data from the time-domain to the frequency-domain, can be
represented by a unitary matrix multiplication. Unitary transformation of a Gaussian random vector, whose
components are statistically independent and identically distributed, results in a Gaussian random vector
with statistically independent and identically distributed components.
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where Cr(k, n) is the symbol transmitted by the n-th relay node on the k-th subcarrier.
Note that Cr will be SF code transmitted by the relay nodes if all of them have decoded
correctly in phase 1. The SF is assumed to satisfy the power constraint ||Cr||2F ≤ K .

The received signal at the destination node on the k-th subcarrier is given by

yd(k) =
√

P2

N∑
n=1

Hrn ,d(k)Cr(k, n)In + vrn ,d(k), (7.62)

where P2 is the relay node power, Hrn ,d(k) is the attenuation of the channel between the
n-th relay node and the destination node on the k-th subcarrier, vrn ,d(k) is the destination
additive white Gaussian noise on the k-th subcarrier, and In is the state of the n-th relay.
In will equal 1 if the n-th relay has decoded correctly in phase 1, otherwise, In will
equal 0.

7.2.1.2 Performance analysis
It is now necessary to develop sufficient code design criteria for the DSFC to achieve
full diversity of order N × L . Unlike the case of MIMO space–frequency coding, we
will need a two-stage coding to achieve full diversity at the destination node. Therefore,
the presented DSFCs will have two stages of coding: the first stage is coding at the
source node and the second stage is coding at the relay nodes. The transmitted source
node code will be designed to guarantee a diversity of order L at any relay node, and
this will in turn cause the presented DSFC to achieve full diversity of order N × L , as
will be shown later.

7.2.1.3 Source node coding
Due to the symmetry assumption, the pairwise error probability (PEP) is the same at
any relay node. For two distinct transmitted source node symbols, s and s̃, the PEP can
be tightly upper-bounded as (refer to Chapter 3)

P E P(s → s̃) ≤
(

2ν − 1
ν

)( ν∏
i=1

λi

)−1 (
P1

N0

)−ν
(7.63)

and ν is the rank of the matrix C ◦ R where

C = (s− s̃)(s− s̃)H,

R = E
{
Hs,rn HH

s,rn

}
,

and

Hs,rn = [Hs,rn (1), . . . , Hs,rn (K )]T.

Here the λi ’s are the nonzero eigenvalues of the matrix C ◦ R, where ◦ denotes the
Hadamard product.
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The correlation matrix, R, of the channel impulse response can be found as

R = E
{
Hs,rn HH

s,rn

}
= WE

{
αs,rnα

H
s,rn

}
WH

= Wdiag{σ 2(1), σ 2(2), . . . , σ 2(L)}WH, (7.64)

where

αs,rn = [αs,rn (1), αs,rn (2), . . . , αs,rn (L)]T,

W =

⎛⎜⎜⎜⎝
1 1 · · · 1
wτ1 wτ2 · · · wτL

...
...

. . .
...

w(K−1)τ1 w(K−1)τ2 · · · w(K−1)τL

⎞⎟⎟⎟⎠ ,

and w = e−j2π� f .
The coding at the source node is implemented to guarantee a diversity of order L ,

which is the maximum achievable diversity order at any relay node. The transmitted
K × 1 source node code is partitioned into subblocks of length L and each subblock
will be designed to guarantee a diversity of order L at any relay node as will be seen
later. Let M = �K/L� denote the number of subblocks in the source node transmitted
OFDM block. The transmitted K × 1 source node code is given as

s = [s(1), s(2), . . . , s(K )]T
= [FT

1 ,F
T
2 , . . . ,F

T
M , 0

T
K−M L ]T, (7.65)

where

Fi = [Fi (1), . . . , Fi (L)]T

is the i-th subblock of dimension L×1. Zeros are padded if K is not an integer multiple
of L . For any two distinct source codewords, s and s̃ = [F̃T

1 , F̃
T
2 , . . . , F̃

T
M , 0

T
K−M L ]T, at

least one index p0 exists for which Fp0 is not equal to F̃p0 .
Based on the presented structure of the transmitted code from the source node, suf-

ficient conditions for the code to achieve a diversity of order L at the relay nodes are
derived. We assume for s and s̃ that Fp = F̃p for all p �= p0, which corresponds to the
worst-case PEP. This does not decrease the rank of the matrix C ◦ R.

Define the L × L matrix Q = {qi, j } as

qi, j =
L∑

l=1

σ 2(l)w(i− j)τ (l), 1 ≤ i, j ≤ L .
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Note that the nonzero eigenvalues of the matrix C◦R are the same as those of the matrix(
Fp0 − F̃p0

) (
Fp0 − F̃p0

)H ◦Q. Hence, we have(
Fp0 − F̃p0

) (
Fp0 − F̃p0

)H ◦Q

=
[
diag

(
Fp0 − F̃p0

)
1L×Ldiag

(
Fp0 − F̃p0

)H
]
◦Q

= diag
(
Fp0 − F̃p0

)
Q diag

(
Fp0 − F̃p0

)H
(7.66)

where 1L×L is the L × L matrix whose all elements are ones. The last equality follows
from a property of the Hadamard product.

If all of the eignenvalues of the matrix
(
Fp0 − F̃p0

) (
Fp0 − F̃p0

)H ◦Q are nonzero,

then their product can be calculated as

det

((
Fp0 − F̃p0

) (
Fp0 − F̃p0

)H ◦Q
)

= det
(
diag

(
Fp0 − F̃p0

))
det (Q) det

(
diag

(
Fp0 − F̃p0

)H
)

=
L∏

l=1

∣∣∣Fp0(l)− F̃p0(l)
∣∣∣2 (det(Q)) . (7.67)

The matrix Q is nonsingular. Hence, if the product
∏L

l=1

∣∣∣Fp0(l)− F̃p0(l)
∣∣∣2 is nonzero

over all possible pairs of distinct transmitted source codewords, s and s̃, then a diversity
of order L will be achieved at each relay node.

In phase 2, relays that have decoded correctly in phase 1 will forward the source
node information. The received signal at the destination node on the k-th subcarrier is
as given in (7.62). The state of the n-th relay node In is a Bernoulli random variable
with a probability mass function (pmf) given by

In =
{

0 with probability = SER

1 with probability = 1− SER,

where SER is the symbol error rate at the n-th relay node. Note that SER is the same for
any relay node due to the symmetry assumption. If the transmitted code from the source

node is designed such that the product
∏L

l=1

∣∣∣Fp0(l)− F̃p0(l)
∣∣∣2 is nonzero, for at least

one index p0, over all the possible pairs of distinct transmitted source codewords, s and
s̃, then the SER at the n-th relay node can be upper-bounded as

SER =
∑
s∈S

Pr{s} Pr{error given that s was transmitted}

≤
∑
s∈S

Pr{s}
∑

s̃∈S,s̃ �=s

PEP(s → s̃)

≤ c × SNR−L , (7.68)
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where S is the set of all possible transmitted source codewords and c is a constant that
does not depend on the SNR. The first inequality follows from the union upper bound
and the second inequality follows from (7.63), where SNR is defined as SNR = P1/N0.

7.2.1.4 Relay Nodes Coding
Next, the design of the SF code at the relay nodes to achieve a diversity of order N L
is considered. We will present SF codes constructed from the concatenation of block
diagonal matrices, which is similar to the structure used in Chapter 3 to design full-rate,
full-diversity space–frequency codes over MIMO channels. We will derive sufficient
conditions for that code structure to achieve full diversity at the destination node.

Let P = �K/N L� denote the number of subblocks in the transmitted OFDM block
from the relay nodes. The transmitted K × N SF codeword from the relay nodes, if all
relays decoded correctly, is given by

Cr = [GT
1 ,G

T
2 , . . . ,G

T
P , 0

T
K−PLN]T, (7.69)

where Gi is the i-th subblock of dimension N L × N . Zeros are padded if K is not an
integer multiple of N L . Each Gi is a block diagonal matrix that has the structure

Gi =

⎛⎜⎜⎜⎝
X1L×1 0L×1 · · · 0L×1

0L×1 X2L×1 · · · 0L×1
...

...
. . .

...

0L×1 0L×1 · · · XNL×1

⎞⎟⎟⎟⎠ (7.70)

and let

X = [XT
1 ,X

T
2 , · · · ,XT

N ] = [x(1), x(2), · · · , x(N L)].
For two distinct transmitted source codewords, s and s̃, and a given realization of the

relays states I = [I1, I2, . . . , In]T, the conditional PEP can be tightly upper-bounded as

PEP(s → s̃/I) ≤
(

2κ − 1
κ

)( κ∏
i=1

λi

)−1 (
P2

N0

)−κ
, (7.71)

and κ is the rank of the matrix C(I) ◦ R where

C(I) = (Cr − C̃r )diag(I)(C− C̃r )
H.

For two source codewords, s and s̃, at least one index p0 exists for which Gp0 �= G̃p0 .
We assume for s and s̃ that Gp = G̃p for all p �= p0. As for the source node coding
case, this does not decrease the rank of the matrix C(I) ◦ R that corresponds to any
realization I of the relays states.

Define the N L × N L matrix S = {si, j } as

si, j =
L∑

l=1

σ 2(l)w(i− j)τ (l), 1 ≤ i, j ≤ N L .

Note that the nonzero eigenvalues of the matrix C(I) ◦ R are the same as the nonzero

eigenvalues of the matrix
(
Gp0(I)− G̃p0(I)

) (
Gp0(I)− G̃p0(I)

)H ◦S, where Gp0(I) is
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formed from Gp0 by setting the columns corresponding to the relays that have decoded
erroneously to zeros. Hence,(

Gp0(I)− G̃p0(I)
) (

Gp0(I)− G̃p0(I)
)H ◦ S

=
(

diag(X− X̃) (diag(I)⊗ 1L×1) (diag(I)⊗ 1L×1)
H diag(X− X̃)H

)
◦ S

=
(
diag(X− X̃) (diag(I)⊗ 1L×L)diag(X− X̃)H

)
◦ S

= diag(X− X̃)
[
(diag(I)⊗ 1L×L) ◦ S

]
diag(X− X̃)H, (7.72)

where the second and the third equalities follow from the properties of the tensor and
Hadamard products.

Let

nI =
N∑

n=1

In

denote the number of relays that have decoded correctly corresponding to a realization
I of the relays states. Using (7.72), the product of the nonzero eigenvalues of the matrix
C(I) ◦ R can be found as

κ∏
i=1

λi =
⎛⎝ N L∏

i=1, i∈I
|x(i)− x̃(i)|2

⎞⎠ · (det(S0))
nI (7.73)

where I is the index set of symbols that are transmitted from the relays that have
decoded correctly corresponding to the realization I and

S0 = {si, j }, 1 ≤ i, j ≤ L .

The result in (7.73) is based on the assumption that the product
∏N L

i=1, i∈I} |x(i)− x̃(i)|2
is nonzero. The first product in (7.73) is over nIL terms. The matrix S0 is always full
rank of order L . Hence, designing the product

∏N L
i=1, i∈I |x(i) − x̃(i)|2 to be nonzero

will guarantee a rate of decay, at high SNR, of the conditional PEP as SNR−nIL , where
SNR is now defined as SNR = P2/N0. To guarantee that this rate of decay, SNR−nIL , is
always achieved irrespective of the state realization I of the relay nodes then the product∏N L

i=1 |x(i)−x̃(i)|2 should be nonzero. Hence, designing the product
∏N L

i=1 |x(i)−x̃(i)|2
to be nonzero for any pair of distinct source codewords is a sufficient condition for the
conditional PEP to decay as SNR−nIL for any realization I, where nI is the number of
relays that have decoded correctly corresponding to I.

Now, we calculate the PEP at the destination node for our DSFC structure. Let cr

denote the number of relays that have decoded correctly. Then cr follows a Binomial
distribution as

Pr{cr = k} =
(

N
k

)
(1− SER)kSERN−k, (7.74)
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where SER is the symbol error rate at the relay nodes. The destination PEP is given by

PEP(s → s̃) =
∑

I

Pr{I}PEP(s → s̃/I)

=
N∑

k=0

Pr{cr = k}
∑

{I:nI=k}
PEP(s → s̃/I)

=
N∑

k=0

(
N
k

)
(1− SER)kSERN−k

∑
{I:nI=k}

PEP(s → s̃/I), (7.75)

Using the upper bound on the SER at the relay nodes given in (7.68) and the expression
for the conditional PEP at the destination node in (7.71), and upper-bounding (1−SER)
by 1, it can be shown that

PEP(s → s̃) ≤ constant× SNR−N L . (7.76)

Hence, our structure for DSFCs with two-stage coding at the source node and the relay
nodes achieves a diversity of order N L , which is the rate of decay of the PEP at high
SNR.

7.2.2 DSFC with the AF protocol

In this section, the design and performance analysis for DSFCs with the AF protocol are
presented. A structure is presented and sufficient conditions for that structure to achieve
full diversity are then derived for some special cases.

7.2.2.1 System model
In this section, we describe the system model for DSFC with the AF protocol. The
received signal model at the relay nodes and the channel gains are modeled as in Sec-
tion 7.2.1. The transmitted data from the source node is parsed into subblocks of size
N L × 1. Let P = �K/N L� denote the number of subblocks in the transmitted OFDM
block. The transmitted K × 1 source codeword is given by

s = [s(1), s(2), . . . , s(K )]T = [BT
1 ,B

T
2 , . . . ,B

T
P , 0

T
K−PLN]T, (7.77)

where Bi is the i-th subblock of dimension N L × 1. Zeros are padded if K is not an
integer multiple of N L . For each subblock, Bi , the n-th relay only forwards the data
on L subcarriers. For example, relay 1 will only forward [Bi (1), . . . ,Bi (L)] for all i’s
and send zeros on the remaining set of subcarriers. In general, the n-th relay will only
forward [Bi ((n − 1)L + 1), . . . ,Bi ((n − 1)L + L)] for all i’s.

At the relay nodes, each node will normalize the received signal on the subcarriers
that it will forward before retransmission and send zeros on the remaining set of subcar-
riers. If the k-th subcarrier is to be forwarded by the n-th relay, the relay will normalize
the received signal on that subcarrier by the factor

β(k) =
√

1

P1|Hs,rn (k)|2 + N0
.
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The relay nodes will use OFDM modulation for transmission to the destination node.
At the destination node, the received signal on the k-th subcarrier, assuming it was
forwarded by the n-th relay, is given by

y(k) = Hrn ,d(k)
√

P2

(√
1

P1|Hs,rn (k)|2 + N0

(√
P1 Hs,rn (k)s(k)+ vs,rn (k)

))
+ vrn ,d(k), (7.78)

where P2 is the relay node power, Hrn ,d(k) is the attenuation of the channel between the
n-th relay node and the destination node on the k-th subcarrier, and vs,rn (k) is the desti-
nation noise on the k-th subcarrier. The vrn ,d(k)’s are modeled as zero mean, circularly
symmetric complex Gaussian random variables with a variance of N0/2 per dimension.

7.2.2.2 Performance analysis
In this section, the PEP of the DSFC with the AF protocol is presented. Based on the
PEP analysis, code design criteria are derived.

The received signal at destination on the k-th subcarrier given by (7.78) can be
rewritten as

y(k) = Hrn ,d(k)
√

P2

(√
1

P1|Hs,rn (k)|2 + N0

√
P1 Hs,rn (k)s(k)

)
+ zrn ,d(k), (7.79)

where zrn ,d(k) accounts for the noise propagating from the relay node as well as the
destination noise. zrn ,d(k) follows a circularly symmetric complex Gaussian random
variable with a variance

δ2
z (k) =

(
P2|Hrn ,d(k)|2

P1|Hs,rn (k)|2 + N0
+ 1

)
N0.

The probability density function of zrn ,d(k) given the channel state information (CSI) is
given by

p(zrn ,d(k)/CSI) = 1

πδ2
z (k)

exp

(
− 1

δ2
z (k)

|zrn ,d(k)|2
)
. (7.80)

The receiver applies a maximum likelihood (ML) detector to the received signal, which
is given as

ŝ = arg min
s

K∑
k=1

1

δ2
z (k)

∣∣∣∣∣∣y(k)−
√

P1 P2 Hs,rn (k)Hrn ,d(k)√
P1|Hs,rn (k)|2 + N0

s(k)

∣∣∣∣∣∣
2

, (7.81)

where the n index (which is the index of the relay node) is adjusted according to the k
index (which is the index of the subcarrier).

Now, sufficient conditions for the presented code structure to achieve full diversity
are derived. The pdf of a received vector

y = [y(1), y(2), . . . , y(K )]T
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given that the codeword s was transmitted is given by

p(y/s,CSI)

=
(

K∏
k=1

1

πδ2
z (k)

)
exp

( K∑
k=1

− 1

δ2
z (k)

∣∣∣∣∣∣y(k)−
√

P1 P2 Hs,rn (k)Hrn ,d(k)√
P1|Hs,rn (k)|2 + N0

s(k)

∣∣∣∣∣∣
2 )
.

(7.82)

The PEP of mistaking s by s̃ can be upper-bounded as

PEP(s → s̃) ≤ E
{
exp
(
λ[ln p(y/s̃)− ln p(y/s)])} , (7.83)

and the relation applies for any λ, which can selected to get the tightest bound. Any two
distinct codewords s and

s̃ = [B̃1, B̃2, . . . , B̃p]T

will have at least one index p0 such that B̃p0 �= Bp0 . We will assume that s and s̃ will
have only one index p0 such that B̃p0 �= Bp0 , which corresponds to the worst case PEP.

Averaging the PEP expression in (7.83) over the noise distribution given in (7.80)
we get

PEP(s → s̃) ≤ E

{
exp

(
− λ(1− λ)

N∑
n=1

L∑
l=1(

P1|Hs,rn (J + (n − 1)L + l)|2 P2|Hrn ,d(J + (n − 1)L + l)|2(
P1|Hs,rn (J + (n − 1)L + l)|2 + P2|Hrn ,d(J + (n − 1)L + l)|2 + N0

)
N0

)
×
∣∣∣Bp0((n − 1)L + l)− B̃p0((n − 1)L + l)

∣∣∣2 )}, (7.84)

where J = (p0 − 1)N L . Take λ = 1/2 to minimize the upper bound in (7.84), hence,
we get

PEP(s → s̃) ≤ E

{
exp

(
− 1

4

N∑
n=1

L∑
l=1(

P1|Hs,rn (J + (n − 1)L + l)|2 P2|Hrn ,d(J + (n − 1)L + l)|2(
P1|Hs,rn (J + (n − 1)L + l)|2 + P2|Hrn ,d(J + (n − 1)L + l)|2 + N0

)
N0

)
×
∣∣∣Bp0((n − 1)L + l)− B̃p0((n − 1)L + l)

∣∣∣2 )}, (7.85)

At high SNR, we have

P1|Hs,rn (k)|2 P2|Hrn ,d(k)|2(
P1|Hs,rn (k)|2 + P2|Hrn ,d(k)|2 + N0

)
N0
≈ P1|Hs,rn (k)|2 P2|Hrn ,d(k)|2(

P1|Hs,rn (k)|2 + P2|Hrn ,d(k)|2
)

N0
,
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which is the scaled harmonic mean of the source–relay and relay–destination SNRs on
the k-th subcarrier.

The scaled harmonic mean of two non-negative numbers, a1 and a2, can be upper-
and lower-bounded as

1

2
min (a1, a2) ≤ a1a2

a1 + a2
≤ min (a1, a2) . (7.86)

Using the lower-bound in (7.86) the PEP in (7.85) can be further upper-bounded as

PEP(s → s̃) ≤ E

{
exp

(
− 1

8

N∑
n=1

L∑
l=1

min

(
P1

N0
|Hs,rn ((p0 − 1)N L

+ (n − 1)L + l)|2, P2

N0
|Hrn ,d((p0 − 1)N L + (n − 1)L + l)|2

)
∣∣∣Bp0((n − 1)L + l)− B̃p0((n − 1)L + l)

∣∣∣2 )}. (7.87)

If P2 = P1 and SNR is defined as P1/N0, then the PEP is now upper-bounded as

PEP(s → s̃) ≤ E

{
exp

(
− 1

8

N∑
n=1

L∑
l=1

min

(
SNR|Hs,rn ((p0 − 1)N L

+ (n − 1)L + l)|2,SNR|Hrn ,d((p0 − 1)N L + (n − 1)L + l)|2
)

∣∣∣Bp0((n − 1)L + l)− B̃p0((n − 1)L + l)
∣∣∣2 )}. (7.88)

7.2.2.3 PEP Analysis for L= 1
The case of L equal to 1 corresponds to a flat, frequency nonselective fading channel.
The PEP in (7.88) is now given by

PEP(s → s̃) ≤ E

{
exp

(
− 1

8

N∑
n=1

min

(
SNR|Hs,rn ((p0 − 1)N L

+ (n − 1)L + 1)|2,SNR|Hrn ,d((p0 − 1)N L + (n − 1)L + 1)|2
)

∣∣∣Bp0((n − 1)L + 1)− B̃p0((n − 1)L + 1)
∣∣∣2 )}. (7.89)

The random variables SNR|Hs,rn (k)|2 and SNR|Hrn ,d(k)|2 follow an exponential distri-
bution with rate 1/SNR for all k. The minimum of two exponential random variables
is an exponential random variable with rate that is the sum of the two random
variables rates. Hence, min

(
SNR|Hs,rn (k)|2 , SNR|Hrn ,d(k)|2

)
follows an exponential

distribution with rate 2/SNR.
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The PEP upper bound is now given by

PEP(s → s̃) ≤
N∏

n=1

1

1+ 1
16SNR

∣∣∣Bp0((n − 1)L + 1)− B̃p0((n − 1)L + 1)
∣∣∣2 . (7.90)

At high SNR, we can neglect 1 besides the SN R dependent term in the denominator of
(7.90). Hence, the PEP can now be upper-bounded as

PEP(s → s̃)

�
(

1

16
SNR

)−N
(

N∏
n=1

∣∣∣Bp0((n − 1)L + 1)− B̃p0((n − 1)L + 1)
∣∣∣2)−1

. (7.91)

The result in (7.91) is under the assumption that the product

N∏
n=1

∣∣∣Bp0((n − 1)L + 1)− B̃p0((n − 1)L + 1)
∣∣∣2

is nonzero. Clearly, if that product is nonzero, then the system will achieve a diversity of
order N L , where L is equal to 1 in this case. From the expression in (7.91) the coding
gain of the space–frequency code is maximized when the product

min
s�=s̃

N∏
n=1

∣∣∣Bp0((n − 1)L + 1)− B̃p0((n − 1)L + 1)
∣∣∣2

is maximized, which is the minimum product distance.

7.2.2.4 PEP analysis for L= 2
The PEP in (7.88) can now be given as

PEP(s → s̃) ≤ E

{
exp

(
− 1

8

N∑
n=1

2∑
l=1

min

(
SNR|Hs,rn ((p0 − 1)N L

+ (n − 1)L + l)|2,SNR|Hrn ,d((p0 − 1)N L + (n − 1)L + l)|2
)

∣∣∣Bp0((n − 1)L + l)− B̃p0((n − 1)L + l)
∣∣∣2 )}, (7.92)

where L = 2. The analysis in this case is more involved since the random variables
appearing in (7.92) are correlated. Signals transmitted from the same relay node on
different subcarriers will experience correlated channel attenuations.

As a first step in deriving the code design criterion, we prove that the channel attenua-
tions, |Hs,rn (k1)|2 and|Hs,rn (k2)|2 for any k1 �= k2, have a bivariate Gamma distribution
as their joint pdf. The same applies for |Hrn ,d(k1)|2 and |Hrn ,d(k2)|2 for any k1 �= k2.
The proof of this result is given in the Appendix to this chapter.

To evaluate the expectation in (7.92) we need the expression for the joint pdf of the
two random variables

M1 = min
(
SNR|Hs,rn (k1)|2,SNR|Hrn ,d(k1)|2

)
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and

M2 = min
(
SNR|Hs,rn (k2)|2,SNR|Hrn ,d(k2)|2

)
for some k1 �= k2. Although M1 and M2 can be easily seen to be marginally expo-
nential random variables, they are not jointly Gamma distributed. Define the random
variables X1 = SNR|Hs,rn (k1)|2, X2 = SNR|Hs,rn (k2)|2, Y1 = SNR|Hrn ,d(k1)|2, and
Y2 = SNR|Hrn ,d(k2)|2. All of these random variables are marginally exponential with
rate 1/SN R. Under the assumptions of our channel model, the pairs (X1, X2) and
(Y1, Y2) are independent. Hence, the joint pdf of (X1, X2, Y1, Y2), using the result in
the Appendix, is given by

f X1,X2,Y1,Y2(x1, x2, y1, y2)

= fX1,X2(x1, x2) fY1,Y2(y1, y2)

= 1

SNR2(1− ρx1x2)(1− ρy1 y2)
exp

(
− x1 + x2

SNR(1− ρx1x2)

)
· I0

(
2
√
ρx1x2

SNR(1− ρx1x2)

√
x1x2

)
exp

(
− y1 + y2

SNR(1− ρy1 y2)

)
· I0

(
2
√
ρy1 y2

SNR(1− ρy1 y2)

√
y1y2

)
U (x1)U (x2)U (y1)U (y2), (7.93)

where I0(·) is the modified Bessel function of the first kind of order zero and U (·) is the
Heaviside unit step function. ρx1x2 is the correlation coefficient between X1 and X2 and
similarly, ρy1 y2 is the correlation coefficient between Y1 and Y2.

The joint cumulative distribution function (cdf) of the pair (M1,M2) can be
computed as

F M1,M2(m1,m2)

� Pr [M1 ≤ m1,M2 ≤ m2]

= Pr [min (X1, Y1) ≤ m1,min (X2, Y2) ≤ m2]

= 2
∫ m1

y1=0

∫ ∞

x1=y1

∫ m2

y2=0

∫ ∞

x2=y2

fX1,X2(x1, x2) fY1,Y2(y1, y2)dy1dx1dy2dx2

+ 2
∫ m1

y1=0

∫ ∞

x1=y1

∫ m2

x2=0

∫ ∞

y2=x2

fX1,X2(x1, x2) fY1,Y2(y1, y2)dy1dx1dx2dy2, (7.94)

where we have used the symmetry assumption of the source–relay and relay–destination
channels.

The joint pdf of (M1,M2) can now be given as

fM1,M2(m1,m2) = ∂2

∂m1∂m2
FM1,M2(m1,m2)

= 2 fY1,Y2(m1,m2)

∫ ∞

x1=m1

∫ ∞

x2=m2

fX1,X2(x1, x2)dx1dx2

+ 2
∫ ∞

x1=m1

∫ ∞

y2=m2

fX1,X2(x1,m2) fY1,Y2(m1, y2)dx1dx2. (7.95)
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To get the PEP upper bound in (7.92) we need to calculate the expectation

E

{
exp

(
− 1

8

(
M1

∣∣∣B(k1)− B̃(k1)

∣∣∣2 + M2

∣∣∣B(k2)− B̃(k2)

∣∣∣2 ))}
=
∫ ∞

m1=0

∫ ∞

m2=0
exp

(
− 1

8

(
m1

∣∣∣B(k1)− B̃(k1)

∣∣∣2 + m2

∣∣∣B(k2)− B̃(k2)

∣∣∣2 ))
fM1,M2(m1,m2)dm1dm2.

(7.96)

At high enough SNR, we have

I0

( 2
√
ρx1x2

SNR(1− ρx1x2)

√
x1x2

)
≈ 1.

Using this approximation, the PEP upper bound can be approximated at high SNR as

PEP(s → s̃) �
(

2N∏
m=1

∣∣∣Bp0(m)− B̃p0(m)
∣∣∣2)−1 (

1

16
(1− ρ)SNR

)−2N

, (7.97)

where ρ = ρx1x2 = ρy1 y2 . Again, full diversity is achieved when the product

2N∏
m=1

∣∣∣Bp0(m)− B̃p0(m)
∣∣∣2

is nonzero. The coding gain of the space–frequency code is maximized when the
product

min
s�=s̃

2N∏
m=1

∣∣∣Bp0(m)− B̃p0(m)
∣∣∣2

is maximized.
The analysis becomes highly involved for any L ≥ 3. It is very difficult to get closed

form expressions in this case due to the correlation among the summed terms in (7.88)
for which there is no closed form pdf expressions, similar to (7.93).

Example 7.4 In this example, we investigate the performance of the presented SDFCs.
Figure 7.9 shows the case of a simple two-ray, L = 2, channel model with a delay of
τ = 5μs between the two rays. The two rays have equal powers, i.e., σ 2(1) = σ 2(2).
The number of subcarriers is K = 128 with a system bandwidth of 1 MHz. We use
BPSK modulation and Vandermonde-based linear transformations. Figure 7.9 shows
the SER of the presented DSFCs versus the SNR defined as SNR = (P1 + P2)/N0,
and we use P1 = P2, i.e., equal power allocation between the source and relay nodes.
We simulated three cases: all channel variances are ones, relays close to source, and
relays close to destination. For the case of relays close to source, the variance of any
source–relay channel is taken to be 10 and the variance of any relay–destination channel
is taken to be 1. For the case of relays close to destination, the variance of any source–
relay channel is taken to be 1 and the variance of any relay–destination channel is taken
to be 10. From Figure 7.9, it is clear that DSFCs with the DF protocol have a better
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Fig. 7.9 SER for DSFCs for BPSK modulation, L = 2, and delay = [0, 5 μs] versus SNR.
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Fig. 7.10 SER for DSFCs for BPSK modulation, L = 2, and delay = [0, 20 μs] versus SNR.

performance than DSFCs with the AF protocol. The reason is that DSFCs with the DF
protocol deliver a less noisy code to the destination node as compared to DSFCs with
the AF protocol, where noise propagation results from the transmissions of the relay
nodes. Decoding at the relay nodes, in the DF protocol, has the effect of removing the
noise before retransmission to the destination node. As can be seen from Figure 7.9, a
gain of about 3 dB is achieved, for the case of relays close to the source, by employing
DSFCs with the DF protocol as compared to DSFCs with the AF protocol. Figure 7.10
shows the case of a simple two-ray, L = 2, with a delay of τ = 20 μs between the two
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rays. The simulation setup is the same as that used in Figure 7.9. From Figure 7.10, it is
clear that DSFCs with the DF protocol have a better performance than DSFCs with the
AF protocol. �

7.2.3 Code design and remarks

For DSFCs with the DF and AF protocols, The code design criteria is to minimize the
minimum product distance. Therefore, We can use the design presented in Chapter 3.
Here we summarize some remarks related to our presented DSFCs.

• Remark 1: In our problem formulation, we have considered a two-hop system model
that lacks a direct link from the source node to the destination node. If such a direct
link between the source node and the destination node exists, then the destination
node can use its received signal from the source node to help recovering the source
symbols. Assuming that the channel from the source node to the destination node has
L paths, it can be shown that our presented DSFCs, with the presented coding at the
source node and the relay nodes for both the DF and AF protocols, achieve a diversity
of order (N + 1)L .

• Remark 2: The presented DSFCs with the DF protocol can be easily modified to
achieve full diversity for the asymmetric case where the number of paths per fad-
ing channel is not the same for all channels. Let Ls,rn denote the number of paths
of the channel between the source node and n-th relay and L rn ,d denote the number
of paths of the channel between the n-th relay node and the destination node. The
presented DSFC can be easily modified to achieve a diversity d of order

d =
N∑

n=1

min(Ls,rn , L rn ,d),

which can be easily shown to be the maximal achievable diversity order. This maximal
diversity order can be achieved, for example, by designing the codes at the source
node and relay nodes using

L = max
n

min(Ls,rn , L rn ,d).

• Remark 3: The presented construction for the design of DSFCs can be easily gen-
eralized to the case of multi-antenna nodes, where any node may have more than
one antenna. Each antenna can be treated as a separate relay node and the analysis
presented before directly applies.

• Remark 4: As mentioned before, the presence of the cyclic prefix in the OFDM
transmission provides a mean for combating the relays synchronization mismatches.
Hence, our presented DSFCs, which are based on OFDM transmission, are robust
against synchronization mismatches within the duration of the cyclic prefix.
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7.3 Chapter summary and bibliographical notes

The design of distributed space–time codes in wireless relay networks is considered for
different schemes, which vary in the processing performed at the relay nodes. For the
decode-and-forward distributed space–time codes, any space–time code that is designed
to achieve full diversity over MIMO channels can achieve full diversity under the
assumption that the relay nodes can decide whether they have decoded correctly or
not. A code that maximizes the coding gain over MIMO channels is not guaranteed
to maximize the coding gain in the decode-and-forward distributed space–time coding.
This is due to the fact that not all of the relays will always transmit their code columns
in the second phase. The code design criteria for the amplify-and-forward distributed
space–time codes were also considered. In this case, a code designed to achieve full
diversity over MIMO channels will also achieve full diversity. Furthermore, a code that
maximizes the coding gain over MIMO channels will also maximize the coding gain in
the amplify-and-forward distributed space–time scheme.

Then, the design of DDSTC for wireless relay networks was studied. In DDSTC, the
diagonal structure of the code was imposed to simplify the synchronization between
randomly located relay nodes. Synchronization mismatches between the relay nodes
causes inter-symbol interference, which can highly degrade the system performance.
DDSTC relaxes the stringent synchronization requirement by allowing only one relay to
transmit at any time slot. The code design criterion for the DDSTC based on minimizing
the PEP was derived and the design criterion is found to be maximizing the minimum
product distance. This is the same criterion used for designing DAST codes and full-
rate, full-diversity space frequency codes.

Next, the design of distributed space–frequency codes (DSFCs) was considered for
the wireless multipath relay channels. The use of DSFCs can greatly improve system
performance by achieving higher diversity orders by exploiting the multipath diversity
of the channel as well as the cooperative diversity. We have considered the design of
DSFCs with the DF and AF cooperation protocols. For the case of DSFCs with the DF
protocol, we have presented a two-stage coding scheme: source node coding and relay
nodes coding. We have derived sufficient conditions for the presented code structure to
achieve full diversity of order N L where N is the number of relay nodes and L is the
number of multipaths per channel. For the case of DSFCs with the AF protocol, we have
derived sufficient conditions for the presented code structure to achieve full diversity of
order N L for the special cases of L = 1 and L = 2.

The presented DSFCs are robust against the synchronization errors caused by the
relays timing mismatches and propagation delays due to the presence of the cyclic prefix
in the OFDM transmission.

Several works have considered the design of distributed space–time codes. It was pro-
posed in [108] to use relay nodes to form a virtual multi-antenna transmitter to achieve
diversity. In addition, an outage analysis was presented for the system.

Some works have considered the application of the existing space–time codes in a
distributed fashion for the wireless relay network [193, 7, 8, 93]. In [193], space–time
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block codes were used in a completely distributed fashion. Each relay node transmits
a randomly selected column from the space–time code matrix. This system achieves
a diversity of order one, as the signal-to-noise (SNR) tends to infinity, limited by the
probability of having all of the relay nodes selecting to transmit the same column of the
space–time code matrix. In [7], distributed space–time coding based on the Alamouti
scheme and amplify-and-forward cooperation protocol was analyzed. An expression
for the average symbol error rate (SER) was derived. In [8], a performance analysis of
the gain of using cooperation among nodes was considered assuming that the number of
relays available for cooperation is a Poisson random variable. The authors compared the
performance of different distributed space–time codes designed for the MIMO channels
under this assumption. In [93], the performance of the linear dispersion (LD) space–time
codes of [59] was analyzed when used for distributed space–time coding in wireless
relay networks.

For the case of DSFCs, a design of DSFCs was considered in [116], where a sys-
tem that employs the DF protocol was used. It was assumed that all of the relay nodes
will always decode correctly, which is not always true, especially over wireless fading
channels. Such proposed DSFCs mitigate synchronization errors due to the timing mis-
matchs of relay nodes and propagation delays by employing OFDM transmission. The
presence of the cyclic prefix in OFDM modulation can mitigate synchronization errors
of relay nodes. This follows directly due to the use of OFDM transmission and the same
applies for our proposed DSFCs.

Further information and details can be found in [169, 170, 171, 172, 174, 175, 178].

Appendix

Consider the two random variables Hs,rn (k1) and Hs,rn (k2), we will assume without loss
of generality that τ1 = 0, i.e., the delay of the first path is zero. Hs,rn (k1) is given by

Hs,rn (k1) = αs,rn (1)+ αs,rn (2)e
−j2π(k1−1)� f τ2 = � (Hs,rn (k1)

)+ j� (Hs,rn (k1)
)
,

(7.98)

where �(x), and �(x) are the real, and imaginary parts of x , respectively. From (7.98)
we have

� (Hs,rn (k1)
) = �(αs,rn (1))+�(αs,rn (2)) cos(2π(k1 − 1)� f τ2)

+ �(αs,rn (2)) sin(2π(k1 − 1)� f τ2)

� (Hs,rn (k1)
) = �(αs,rn (1))+ �(αs,rn (2)) cos(2π(k1 − 1)� f τ2)

−�(αs,rn (2)) sin(2π(k1 − 1)� f τ2). (7.99)

Based on the channel model presented in Section 7.2.1.1 both � (Hs,rn (k1)
)

and
� (Hs,rn (k1)

)
are zero-mean Gaussian random variables with variance 1/2. The cor-

relation coefficient, ρri , between � (Hs,rn (k1)
)

and � (Hs,rn (k1)
)

can be calculated as

ρri = E
{� (Hs,rn (k1)

)� (Hs,rn (k1)
)} = 0. (7.100)
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Hence, Hs,rn (k1) is a circularly symmetric complex Gaussian random variable with vari-
ance 1/2 per dimension and the same applies for Hs,rn (k2). To get the joint probability

distribution of
∣∣Hs,rn (k1)

∣∣2 and
∣∣Hs,rn (k2)

∣∣2, we can use the standard techniques of trans-
formation of random variables. Using transformation of random variables and the fact
that both Hs,rn (k1) and Hs,rn (k2) are circularly symmetric complex Gaussian random

variables, it can be shown that X1 =
∣∣Hs,rn (k1)

∣∣2 and X2 =
∣∣Hs,rn (k2)

∣∣2 are jointly
distributed according to a bivariate Gamma distribution with pdf [131, 188]

fX1,X2(x1, x2) = 1

1− ρx1x2

exp

(
− x1 + x2

1− ρx1x2

)
I0

(
2
√
ρx1x2

1− ρx1x2

√
x1x2

)
U (x1)U (x2),

(7.101)

where I0(·) is the modified Bessel function of the first kind of order zero and U (·)
is the Heaviside unit step function [50]. ρx1x2 is the correlation between

∣∣Hs,rn (k1)
∣∣2

and
∣∣Hs,rn (k2)

∣∣2 and it can calculated as

ρx1,x2 =
Cov (X1, X2)√

Var (X1)Var (X2)
. (7.102)

Following tedious computations, it can be shown that

ρx1,x2 =
1

2
+ 2σ 2(1)σ 2(2) cos(2π(k2 − k1)� f τ2), (7.103)

where the last equation applies under the assumption of having σ 2(1)+ σ 2(2) = 1 and
both, σ 2(1) and σ 2(2), are nonzeros. From (7.103) it is clear that 0 ≤ ρx1,x2 ≤ 1.

Exercises

7.1 Define the SNR as SNR = P/N0, where P = P1 + P2 is the transmitted power
per source symbol. Let P1 = αP and P2 = (1 − α)P , where α ∈ (0, 1). Use
the SER expression at the relay nodes from (7.6) and use (7.18) to prove the
expression in (7.19).

7.2 In this problem, the case of two relays helping the source to forward its informa-
tion using the Alamouti scheme is considered. The system model is as presented
in Section 7.1.1 and the data transmission is as presented in Example 7.1. Each
relay is assumed to able to decide whether or not it has decoded correctly in the
first phase
(a) Prove the following results:

(i) For M-PSK modulation, the destination SER is given by

PPSK = 4F1

(
1+ bPSK P1δ

2
s,d

N0 sin2 θ

)[
F1

(
1+ bPSK P1δ

2
s,r

N0 sin2 θ

)]2

+ 4F1

((
1+ bPSK P1δ

2
s,d

N0 sin2 θ

)(
1+ bPSK P2δ

2
r,d

N0 sin2 θ

))
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× F1

(
1+ bPSK P1δ
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)[
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(
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2
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)[(
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2
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)]2

, (E7.1)

where

F1(x(θ)) = 1

π

∫ (M−1)π/M

0

1

x(θ)
dθ. (E7.2)

(ii) For the M-QAM modulation, the destination SER is given by

PQAM = 4F2
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where

F2(x(θ)) = 4K

π

∫ π/2

0

1

x(θ)
dθ − 4K 2

π

∫ π/4

0

1

x(θ)
dθ. (E7.4)

P1 denotes the source node power and each relay transmits using a power
of P2/2 in each time slot of the second phase.

(b) Prove that if all of the channel links are available, i.e., δ2
s,d �= 0, δ2

s,r �= 0,

and δ2
r,d �= 0, the SER of the Alamouti-based cooperative diversity can be

upper-bounded as follows:

(i) For M-PSK

PPSK ≤ N 3
0

b3
PSK

[
4(g(2))3
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1 δ
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, (E7.5)

where g(n) = 1
π

∫ (M−1)π/M
0 sinn θ dθ .
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(ii) For M-QAM

PQAM ≤ N 3
0
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r,d

]
,

(E7.6)

where f (n) = 4K
π

∫ π/2
0 sinn θdθ − 4K 2

π

∫ π/4
0 sinn θdθ .

7.3 In this problem, the AF-based system presented in Section 7.1.2 is considered.
The probability density function (pdf) of yd, given a certain code Xm and h, is
given by

P(yd/Xm,h)

= 1[
πN0

(
1+ P2/Kn

P1δ
2
s,r+N0

∑n
i=1 |hri ,d|2

)]Kn

× exp

⎛⎜⎜⎜⎝−
(

yd −
√

P2 P1/Kn
P1δ

2
s,r+N0

XmH
)H (

yd −
√

P2 P1/Kn
P1δ

2
s,r+N0

XmH
)

N0

(
1+ P2/Kn

P1δ
2
s,r+N0

∑n
i=1 |hri ,d|2

)
⎞⎟⎟⎟⎠ . (E7.7)

Use (E7.7) and (7.48) to prove the PEP upper bound given by (7.28).
7.4 Prove (7.29).
7.5 (Computer simulation) Returning to Exercise 7.1, the validity of the derived

expressions will be checked. In all of the simulations, set the variance of the
channel between the source and destination to 1, i.e., δ2

s,d = 1.
(a) Simulate the cooperation system for QPSK modulation scheme (4-QAM).

Take the channel variance between the source and relays to be 1, i.e.,
δ2

s,r = δ2
r,d = 1. Use the P1 = 2P2 = P/2 power assignment, where P

is a total power constraint. Plot the simulated SER, exact SER expression,
and SER upper bound versus P/N0. Comment on the validity of the derived
expressions.

(b) Repeat part (a) for the case of a 16-QAM constellation. Comment on the
validity of the derived expressions.

7.6 Write a Matlab code to compare the symbol error rate performance of a two-relay
decode-and-forward protocol and a two-relay distributed space–time coding sys-
tem that utilizes an Alamouti scheme. Assume a Rayleigh flat-fading channel
with unit variance, and a propagation path-loss with an exponent of 3.5. Experi-
ment with different source–destination separations with the relays located at the
middle between the source and destination.

7.7 Write a Matlab code to simulate a three-relay DSFC for the case of a two-ray,
L = 2, channel model with a delay of τ = 5 μs between the two rays. The
two rays have equal powers, i.e., σ 2(1) = σ 2(2). The number of subcarriers
is K = 128 with a system bandwidth of 1 MHz. Use BPSK modulation and
Vandermonde-based linear transformations.



8 Relay selection: when to cooperate
and with whom

In this chapter, we present a cooperative protocol based on the relay-selection tech-
nique using the availability of the partial channel state information (CSI) at the source
and the relays. The main objective of this scheme is to achieve higher bandwidth effi-
ciency while guaranteeing the same diversity order as in a conventional cooperative
scheme. Two cooperation scenarios are addressed: a single-relay scenario and a multi-
relay scenario. In the single-relay scenario, the focus is to answer the question: “When
to cooperate?” The rationale behind this protocol is that there is no need for the relay to
forward the source’s information if the direct link, between the source and destination,
is of high quality. It turns out that an appropriate metric to represent the relay’s ability
to help is a modified version of the harmonic mean function of its source–relay and
relay–destination instantaneous channel gains. The source decides when to cooperate
by taking the ratio between the source–destination channel gain and the relay’s metric
and comparing it with a threshold, which is referred to as the cooperation threshold .
If this ratio is greater than or equal to the cooperation threshold, then the source sends
its information to the destination directly without the need for the relay. Otherwise,
the source employs the relay in forwarding its information to the destination as in the
conventional cooperative scheme.

An extension to the multi-node cooperative scenario with arbitrary N relays is con-
sidered as well. In the multi-node scenario, the focus is to answer two questions: “When
to cooperate?” and “Who to cooperate with?” The user picks only one relay to coop-
erate with, in case it needs help. This optimal relay is the one which has the maximum
instantaneous value of the relay’s metric among the N relays. By determining that
instantaneous optimal relay, the user can determine whether to utilize it or not, in a sim-
ilar fashion to the single-relay scenario. For the symmetric scenario, it is shown that full
diversity order is guaranteed and obtain the optimum power allocation which minimizes
the SER performance. Finally, we discuss tradeoff curves between the bandwidth effi-
ciency and the SER, which are utilized to determine the optimum cooperation threshold.

8.1 Motivation and relay-selection protocol

In this section, we review the system model of the conventional single-relay decode-
and-forward cooperative scenario along with the SER results. This is to help illustrate
the motivation behind choosing a modified harmonic mean function of the source–relay
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and relay–destination channels gain as an appropriate metric to represent the relay’s
ability to help the source. This motivation is further discussed in Section 8.1.2. Finally,
we consider the multi-node relay-selection decode-and-forward cooperative scenario.

8.1.1 Conventional cooperation scenario

We start by considering the conventional single-relay decode-and-forward cooperative
scheme where we denote the source as s, the destination as d and the relay as r . The
received symbols at the destination and relay after the first transmission phase can be
modeled as

ys,d =
√

P1 hs,d x + ηs,d, (8.1)

ys,r =
√

P1 hs,r x + ηs,r, (8.2)

where P1 is the source transmitted power, x is the transmitted information symbol,
and ηs,d and ηs,r are additive noises. Also, hs,d and hs,r are the source–destination and
source–relay channel gains, respectively.

The relay decides whether to forward the received information or not according to
the quality of the received signal. If the relay decodes the received symbol correctly,
then it forwards the decoded symbol to the destination in the second phase, otherwise it
remains idle. The received symbol at the destination from the relay is written as

yr,d =
√

P̃2 hr,d x + ηr,d ,

where P̃2 = P2 if the relay decodes the symbol correctly, otherwise P̃2 = 0, ηr,d is
an additive noise, and hr,d is the relay–destination channel coefficient. The destination
applies maximal-ratio combining (MRC) for the received signals from the source and
the relay. The output of the MRC is

y =
√

P1 h∗s,d
N0

ys,d +
√

P̃2 h∗r,d
N0

yr,d . (8.3)

The channel coefficients hs,d, hs,r, and hr,d are modeled as zero-mean, complex Gaus-
sian random variables with variances δ2

s,d, δ2
s,r, and δ2

r,d, respectively. The noise terms
ηs,d, ηs,r, and ηr,d are modeled as zero-mean complex Gaussian random variables with
variance N0.

It has been shown previously in Chapter 5 that the SER for M-PSK signalling can be
upper bounded as

Pr(e) ≤ N 2
0

b2
.
A2 P2 δ

2
r,d + B P1 δ

2
s,r

P2
1 P2 δ

2
s,d δ

2
s,r δ

2
r,d

, (8.4)
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where b = sin2(π/M),

A = 1

π

∫ (M−1)π
M

0
sin2 θ dθ = M − 1

2M
+ sin( 2π

M )

4π
,

and B = 1

π

∫ (M−1)π
M

0
sin4 θ dθ = 3(M − 1)

8M
+ sin( 2π

M )

4π
− sin( 4π

M )

32π
. (8.5)

Moreover, it was shown that the SER upper bound in (8.4) is tight at high enough SNR.

8.1.2 Relay-selection criterion

In this subsection, we deduce a relay-selection criterion from the SER expression in
(8.4). Let γ � P/N0 denote the signal-to-noise ratio (SNR), where P = P1 + P2 is the
total power. Hence, (8.4) can be written as

Pr(e) ≤ (CG γ )−2 , (8.6)

where CG denotes the coding gain and it is equal to

CG = b2 δ2
s,d

(
δ2

s,r δ
2
r,d

q1 δ
2
r,d + q2 δ2

s,r

)
, (8.7)

where

q1 = A2

r2
, q2 = B

r (1− r)
, (8.8)

and r � P1/P is referred to as power ratio. If we consider choosing one relay among
a set of N relays, we will choose the relay that maximizes the coding gain in (8.7).
Note that the coding gain depends on the source–relay and relay–destination channel
variances, which are assumed to be fixed during the whole transmission time. Therefore,
only one relay will be chosen to help the source during the whole transmission process
and the resulting diversity order will be two.

On the other hand, if the instantaneous source–relay and relay–destination channel
gains are available at the relay, then this extra information can be utilized in order
to benefit from the multi-node diversity inherent in the system, which results in full
diversity gain equal to N + 1, as we will show later. Therefore, we define the met-
ric for each relay to be the modified harmonic mean function of its source–relay and
relay–destination channels gain as

βi = μH(q1 βri ,d, q2 βs,ri ) =
2 q1 q2 βri ,d βs,ri

q1 βri ,d + q2 βs,ri
, f or i = 1, 2, . . . , N . (8.9)

where βs,ri = |hs,ri |2, βri ,d = |hri ,d|2, and μH(.) denotes the standard harmonic mean
function. This relay’s metric is a scaled version of the coding gain (8.7) after replacing
the channel variances with the instantaneous channel gains. The relay’s metric βi (8.9)
gives an instantaneous indication of the relay’s ability to cooperate with the source.
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8.1.3 Single-relay decode-and-forward protocol

We consider that the channels between the nodes present a flat quasi-static fading,
hence the channel coefficients are assumed to be constant during a complete frame,
and can vary independently from one frame to another. It is assumed that the channels
are reciprocal as in the time division duplex (TDD) mode, hence the relay knows its
instantaneous source–relay and relay–destination channel gains. The relay calculates
the instantaneous metric, denoted by βm , given by

βm = μH(q1 βr,d, q2 βs,r) � 2 q1 q2 βs,r βr,d

q1 βr,d + q2 βs,r
, (8.10)

where βs,r = |hs,r|2, βr,d = |hr,d|2. Then it sends its metric value through a feedback
channel to the source. The source is assumed to know its instantaneous source–
destination channel gain, which is then compared with the relay’s metric to determine
whether to cooperate with this relay or not. Finally, the source sends a control signal
to determine if it is going to cooperate or not. We assume here that the channels vary
slowly, so that the overhead resulting from the transmission of the relay’s metric and
source’s decision is negligible.

The transmission protocol can be described as follows. In the first phase, the source
computes the ratio βs,d/βm and compares it to the cooperation threshold α. If βs,d/βm ≥
α , then the source decides to use direct transmission only. This mode will be referred
to as the direct-transmission mode. Let

φ = { βs,d ≥ α βm }
be the event of direct transmission. The received symbol at the destination can then be
modeled as

yφs,d =
√

P hs,d x + ηs,d, (8.11)

where P is the total transmitted power, x is the transmitted symbol, hs,d is the source–
destination channel coefficient, and ηs,d is an additive noise.

On the other hand, if βs,d/βm < α, then the source employs the relay to transmit
its information as in the conventional decode-and-forward cooperative protocol. This
mode will be called the relay-cooperation mode and can be described as follows. In the
first phase, the source broadcasts its symbol to both the relay and the destination. The
received symbols at the destination and the relay can be modeled as

yφ
c

s,d =
√

P1 hs,d x + ηs,d, (8.12)

yφ
c

s,r =
√

P1 hs,r x + ηs,r, (8.13)

where P1 is the source transmitted power, hs,r is the source–relay channel coefficient,
ηs,r is an additive noise, and φc denotes the complement of the event φ.

The relay decodes the received symbol and re-transmits the decoded symbol if cor-
rectly decoded in the second phase, otherwise it remains idle. The received symbol at
the destination from the relay is written as

yφ
c

r,d =
√

P̃2 hr,d x + ηr,d, (8.14)
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where P̃2 = P2 if the relay decodes the symbol correctly, otherwise P̃2 = 0, hr,d is the
relay–destination channel coefficient, and ηr,d is an additive noise. Power is distributed
between the source and the relay subject to the power constraint P1 + P2 = P .

The channel coefficients hs,d, hs,r, and hr,d are modeled as zero-mean complex Gaus-
sian random variables with variances δ2

s,d, δ2
s,r, and δ2

r,d, respectively. The noise terms,
ηs,d, ηs,r, and ηr,d, are modeled as zero-mean, complex Gaussian random variables with
equal variance N0.

8.2 Performance analysis

In this section, first we calculate the probability of the direct-transmission and relay-
cooperation modes for the single-relay relay-selection decode-and-forward cooperative
scenario. Then, they are used to obtain an approximate expression of the bandwidth effi-
ciency and an upper bound on the SER performance.

8.2.1 Average bandwidth efficiency analysis

We derive the average achievable bandwidth efficiency as follows. Let βi, j = |hi, j |2
represent the source–destination, source–relay, and relay–destination channel gains. We
know that the βi, j is exponentially distributed with parameter 1/δ2

i, j , i.e.,

pβi, j

(
βi, j
) = 1

δ2
i, j

exp

(
−βi, j

δ2
i, j

)
U
(
βi, j
)
, (8.15)

is the probability density function (PDF) of βi, j , where U (·) is the unit-step function.
The PDF and the cumulative distribution function (CDF) of βm in (8.10), denoted by
pβm (·) and Pβm (·), respectively, can be written as (leave proof as an exercise)

pβm (βm) = βm

2 t2
1

exp

(
− t2

2
βm

) (
t1 t2 K1

(
βm

t1

)
+ 2 K0

(
βm

t1

) )
U (βm) ,

Pβm (βm) = 1− βm

t1
exp

(
− t2

2
βm

)
K1

(
βm

t1

)
, (8.16)

where

t1 =
√

q1q2δ2
s,rδ

2
r,d , t2 = 1

q2δ2
s,r
+ 1

q1δ
2
r,d

. (8.17)

In (8.16), K0(x) and K1(x) are the zero-order and first-order modified Bessel functions
of the second kind, respectively, defined in [[1], (9.6.21–22)] as

K0(x) =
∫ ∞

0
cos
(
x sinh (t)

)
dt =

∫ ∞

0

cos (x t)√
t2 + 1

dt ,

K1(x) =
∫ ∞

0
sin
(
x sinh (t)

)
sinh (t) dt , (8.18)

for x > 0.
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The probability of direct-transmission mode can be obtained as follows:

Pr(φ) = Pr
(
βs,d ≥ α βm

) = ∫ ∞

0
Pβm

(
βs,d

α

)
pβs,d

(
βs,d
)

dβs,d

= 1− 1

αt1δ2
s,d

∫ ∞

0
βs,d exp

(
−
(

1

δ2
s,d

+ t2
2α

)
βs,d

)
K1

(
βs,d

αt1

)
dβs,d,

(8.19)

where we used (8.15) and (8.16). K1(.) can be approximated as

K1(x) ≈ 1

x
. (8.20)

Substituting (8.20) into (8.19), the probability of the direct transmission is approxi-
mated as

Pr(φ) ≈ 1− 1

δ2
s,d

∫ ∞

0
exp

(
−
(

1

δ2
s,d

+ t2
2α

)
βs,d

)
dβs,d

≈ t2 δ2
s,d

2α + t2 δ2
s,d

, (8.21)

and the probability of the relay-cooperation mode is

Pr(φc) = 1− Pr(φ) ≈ 2α

2α + t2 δ2
s,d

. (8.22)

Since the bandwidth efficiency of the direct-transmission mode is 1 symbols per chan-
nel use (SPCU), and that of the relay-cooperation mode is 1/2 SPCU, the average
bandwidth efficiency can be written as

R = Pr(φ)+ 1

2
Pr(φc) . (8.23)

Substituting (8.21) and (8.22) into (8.23) and substituting t2 as in (8.17), we get the
following theorem.

T H E O R E M 8.2.1 The bandwidth efficiency of the relay-selection decode-and-
forward cooperative scenario, utilizing a single relay, can be approximated as

R ≈
α + ( 1−r

B δ2
s,r
+ r

A2 δ2
r,d
) r δ2

s,d

2α + ( 1−r
B δ2

s,r
+ r

A2 δ2
r,d
) r δ2

s,d

SPCU, (8.24)

where SPCU stands for symbols per channel use.

8.2.2 SER analysis and upper bound

We obtain the SER of the single-relay decode-and-forward scheme for M-PSK sig-
nalling. The probability of symbol error, or SER, is defined as

Pr(e) = Pr(e|φ) · Pr(φ)+ Pr(e|φc) · Pr(φc) , (8.25)
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where Pr(e|φ) ·Pr(φ) represents the SER of the direct-transmission mode and Pr(e|φc) ·
Pr(φc) represents the relay-cooperation mode SER. The SER of the direct-transmission
mode can be calculated as follows. First, the instantaneous direct-transmission SNR is

γ φ = P βs,d

N0
. (8.26)

The conditional direct-transmission SER can be written as

Pr(e|phi, βs,d) = �(γ φ) � 1

π

∫ (M−1)π
M

0
exp

(
− b γ φ

sin2 θ

)
dθ . (8.27)

where b = sin2(π/M). Since

Pr(e|φ) Pr(φ) =
∫ ∞

0
Pr(e|φ, βs,d) Pr(φ|βs,d) pβs,d(βs,d) dβs,d

=
∫ (M−1)π

M

0

1

π

∫ ∞

0

1

δ2
s,d

exp

(
−
(

b P

N0 sin2 θ
+ 1

δ2
s,d

)
βs,d

)

×
(

1− βs,d

αt1
exp

(
− t2

2α
βs,d

)
K1

(
βs,d

α t1

))
dβs,d dθ,

(8.28)

where we used (8.15), (8.16), and (8.27). Substituting (8.20) into (8.28), we get

Pr(e|φ) Pr(φ) ≈ F1

(
1+ b P δ2

s,d

N0 sin2 θ

)
− F1

(
1+ t2δ2

s,d

2α
+ b P δ2

s,d

N0 sin2 θ

)

≈ t2 δ2
s,d

2α
F1

( (
1+ b P δ2

s,d

N0 sin2 θ

) (
1+ t2 δ2

s,d

2α
+ b P δ2

s,d

N0 sin2 θ

) )
,

(8.29)

where

F1
(
x(θ)

) = 1

π

∫ (M−1)π
M

0

1

x(θ)
dθ.

We obtain the SER of the relay-cooperation mode as follows. For the relay-
cooperation mode, maximal-ratio combining (MRC) is applied at the destination. The
output of the MRC can be written as

yφ
c =

√
P0 h∗s,d
N0

yφ
c

s,d +
√

P̃1 h∗r,d
N0

yφ
c

r,d . (8.30)

The instantaneous SNR of the MRC output can be written as

γ φ
c = P0βs,d + P̃1βr,d

N0
. (8.31)
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We can easily see that the conditional SER of the relay-cooperation mode can be
written as

Pr(e|φc, βs,d, βs,r, βr,d) = �(γ φc
)|P̃1=0 �

(
P0βs,r

N0

)
+ �(γ φ

c
)|P̃1=P1

(
1−�

(
P0βs,r

N0

))
. (8.32)

Let us denote Pr(A|φc, βs,d, βs,r, βr,d) � �(γ φ
c
)�(

P0βs,r
N0
) and Pr(B|φc, β) � �(γ φ

c
),

in which β � [βs,d, βs,r, βr,d]. Then

Pr(A|φc, βs,d, βs,r, βr,d)

= 1

π

∫ (M−1)π
M

θ1=0
exp
(− b P0

N0 sin2 θ1
βs,d
)

exp
(− b P̃1

N0 sin2 θ1
βr,d
)

dθ1

× 1

π

∫ (M−1)π
M

θ2=0
exp
(− b P0

N0 sin2 θ2
βs,r
)

dθ2 , (8.33)

so we have

Pr(A|φc) Pr(φc) =
∫
β

Pr(A/φc, β) Pr(φc/β) pβ(β) dβ . (8.34)

Moreover, since βm is a function of βs,r and βr,d as given by (8.10), so

Pr(φc|β) = Pr(βs,d < αβm/βs,d, βs,r, βr,d) = U (αβm − βs,d) . (8.35)

Substituting (8.33) and (8.35) into (8.34), we get

Pr(A|φc) Pr(φc)

=
∫
β

1

π2

∫ (M−1)π
M

θ1=0

∫ (M−1)π
M

θ2=0
exp
(− P0 C(θ1) βs,d

)
exp
(− P̃1 C(θ1) βr,d

)
× exp

(− P0 C(θ2) βs,r
)

U (αβm − βs,d) pβ(β) dθ2 dθ1 dβ , (8.36)

where C(θ) = b/
(
N0 sin2 θ

)
. Since βs,d, βs,r, and βr,d are statistically independent, thus

pβ(β) = pβs,d(βs,d) pβs,r(βs,r) pβr,d(βr,d) = pβs,d(βs,d) pβ̃ (β̃) , (8.37)

Pr(A|φc) Pr(φc)

=
∫
β̃

1

π2

∫ (M−1)π
M

θ1=0

∫ (M−1)π
M

θ2=0

1− exp
(
− (P0 C(θ1)+ 1

δ2
s,d

)
αβm

)
1+ P0 C(θ1)δ2

s,d

× exp
(− P̃1 C(θ1)βr,d

)
exp
(− P0 C(θ2)βs,r

)
pβ̃ (β̃) dθ2 dθ1 dβ̃ . (8.38)

It is difficult to get an exact expression of (8.38) for βm defined in (8.10). Thus, we
obtain an upper bound via the worst-case scenario. We replace βs,r and βr,d in (8.38) by
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their worst-case values in terms of βm . Then, we average (8.38) over βm only. It follows
from (8.10) that

1

βm
= 1

2 q2 βs,r
+ 1

2 q1 βr,d
, (8.39)

thus, βm ≤ 2 q2 βs,r and βm ≤ 2 q1 βr,d. If we replace βs,r and βr,d by their worst-case
values in terms of βm as

βs,r −→ βm

2 q2
, βr,d −→ βm

2 q1
. (8.40)

Then, the probability in (8.38) can be upper bounded as

Pr(A|φc) Pr(φc)

≤ 1

π2

∫ (M−1)π
M

θ1=0

1

1+ P0 C(θ1)δ2
s,d

∫ (M−1)π
M

θ2=0
Mβm

( P̃1 C(θ1)

2 q1
+ P0 C(θ2)

2 q2

)
−Mβm

((
P0 C(θ1)+ 1

δ2
s,d

)
α + P̃1 C(θ1)

2 q1
+ P0 C(θ2)

2 q2

)
dθ2dθ1, (8.41)

where Mβm (.) is the moment-generation function (MGF) of βm . It can be shown that
for two independent exponential random variables with parameters λ1 and λ2, the MGF
of their harmonic mean function can be written as (leave proof as an exercise)

Mβm (γ ) = Eβm

(
exp(−γ βm)

)
= 16 λ1 λ2

3 (λ1 + λ2 + 2
√
λ1 λ2 + γ )2

⎛⎝4 (λ1 + λ2) 2F1

(
3, 3

2 ; 5
2 ; λ1+λ2−2

√
λ1 λ2+γ

λ1+λ2+2
√
λ1 λ2+γ

)
(λ1 + λ2 + 2

√
λ1 λ2 + γ )

+ 2F1

(
2,

1

2
; 5

2
; λ1 + λ2 − 2

√
λ1 λ2 + γ

λ1 + λ2 + 2
√
λ1 λ2 + γ

))
(8.42)

where Eβm (.) represents the statistical average with respect to βm and 2F1(., .; .; .) is
the Gauss’ hypergeometric function as defined on page 172. Following similar steps as
done in (8.33)–(8.41), we have (leave proof as an exercise)

Pr(B|φc) Pr(φc)

≤ 1

π

∫ (M−1)π
M

θ=0

Mβm

(
P̃1 C(θ)

2 q1

)
− Mβm

((
P0 C(θ)+ 1

δ2
s,d

)
α + P̃1 C(θ)

2 q1

)
dθ

1+ P0 C(θ)δ2
s,d

.

(8.43)

Note that the unconditional SER of the relay-cooperation mode in (8.32) can be
rewritten as

Pr(e|φc) Pr(φc)

=
(
Pr(A|φc)|P̃1=0 − Pr(A|φc)|P̃1=P1

+ Pr(B|φc)|P̃1=P1

)
Pr(φc),

≤
(
Pr(A|φc)|P̃1=0 + Pr(B|φc)|P̃1=P1

)
Pr(φc). (8.44)
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Based on (8.41) and (8.43), we get an upper bound as

Pr(e|φc) Pr(φc)

≤ 1

π

∫ (M−1)π
M

θ=0

Mβm

(
P1 C(θ)

2 q1

)
1+ P0 C(θ)δ2

s,d

dθ

+ 1

π2

∫ (M−1)π
M

θ1=0

1

1+ P0 C(θ1)δ2
s,d

∫ (M−1)π
M

θ2=0
Mβm

( P0 C(θ2)

2 q2

)
dθ2 dθ1.

(8.45)

Therefore, an upper bound on the total SER can be obtained as

Pr(e) ≤ t2 δ2
s,d

2α
F1

( (
1+ b P δ2

s,d

N0 sin2 θ

) (
1+ t2 δ2

s,d

2α
+ b P δ2

s,d

N0 sin2 θ

) )

+ 1

π

∫ (M−1)π
M

θ1=0

(
Mβm

(
b P1

2 q1 N0 sin2 θ1

)
+ 1
π

∫ (M−1)π
M

θ2=0 Mβm

(
b P0

2 q2 N0 sin2 θ2

)
dθ2

)
1+ b P0 δ

2
s,d

N0 sin2 θ1

dθ1.

(8.46)

The above SER upper bound expression is in terms of the MGF Mβm , which is math-
ematically intractable. In order to show that full diversity order is achieved, we derive
an upper bound on the SER performance at high SNR as follows. We recall that an
approximation to the MGF of two independent exponential random variables at high
enough SNR can be obtained as (see Chapter 5)

Mβm (γ ) ≈
q1 δ

2
r,d + q2 δ

2
s,r

2 γ
. (8.47)

Then, substituting (8.47) into (8.46) and neglecting all terms added to
(
b P δ2

s,d

)
/(

N0 sin2 θ
)

and
(
b P0 δ

2
s,d

)
/
(
N0 sin2 θ

)
at high SNR, we get

Pr(e) ≤ t2
2α

N 2
0 B

b2 P2 δ2
s,d

+
(

N0

b

)2
(
q1 δ

2
r,d + q2 δ

2
s,r

) (
q1 B
P1
+ q2 A2

P0

)
P0 δ

2
s,d

=
(

N0

b

)2
(

B t2
2 α δ2

s,d P2
+ 2 q2 A2 P

δ2
s,d

(
A2 δ2

r,d P1 + B δ2
s,r P0

P3
0 P1

))
.

Note that
(
q1 B

)
/P1 =

(
q2 A2

)
/P0 after substituting q1 and q2 by their expressions in

(8.8), and using the equality P0 (1− r) = P1 r . Thus,

Pr(e) ≤ B

b2 δ2
s,d

(
t2

2 α
+ 2 A2 (q1 δ

2
r,d + q2 δ

2
s,r)

r2 (1− r)

)
·
(

1

γ

)2

, (8.48)

where γ = P/N0 is the SNR. Equation (8.48) shows that diversity order two is achieved
as long as α > 0. Replacing q1 and q2 by their expressions defined in (8.8) and t2 by its
expression defined in (8.17), we obtain the following theorem.
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T H E O R E M 8.2.2 At high SNR, γ = P/N0, the SER of the single-relay relay-selection
decode-and-forward cooperative scheme is upper bounded as Pr(e) ≤ (CG · γ )−2,
where CG denotes the coding gain and is equal to

CG =
√√√√√√√√

b2 δ2
s,d

B

⎛⎝ r(1−r)

B δ2s,r
+ r2

A2 δ2r,d
2 α + 2 A2

( A2 δ2r,d
r2 + B δ2s,r

r(1−r)

)
r2 (1−r)

⎞⎠ . (8.49)
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Fig. 8.1 SER simulated, SER upper bound, and direct transmission curves for single-relay relay-selection
decode-and-forward cooperative scheme with QPSK modulation, α = 1, and ro = 0.5 for (a)
unity channel variances and (b) δ2s,d = 1, δ2s,r = 10, and δ2r,d = 1.



8.3 Multi-node scenario 289

Example 8.1 This example is to demonstrate the single-relay relay-selection cooper-
ative communications scheme by assuming α = 1, ro = 0.5, N0 = 1, and QPSK
signalling for (a) Unity channel variances and (b) δ2

s,d = 1, δ2
s,r = 10, and δ2

r,d = 1.
Figure 8.1(a) depicts the simulated SER curves for the single-relay relay-selection
decode-and-forward cooperative scheme with unity channel variances. Also, we plot
the direct transmission curve which achieves diversity order one, to show the advan-
tage of using the cooperative scenario. Figure 8.1(b) shows the simulated SER curve for
single-relay relay-selection decode-and-forward cooperative scheme when the source–
relay channel is stronger, δ2

s,r = 10. We can see that the SER upper bound achieves
full diversity order, which guarantees that the actual SER performance has full diversity
order as well. �

8.3 Multi-node scenario

In this section, we discuss the multi-node relay-selection decode-and-forward cooper-
ative scenario and determine when the source needs to cooperate and which relay to
cooperate with. Let us consider a cooperative communication system with N relays,
as shown in Figure 8.2, which consists of a source, s, its destination, d, and N relays.
Each relay receives the symbols from its previous relays, applies MRC on the received
output, and re-transmits if correctly decoded. This protocol achieves full diversity order
as shown in Chapter 6. However, it requires N + 1 phases and the bandwidth efficiency
is R = 1/N + 1 SPCU. Therefore, the objective of the relay-selection scenario is to
increase the bandwidth efficiency, while achieving full diversity order.

In the multi-node relay selection cooperative scenarios, there are two main questions
to be answered:

• The first question is how to determine the optimal relay to cooperate with. The answer
comes from the motivation described earlier. The modified harmonic mean function

s d

r1

r2

rN

Fig. 8.2 Multi-node cooperative communication system.
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s d

r

r1

Optimal
relay

rN

Fig. 8.3 Multi-node relay-selection cooperative communication system behaves like a single-relay
selection system with the optimal relay.

of the source–relay and relay–destination channel gains is an appropriate measure
on how much help a relay can offer. Thus, the optimal relay is the relay with the
maximum modified harmonic mean function of its source–relay and relay–destination
channel gains among all the N relays. With this optimal relay being decided, the
system consists of the source, the destination, and the optimal relay, as shown in
Figure 8.3.

• The second question is how to determine when to cooperate. Its answer is the
same as that of the single-relay case described before. The source compares the
source–destination channel gain with the optimal relay’s metric to decide whether to
cooperate or not. Therefore, the system model of the multi-node relay-selection coop-
erative scenario is the same as that of the single relay scenario utilizing the optimal
relay, which is described by (8.11)–(8.14).

We assume that the channels are reciprocal, hence each relay knows its source–relay
and relay–destination channel gains and calculates its metric. Then, each relay sends
this metric to the source through a feedback channel. Furthermore, we assume that the
source knows its source–destination channel gain. Thus, the source computes the ratio
between its source–destination channel gain and the maximum metric of the relays,
and compares this ratio to the cooperation threshold. If this ratio is greater than the
cooperation threshold, then the source does not cooperate with any of the relays and
sends its information directly to the destination in single phase. Otherwise, the source
cooperates with one relay, which has the maximum metric, in two phases. Finally, the
source sends a control signal to the destination and the relays to indicate which mode
it is going to use. The relay, which has the maximum metric, will be referred to as
the optimal relay. This procedure is repeated every time the channel gains vary. We
assume that the channel gains vary slowly so that the overhead resulting from sending
the relays’s metrics is negligible. We should note here that the source and the relays are
not required to know the phase information of their channels.

8.3.1 Bandwidth efficiency

We derive the achievable bandwidth efficiency of the multi-node relay-selection decode-
and-forward cooperative scheme as follows. The metric for each relay is defined in
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(8.9). We denote the PDF and CDF of βi for i = 1, 2, . . . , N as pβi (.) and Pβi (.),
respectively. They are as defined in (8.16) with t1 and t2 being replaced by

t1,i =
√

q1 q2 δ2
s,ri δ

2
ri ,d

and t2,i = 1

q2 δ2
s,ri

+ 1

q1 δ
2
ri ,d

,

respectively. The optimum relay will have a metric which is equal to

βmax = max{ β1, β2, . . . , βN } . (8.50)

The CDF of βmax can be written as

Pβmax(β) = Pr( β1 ≤ β , β2 ≤ β , . . . , βN ≤ β ) =
N∏

i=1

Pβi (β)

=
N∏

i=1

(
1− βi

t1,i
exp(− t2,i

2
β) K1(

β

t1,i
)

)
, (8.51)

and the PDF of βmax is written as

pβmax(β) =
∂Pβmax(β)

∂β
=

N∑
j=1

pβ j (β)

⎛⎝ N∏
i=1,i �= j

Pβi (β)

⎞⎠
≈

N∑
j=1

pβ j (β)

⎛⎝ N∏
i=1,i �= j

(
1− exp(− t2,i

2
β)

) ⎞⎠ , (8.52)

where we have used the approximation in (8.20). The expression in (8.52) is complex
and will lead to more complex and intractable expressions. Without loss of generality,
we consider the symmetric scenario where all the relays have the same source–relay
and relay–destination channel variances, i.e.,

δ2
s,ri = δ2

s,r , δ2
ri ,d
= δ2

r,d , for i = 1, 2, . . . , N . (8.53)

According to (8.51) and (8.52), the CDF and PDF of βmax can be written as

Pβmax(β) =
(

1− β

t1
exp

(
− t2

2
β

)
K1

(
β

t1

) )N

pβmax(β) = N

(
1− β

t1
exp

(
− t2

2
β

)
K1

(
β

t1

) )N−1

pβm (β) , (8.54)
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where pβm (.) is as defined in (8.16) and t1 and t2 are as defined in (8.17). The probability
of the direct-transmission mode can be obtained as follows:

Pr(φ) = Pr(βs,d ≥ α βmax)

=
N∑

n=0

(Nn )(−1)n
1

(αt1)nδ2
s,d

×
∫ ∞

0
βn

s,d exp

(
−
(

1

δ2
s,d

+ t2 n

2α

)
βs,d

)(
K1

(
βs,d

αt1

))n

dβs,d

≈
N∑

n=0

(Nn )(−1)n
2α

2α + t2 δ2
s,d n

, (8.55)

where we used (8.15), (8.20), and (8.54) to get (8.55). The probability of relay-
cooperation mode is obtained using (8.22). Finally, we obtain the average band-
width efficiency using (8.23), which leads to the following theorem.

T H E O R E M 8.3.1 The bandwidth efficiency of the multi-node relay-selection decode-
and-forward symmetric cooperative scenario, employing N relays, is approximated as

R ≈ 1

2

(
1+

N∑
n=0

(Nn )(−1)n
2α

2α + ( 1−r
B δ2

s,r
+ r

A2 δ2
r,d

)
r δ2

s,d n

)
SPCU. (8.56)

Example 8.2 This example is to plot the bandwidth efficiency given in Theorem 8.3.1
versus the number of relays for unity channel variances, α = 1, and r = 0.5. Figure 8.4
depicts the bandwidth efficiency of the relay-selection with α = 1 and r = 0.5 and
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Fig. 8.4 Bandwidth efficiency dependence on the number of relays with QPSK modulation and unity
channel variances, α = 1, and r = 0.5.
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the conventional cooperative schemes for different number of relays and unity chan-
nel variances. It is clear that the bandwidth efficiency decreases down to 0.5 as N
increases, because the probability of the direct-transmission mode decreases down to
0 as N goes to ∞. Furthermore, we plot the bandwidth efficiency of the conventional
cooperative scheme, Rconv = 1/N + 1 SPCU, to show the significant increasing in the
bandwidth efficiency of the relay-selection cooperative scenario over the conventional
cooperative scheme. �

8.3.2 SER analysis and upper bound

Before determining the SER of the multi-node relay-selection decode-and-forward sym-
metric cooperative scenario, we mention the following lemma, which is used to prove
full diversity later.

Lemma 8.3.1 For any x, y, and N

N∑
n=0

(
N

n

)
(−1)n

1

x + n y
= (N )! yN∏N

n=0(x + n y)
, (8.57)

Proof First, we prove that

N∑
n=0

(N
n

)
(−1)n

1+ n z
= N ! zN∏N

n=0(1+ n z)
. (8.58)

Let A(z) =∑N
n=0

(Nn ) (−1)N

1+n z , B(z) =∏N
n=0(1+n z), and G(z) = A(z)·B(z). The order

of G(z) is N , thus it can be written as G(z) = ∑N
i=0 gi zi where gi = 1

i !
∂ i G(z)
∂zi |z=0. It

can be easily shown that

∂ i A(z)

∂zi
= (−1)i i !

N∑
n=0

(Nn ) (−1)n ni

(1+ n z)i+1
. (8.59)

Using the identity obtained in [[50], (0.154, 3–4)] As

N∑
n=0

(
N

n

)
(−1)n ni =

⎧⎨⎩
0, 0 ≤ i < N

(−1)N N !, i = N
(8.60)

we get

∂ i A(z)

∂zi

∣∣∣∣
z=0

= (−1)i i !
(

N∑
n=0

(Nn ) (−1)n ni

)
=
⎧⎨⎩

0, 0 ≤ i < N

(N !)2, i = N
(8.61)
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Since, A(z)|z=0 = 0 and B(z)|z=0 = 1, thus

gi = 1

i !
∂ i ( A(z) · B(z) )

∂zi

∣∣∣∣
z=0

= 1

i !
∂ i A(z)

∂zi

∣∣∣∣
z=0

· B(z)
∣∣∣
z=0

=
⎧⎨⎩

0, 0 ≤ i < N .

N !, i = N .
(8.62)

Thus,

A(z) = G(z)

B(z)
= N ! zN∏N

n=0(1+ n z)
, (8.63)

which proves (8.58). Replacing z = y/x in (8.58), we obtain Lemma 8.3.1.
The SER derivation in the multi-node system is similar to those in the single-relay

system. The major difference is the usage of the PDF and CDF of βmax defined in (8.54)
instead of the PDF and CDF of βm defined in (8.16). The total SER can be obtained as
a summation of the SER of both the direct-transmission and relay-cooperation modes
as in (8.25). First, we obtain the SER of the direct-transmission mode similar to the
single-relay case (8.28) as follows:

Pr(e|φ) Pr(φ) ≈
N∑

n=0

(Nn )(−1)n F1

(
1+ t2 δ2

s,d n

2α
+ b P

N0 sin2 θ
δ2

s,d

)

= N !
(

t2 δ2
s,d

2α

)N

F1

(
N∏

n=0

(1+ t2 δ2
s,d n

2α
+ b P

N0 sin2 θ
δ2

s,d)

)
,

(8.64)

where we have applied (8.15), (8.20), (8.54), and Lemma 8.3.1. As for the relay-
cooperation mode, its SER is similar to that of the single-relay system, but using the
MGF of βmax. The MGF of βmax can be written as

Mβmax(γ ) = Eβmax ( exp(−γ βmax) )

= N
N−1∑
n=0

(
N−1
n

)
(−1)n Mβm

(
γ + n t2

2

)
, (8.65)

where we have applied (8.20).
Similar to the single-relay scenario, we can obtain an upper bound on the total SER

as (leave proof as an exercise)

Pr(e) ≤ N !
(

N0

b P

)N+1 ( t2
2α

)N I (2N + 2)

δ2
s,d

+ N !
(

N0

b
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t N−1
2
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q1 δ

2
r,d + q2 δ

2
s,r

)
P0 δ

2
s,d

×
( (

q1

P1

)N

I (2 N + 2)+
(

q2

P0

)N

A I (2 N )

)
, (8.66)



8.4 Optimum power allocation 295

where

I (p) = 1

π

∫ (M−1)π
M

θ=0
sinp θ dθ. (8.67)

For the single-relay case N = 1, (8.66) and (8.48) are the same. Replacing q1 and q2

by their expressions defined in (8.8), t2 by its expression defined in (8.17), and using
P0 = r P and P1 = (1 − r) P , we get the following theorem which shows that full
diversity order of N + 1 is achieved. �

T H E O R E M 8.3.2 At high SNR γ = P/N0, the SER of the multi-node relay-
selection decode-and-forward symmetric cooperative scenario, utilizing N relays, is
upper bounded by

Pr(e) ≤ (CG · γ )−(N+1) (8.68)

where

CG =

⎛⎜⎜⎜⎝
N !
(

r(1−r)
B δ2
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A2 δ2
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r2 + Bδ2
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r(1−r)

) (
A2N I (2 N + 2)+ BN A I (2 N )

)
r N+1 (1− r)N

⎞⎟⎟⎠
− 1
(N+1)

.

(8.69)

8.4 Optimum power allocation

In this section, an analytical expression of the optimum power allocation is derived,
and bandwidth efficiency-SER tradeoff curves are shown to obtain the optimum coop-
eration threshold. We clarify that as α increases, the probability of choosing the
relay-cooperation mode increases. Therefore, the bandwidth efficiency and the SER,
given by (8.56) and (8.66), respectively, decrease monotonically with α. In addition, the
bandwidth efficiency is a monotonically increasing or decreasing function of the power
ratio r , depending on the channel variances. On the contrary, there exists an optimum
power ratio r∗, which minimizes the SER. We determine the optimum power allocation
as follows.

In the direct-transmission mode, all the power is transmitted through the source–
destination channel. In the relay-cooperation mode, we determine the optimum powers
P1 and P2 which minimize the SER upper bound expression in (8.66) subject to con-
straint P1+P2 = P . Substituting (8.8) into (8.66), we can approximate the optimization
problem as
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min
P1

(
A2 δ2

r,d

r2 P1
+ B δ2

s,r

r (1− r) P1

)
·
(( A2

r2 P2

)N
I (2 N + 2)

+
( B

r (1− r) P1

)N
A I (2 N )

)
s.t. P1 + P2 = P . (8.70)

By substituting r = P1/P into (8.70), we get

min
P1
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A2N+2 I (2 N + 2)+ A3 BN I (2 N )
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P2 N+3
1 P N

2
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A2N B I (2 N + 2)+ A BN+1 I (2 N )
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δ2
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P2 N+2
1 P N+1

2

s.t. P1 + P2 = P . (8.71)

Solving (8.71) using the standard Lagrangian method results in the following theorem
(leave proof as an exercise).

T H E O R E M 8.4.1 The optimum power allocation of the multi-node relay-
selection decode-and-forward symmetric cooperative scenario, employing N relays, is
obtained as

P1 =
1− N X1

2 (N+1) X2
+
√

1+ (N+2) X1
(N+1) X2

+ ( N X1
2 (N+1) X2

)2

2− N X1
2 (N+1) X2

+
√

1+ (N+2) X1
(N+1) X2

+ ( N X1
2 (N+1) X2

)2
P ,

P2 = 1

2− N X1
2 (N+1) X2

+
√

1+ (N+2) X1
(N+1) X2

+ ( N X1
2 (N+1) X2

)2
P , (8.72)

where

X1 =
(

A2N+2 I (2 N + 2)+ A3 BN I (2 N )
)
δ2

r,d ,

X2 =
(

A2N B I (2 N + 2)+ A BN+1 I (2 N )
)
δ2

s,r .

Theorem 8.4.1 shows that the optimum power allocation does not depend on the source–
destination channel variance. It depends basically on the parameter M and the source–
relay and relay–destination channel variances. If δ2

r,d � δ2
s,r then P1 goes to P and P2

goes to zero. Intuitively, this is because the source–relay link is of bad quality. Thus, it is
reasonable to send the total power through the source–destination channel. In addition,
if δ2

s,r � δ2
r,d then P1 goes to P/2 and P2 goes to P/2 as well, which is expected because

if the source–relay channel is so good, then the symbols will be received correctly by
the relay with high probability. Thus, the relay will be almost the same as the source,
thus both source and relay share the power equally.
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The obtained optimum power ratio will be used to get the optimum cooperation
threshold as follows. Figure 8.5(a) and (b) depicts the bandwidth efficiency-SER trade-
off curves for different number of relays at SNR equal to 20 dB and 25 dB, respectively.
This tradeoff is the achievable bandwidth efficiency and SER for different values of
cooperation threshold. At a certain SER value, the maximum achievable bandwidth effi-
ciency while guaranteeing full diversity order, can be obtained through Figure 8.5. In
Figure 8.5, it is shown that the tradeoff achieved using four relays is the best among the
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Fig. 8.5 Bandwidth efficiency versus SER at (a) SNR = 20 dB, (b) SNR = 25 dB.
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Table 8.1 Single-relay optimum values using the (CG*R) optimization criterion.

Bandwidth Coding
δ2s,d δ2s,r δ2r,d r = P1/P α efficiency (R) gain (CG)

1 1 1 0.6902 0.55 0.8624 0.247
1 1 10 0.7487 0.09 0.9075 0.1613
1 10 1 0.6697 0.14 0.9443 0.0939

plotted curves at low SER region. Moreover, it is clear in Figure 8.5(a) that the SER
is almost constant at 2x10−5 while the bandwidth efficiency increases from 0.5 to 0.8
SPCU for four relays. Thus, an increase in the bandwidth efficiency of about 60% can
be achieved with the same SER performance.

In the sequel, we consider three different channel-variances cases as follows. Case 1
which corresponds to the unity channel variances, where δ2

s,d = δ2
s,r = δ2

r,d = 1 and it is
represented at the first row of Table 8.1. Case 2 expresses a stronger relay–destination
channel δ2

r,d = 10, while case 3 expresses a stronger source–relay channel δ2
s,r = 10.

Cases 2 and 3 are represented at the second and third rows of Table 8.1, respectively.
Table 8.1 shows the optimum values of the power allocation ratio (8.72) for the three
cases. Since we aim at maximizing both the coding gain and the bandwidth efficiency,
we choose as an example an optimization metric, which is the product of the coding gain
and bandwidth efficiency, to find the optimum cooperation threshold. This optimization
metric can be written as

max
α

CG · R ,

where R and CG are obtained from (8.56) and (8.69), respectively.

Example 8.3 This example considers the CG*R optimization metric and indicate the
optimum cooperation threshold for (a) single-relay scenario using various channel vari-
ances and (b) optimum cooperation thresholds for different number of relays with unity
channel variances. The CG*R curves are plotted in Figure 8.6(a) for different channel
variances. It is shown that the optimum cooperation threshold for the three different
cases are αo = 0.55, αo = 0.09, and αo = 0.14, respectively. These values of cooper-
ation thresholds result in bandwidth efficiencies equal to Ro = 0.8624, Ro = 0.9075,
and Ro = 0.9443 SPCU, respectively. Notably for δ2

r,d = 10, the optimum power ratio

is ro = 0.7487, which is greater than ro = 0.6902 for δ2
r,d = 1; δ2

s,r = 1 in both
cases. This is in agreement with the conclusion that more power should be put for P1 if
δ2

r,d � δ2
s,r.

As shown in Figure 8.6(b), increasing the number of relays affects the optimum
cooperation threshold values according to the CG*R optimization criterion. Table 8.2
describes the effect of changing the number of relays on the power ratio, cooperation
threshold, bandwidth efficiency, and the coding gain using the unity channel-variances
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Fig. 8.6 (a) Optimum cooperation thresholds for single-relay scenario using various channel variances,
(b) optimum cooperation thresholds for different number of relays with unity channel
variances.

case. A few comments on Table 8.2 are as follows: (1) The optimum power ratio is
slightly decreasing with the number of relays. Because, increasing the number of relays
will increase the probability of finding a better relay, which can receive the symbols
from the source more correctly. Thus, it can send with almost equal power with the
source. (2) The bandwidth efficiency is slightly decreasing with increasing the number
of relays, because the probability that the source–destination channel is better than all
the relays’ metrics goes to 0 as N goes to∞. �
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Table 8.2 CG*R multi-node optimum values for unity channel variances.

Cooperation Bandwidth Coding
N Power ratio (r ) threshold (α) efficiency (R) gain (CG)

1 0.6902 0.55 0.8624 0.247
2 0.6826 0.41 0.8397 0.1512
3 0.6787 0.35 0.8297 0.1046
4 0.6764 0.32 0.82 0.0776

Example 8.4 In this example, the SER of multi-node relay-selection cooperative com-
munications are considered for one, two, and three relays considering unity channel
variances, N0 = 1, and QPSK signalling. Figure 8.7 depicts the SER performance
employing one, two, and three relays for unity channel variances. We plot the simulated
SER curves using the optimum power ratios and the optimum cooperation thresholds
obtained in Table 8.2. Moreover, we plot the SER upper bounds obtained in (8.66). It
was shown in Theorem 8.3.2 that these upper bounds achieve full diversity order. It is
obvious that the simulated SER curves are bounded by these upper bounds, hence they
achieve full diversity order as well. The direct-transmission SER curve is plotted as well
to show the effect of employing the relays in a cooperative way.
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Fig. 8.7 SER simulated with optimum power ratio and SER upper bound curves for multi-node
relay-selection decode-and-forward cooperative scheme with QPSK modulation and unity
channel variances.
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Moreover, the simulated bandwidth efficiencies are 0.8973, 0.8805, and 0.8738
employing one, two, and three relays, respectively. These results are slightly higher
than the analytical results shown in Table 8.2. �

8.5 Chapter summary and bibliographical notes

In this chapter, we have discussed single-relay and multi-node relay-selection decode-
and-forward cooperative scenarios, which utilize the partial CSI available at the source
and the relays to achieve higher bandwidth efficiency and guarantee full diversity order.
In the single-relay system, it was shown that the modified harmonic mean function of the
source–relay and relay–destination channels gain gives a proper measure on how much
help a relay can offer. An approximate expression of the achievable bandwidth effi-
ciency and an upper bound on the SER performance were derived. It turns out that the
bandwidth efficiency is increased to 0.9 SPCU when the source–relay channel is rela-
tively strong. Moreover, it was also shown that full diversity order is guaranteed as long
as there is a positive probability of having the relay-cooperation mode.

In the multi-node system using arbitrary N relays, we considered the optimal relay
as the one which has the maximum instantaneous modified harmonic mean function
of its source–relay and relay–destination channels gain among the N relays. For the
symmetric scenario, we have presented the approximate expression of the achiev-
able bandwidth efficiency, which decreases with increasing the number of employed
relays. Furthermore, we have also derived the SER upper bound, which proves that
full diversity order is guaranteed as long as there is a positive probability of having
the relay-cooperation mode. It was shown that the bandwidth efficiency is boosted up
from 0.2 to 0.77 SPCU for N = 4 relays and unity channel variances case. More-
over, we determined the optimum power allocation for the multi-node relay-selection
scheme, which minimizes the SER. As for the optimum cooperation threshold, the
bandwidth efficiency-SER tradeoff curves was also shown to determine the optimal
cooperation threshold.

There are various protocols proposed to choose the best relay among a collection
of available relays in the literature. In [237], the authors proposed to choose the best
relay depending on its geographic position, based on the geographic random forward-
ing (GeRaF) protocol proposed in [240]. In GeRaF, the source broadcasts its data to
a collection of nodes and the node that is closest to the destination is chosen in a dis-
tributed manner to forward the source’s data to the destination. In [128], the authors
considered a best-select relay scheme in which only the relay, which has received the
transmitted data from the source correctly and has the highest mean signal-to-noise
ratio (SNR) to the destination node, is chosen to forward the source’s data. In [83], a
relay-selection scheme for single-relay decode-and-forward cooperative systems was
proposed. In this scheme, the source decides whether to employ the relay in forwarding
its information or not, depending on the instantaneous values of the source–destination
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and source–relay channel gains. While [83] considered a single relay scenario, the
multi-node case was considered in [84]. More information on the topics studied in this
chapter can be found in [82].

Exercises

8.1 Prove that the PDF and CDF of the variable βm specified in (8.10) can be
determined as

pβm (βm) = βm

2 t2
1

exp

(
− t2

2
βm

)(
t1 t2 K1

(
βm

t1

)
+ 2 K0

(
βm

t1

) )
U (βm) ,

Pβm (βm) = 1− βm

t1
exp

(
− t2

2
βm

)
K1

(
βm

t1

)
,

where t1 =
√

q1q2δ2
s,rδ

2
r,d, t2 = 1/q2δ

2
s,r + 1/q1δ

2
r,d, and K0(x) and K1(x)

are the zero-order and first-order modified Bessel functions of the second kind,
respectively, defined as

K0(x) =
∫ ∞

0
cos
(
x sinh (t)

)
dt =

∫ ∞

0

cos (x t)√
t2 + 1

dt ,

K1(x) =
∫ ∞

0
sin
(
x sinh (t)

)
sinh (t) dt ,

for x > 0.

8.2 Show that the MGF of the variable βm specified in (8.10) can be written as

Mβm (γ ) = Eβm

(
exp(−γ βm)

)
= 16 λ1 λ2

3 (λ1 + λ2 + 2
√
λ1 λ2 + γ )2

×
⎛⎝4 (λ1 + λ2) 2F1

(
3, 3

2 ; 5
2 ; λ1+λ2−2

√
λ1 λ2+γ

λ1+λ2+2
√
λ1 λ2+γ

)
(λ1 + λ2 + 2

√
λ1 λ2 + γ )

+ 2F1

(
2,

1

2
; 5

2
; λ1 + λ2 − 2

√
λ1 λ2 + γ

λ1 + λ2 + 2
√
λ1 λ2 + γ

))
where Eβm (.) represents the statistical average with respect to βm and

2F1(., .; .; .) is the Gauss’ hypergeometric function.

8.3 Show the probability upper bound in (8.43), i.e.,

Pr(B|φc) Pr(φc)

≤ 1

π

∫ (M−1)π
M

θ=0

Mβm

(
P̃1 C(θ)

2 q1

)
− Mβm

((
P0 C(θ)+ 1

δ2
s,d

)
α + P̃1 C(θ)

2 q1

)
dθ

1+ P0 C(θ)δ2
s,d

.
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8.4 Prove the result in Theorem 8.4.1, i.e., the optimum power allocation of the
multi-node relay-selection decode-and-forward symmetric cooperative scenario
with N relays is given by

P1 =
1− N X1

2 (N+1) X2
+
√

1+ (N+2) X1
(N+1) X2

+ ( N X1
2 (N+1) X2

)2

2− N X1
2 (N+1) X2

+
√

1+ (N+2) X1
(N+1) X2

+ ( N X1
2 (N+1) X2

)2
P ,

P2 = 1

2− N X1
2 (N+1) X2

+
√

1+ (N+2) X1
(N+1) X2

+ ( N X1
2 (N+1) X2

)2
P ,

where

X1 =
(

A2N+2 I (2 N + 2)+ A3 BN I (2 N )
)
δ2

r,d ,

X2 =
(

A2N B I (2 N + 2)+ A BN+1 I (2 N )
)
δ2

s,r .

8.5 In this exercise, we will consider an alternative relay selection metric and shown
its effect on the single-relay relay-selection decode-and-forward scheme. The
relay’s metric is represented by its source–relay channel gain. Based on this
metric, the source determines whether to cooperate with the relay or not. Let
φ = { βs,d ≥ α βs,r } be the event of direct transmission. The transmis-
sion protocol can be modelled as in (8.11)–(8.14). The channel coefficients
hs,d, hs,r, and hr,d are modeled as zero-mean complex Gaussian random vari-
ables with variances δ2

s,d, δ
2
s,r, and δ2

r,d, respectively. The noise terms ηs,d, ηs,r,
and ηr,d are modeled as zero-mean, complex Gaussian random variables with
equal variance N0.
(a) Show that the probability of direct transmission is given by

Pr(φ) = Pr(βs,d ≥ αβs,r) =
δ2

s,d

δ2
s,d + α δ2

s,r

. (E8.1)

(b) Based on (8.23), show that the bandwidth efficiency is given by

R = 2 δ2
s,d + α δ2

s,r

2 δ2
s,d + 2 α δ2

s,r

. (E8.2)

(c) For the direct-transmission mode and using M-PSK modulation, the condi-
tional direct-transmission SER is given by (8.27). By averaging (8.27) over
βs,d, show that the direct-transmission SER is given by

Pr(e|φ)Pr(φ)

= F1

(
1+ bPδ2

s,d

N0 sin2 θ

)
− F1

(
1+ δ2

s,d

αδ2
s,r
+ bPδ2

s,d

N0 sin2 θ

)
, (E8.3)

where

F1 (x(θ)) = 1

π

∫ (M−1)π
M

0

1

x(θ)
dθ. (E8.4)
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(d) For the relay-cooperation mode, maximum ratio combining (MRC) [17] is
applied at the destination. The output of the MRC can be written as in (8.30).
The conditional SER of the relay-cooperation mode is given by (8.32).
By averaging (8.32) over the exponentially distributed random variables
βs,d, βs,r, and βr,d, show that

Pr(e/φc)Pr(φc) = F2

(
1

π2
, P1, 0,

(M − 1)π

M
,
(M − 1)π

M

)
+ F1

((
1+ δ2

s,d

αδ2
s,r
+ bP1δ

2
s,d

N0 sin2 θ

)(
1+ bP2δ

2
r,d

N0 sin2 θ

))

− F2

(
1

π2
, P1, P2,

(M − 1)π

M
,
(M − 1)π

M

)
, (E8.5)

where

F2 (C, P1, P2, θ1, θ2) = C
∫ θ1

0

∫ θ2

0

1(
1+ b P1δ

2
s,r

N0 sin2 θ2

)
dθ2 dθ1(

1+ δ2
s,d

αδ2
s,r
+ b P1δ

2
s,d

N0

(
1

sin2 θ1
+ 1
α sin2 θ2

))(
1+ b P2δ

2
r,d

N0 sin2 θ1

) . (E8.6)

(e) Obtain a complete SER expression for the M-PSK signalling based on (c)
and (d).

8.6 For the communication system described in Exercise 8.5, consider the ratio
between the SER and the bandwidth efficiency (SER/R) as an optimization
metric to determine the optimum cooperation threshold and power ratio.

(a) At SNR=10 dB and using a unity channel-variances case δ2
s,d = δ2

s,r = δ2
r,d =

1 with QPSK modulation, plot a 3-dimensional curve for the SER/R, and ver-
ify that the optimum values, which minimize the SER/R optimization metric,
are αo = 0.35 and ro = 0.52. Moreover, plot the SER of the relay-selection
scheme and compare the simulated SER with the analytical SER, given by
the summation of (E8.3) and (E8.5). Verify that the bandwidth efficiency
resulting from the simulations is 0.870 37 SPCU.

(b) Consider the multi-node case where arbitrary N relays are available. Each
relay’s metric is represented by its source–relay channel gain. Plot the SER
of this system assuming two and three relays. From the simulation results,
does this relay’s metric guarantees full diversity order? Explain.

8.7 Consider a relay metric, which is given by the minimum of the relay’s
source–relay and relay–destination channel gains, i.e., the relay’s metric can be
given by

βi = min(|hs,ri |2, |hri ,d|2) , f or i = 1, 2, . . . , N . (E8.7)
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For simplicity, consider that the cooperation threshold is 1 and the power ratio
is 0.5. Hence, the direct transmission event is denoted by φ = { βs,d ≥ αβi }.
Plot the SER for system with one, two, and three relays assuming unity chan-
nel variances for all the channels, r = 0.5, α = 1, and QPSK signalling.
Based on the simulation results, does this relay’s metric guarantee full diversity
order? Explain.



9 Differential modulation for
cooperative communications

In wireless communication systems with a single antenna, the channel capacity can
be very low and the bit error rate high when fading occurs. Various techniques can
be utilized to mitigate fading, e.g., robust modulation, coding and interleaving, error-
correcting coding, equalization, and diversity. Different kinds of diversities such as
space, time, frequency, or any combination of them are possible. Among these diver-
sity techniques, space diversity is of special interest because of its ability to improve
performance without sacrificing delay and bandwidth efficiency. Recently, space diver-
sity has been intensively investigated in point-to-point wireless communication systems
by the deployment of a MIMO concept together with efficient coding and modulation
schemes. In recent years, cooperative communication [109] has been proposed as an
alternative communication system that explores MIMO-like diversity to improve link
performance without the requirement of additional antennas. However, most of exist-
ing works on MIMO systems and cooperative communications are designed based on
an assumption that the receivers have full knowledge of the channel state information
(CSI). In this case, the schemes must incorporate reliable multi-channel estimation,
which inevitably increases the cost of frequent retraining and the number of estimated
parameters to the receivers. Although the channel estimates may be available when
the channel changes slowly comparing with the symbol rate, they may not be possi-
bly acquired in a fast-fading environment. To develop practical schemes that omit such
CSI requirements, we consider in this chapter differential modulations for cooperative
communications.

We first briefly review differential modulation for non-cooperative or direct wire-
less communication systems. Then, we consider differential modulation for cooperative
communication systems employing the decode-and-forward (DF) protocol. We dis-
cuss system design, performance analysis, and performance optimization. Finally,
we consider differential modulation for the amplify-and-forward (AF) cooperative
communication protocol.

9.1 Differential modulation

In conventional single-antenna systems, non-coherent modulation is useful when the
knowledge of CSI is not available. The non-coherent modulation simplifies the receiver
structure by omitting channel estimation and carrier or phase tracking. In this chapter,
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although we focus on the differential M-ary phase-shift-keying (DMPSK) scheme, the
concept of differential modulation schemes covered in subsequent sections can also be
applied to differential M-ary quadrature amplitude modulation (DMQAM).

In the DMPSK scheme, information is modulated through the phase difference
among two consecutive symbols. Specifically, for a data rate of R bits per chan-
nel use, the DPMSK signal constellation comprises M = 2R symbols. Each symbol
m ∈ 0 ≤ M − 1 is generated by the m-th root of unity: vm = ej2πm/M . Define sτ as
the differentially encoded symbol to be transmitted at time τ . The differential modula-
tor transmits sτ = 1 at the first symbol period, i.e., at τ = 0. For subsequent symbol
periods, the differential transmission follows a recursive multiplication rule:

sτ = vmsτ−1. (9.1)

If we let hτ denote the fading coefficient and nτ represent additive noise, then the
received signal for DMPSK modulation can be written as

yτ = √ρhτ sτ + wτ . (9.2)

The detection rule for differential demodulation can be obtained by the following
derivations. We first rewrite (9.2) as

yτ = √ρhτ sτ + wτ = √ρhτ vmsτ−1 + wτ .
We also knew from (9.2) that

√
ρhτ−1sτ−1 = yτ−1 − wτ−1. (9.3)

By assuming that fading channel keeps constant over two symbol periods, i.e., hτ−1 ≈
hτ , and substitute (9.3) into (9.2), we have

yτ = yτ−1vm − vmw
τ−1 + wτ .

= yτ−1vm +
√

2w̃τ , (9.4)

where w̃τ � (1/
√

2)(wτ − vmw
τ−1) is a complex Gaussian random variable with zero

mean and unit variance. From (9.4), by treating yτ−1 as a known channel information
and vm as a transmitted symbol, the expression in (9.4) can be considered as a received
signal for coherent detection. In this way, the optimum detector is simply the minimum
distance detector. Therefore, the differential decoder estimates the transmit information
using the following decoding rule:

m̂ = arg min
m∈0,1,...M−1

|yτ − vm yτ−1|2. (9.5)

We can see from (9.5) that the efficient differential demodulation for an informa-
tion symbol relies on two consecutive received symbols, and the decoding error does
not propagate to subsequent decoded information symbols. In terms of performance,
since the noise power has twice the variance of its coherent counterpart, the differential
scheme looses 3 dB performance in comparison to its coherent counterpart. For con-
venience in subsequence derivations of optimum differential detector, (9.5) is further
simplified to
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m̂ = arg min
m∈0,1,...M−1

|yτ − vm yτ−1|2,
= arg min

m∈0,1,...M−1
yτ (yτ )∗ − (vm)

∗(yτ−1)∗yτ − vm yτ−1(yτ )∗ + yτ−1(yτ−1)∗,

= arg max
m∈0,1,...M−1

(vm)
∗(yτ−1)∗yτ + vm yτ−1(yτ )∗,

= arg max
m∈0,1,...M−1

Re{(vm)
∗(yτ−1)∗yτ }, (9.6)

where (·)∗ denotes the complex conjugate and Re(·) represents the real part. The third
equality in (9.6) follows the fact that yτ (yτ )∗ and yτ−1(yτ−1)∗ are the same for any
index m.

9.2 Differential modulations for DF cooperative communications

9.2.1 DiffDF with single-relay systems

In this section, we consider a differential cooperative scheme employing the DF pro-
tocol, known as DiffDF, for systems with a single relay. In particular, the relay helps
forward the source symbol only if the symbol is correctly decoded. At the destination,
the received signal from the relay is combined with that from the source only if its
amplitude is larger than a threshold; otherwise only the received signal from the source
is used for the detection. A properly designed threshold allows the destination to make
a judgement whether the signal from the relay contains the information such that the
signals from the source and the relay can be efficiently combined and jointly decoded.
The bit error rate (BER) performance of the threshold-based differential DF scheme is
derived for differential DMPSK modulation. A tight approximate BER formulation as
well as the BER upper and lower bounds are provided.

9.2.1.1 Signal model and protocol description for the DiffDF scheme
We present in this section the threshold-based differential scheme for DF cooperation
systems. Consider a two-user cooperation system as shown in Figure 9.1 in which signal
transmission involves two transmission phases. A user who sends information directly
to the destination is considered to be a source node. The other user who helps forwarding
the information from the source node is a relay node. In phase 1, the source differentially
encodes its information and then broadcasts the encoded symbol to the destination. Due
to the broadcasting nature of the wireless networks, the relay is also able to receive the
transmitted symbol from the source. In phase 2, while the source is silent, the relay
differentially decodes the received signal from the source. If the relay correctly decodes
the transmitted symbol, the relay differentially re-encodes the information, and then
forwards the encoded symbol to the destination. Otherwise, the relay does not send or
remains idle. In both phases, we assume that all users transmit their signals through
orthogonal channels by the use of existing schemes such as TDMA, frequency division
multiple access (FDMA), or code division multiple access (CDMA).
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Fig. 9.1 The threshold-based differential scheme for decode-and-forward cooperative communications.

In differential modulation, the information is conveyed in the difference of the phases
of two consecutive symbols. The set of information symbols to be transmitted by
the source can be given by vm = ejϕm , where {φm}M−1

m=0 is a set of M information
phases. In case of differential M-ary phase shift keying (DMPSK), φm is specified as
ϕm = 2πm/M for m = 0, 1, . . . ,M − 1. Instead of directly transmitting the informa-
tion as in coherent transmission [109], [204], the source node differentially encodes the
information symbol vm as

xτ = vmxτ−1, (9.7)

where τ is the time index, and xτ is the differentially encoded symbol to be transmitted
at time τ . After differential encoding, the source sends out the symbol xτ with transmit-
ted power P1 to the destination and the relay. The corresponding received signals at the
destination and the relay can be expressed as

yτs,d =
√

P1hτs,dxτ + wτs,d,
yτs,r =

√
P1hτs,rx

τ + wτs,r,
where hτs,d and hτs,r are fading coefficients at the source–destination link and the source–
relay link, respectively, and wτs,d and wτs,r are additive noise. Both channel coefficients
hτs,d and hτs,r are modeled as zero-mean, complex Gaussian random variables with vari-

ances σ 2
s,d and σ 2

s,r, i.e., CN (0, σ 2
s,d) and CN (0, σ 2

s,r), respectively. Each of the additive
noise terms is modeled as CN (0,N0), where N0 is the noise power spectral density.

In phase 2, the relay differentially decodes the transmitted symbol from the source.
Two consecutive received signals, yτ−1

s,r and yτs,r, are required to recover the transmitted
information at each symbol period. By assuming that the channel coefficient hτs,r is
almost constant over two symbol periods, the differential decoder at the relay decodes
based on following the decision rule:

m̂ = arg max
m=0,1,...,M−1

Re
{(
vm yτ−1

s,r

)∗
yτs,r
}
,

in which the CSI is not required. In the relay-cooperation mode, the relay decides
whether to forward the received information or not according to the quality of the
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received signal. For mathematical tractability, we assume that the relay can judge
whether the decoded information is correct or not.1 If the relay incorrectly decodes
the received signal, such incorrectly decoded symbol is discarded, and the relay does
not send any information. Otherwise, the relay differentially re-encodes the correctly
decoded information symbol and forwards it to the destination.

In general, successful differential decoding requires that the encoder differentially
encodes each information symbol with the previously transmitted symbol. For example,
if the information symbols are sent every time slot, then the information symbol to be
transmitted at time τ is differentially encoded with the transmitted symbol at time τ−1.
In this differential DF scheme, since the information symbols at the relay are transmitted
only if they are correctly decoded, the transmission time of the previously transmitted
symbol can be any time before the current time τ . We denote such previous transmission
time as τ − k, k ≥ 1, i.e., τ − k is the latest time that the relay correctly decodes the
symbol before time τ . In order to perform successful differential en/decoding, we let
a memory M1 at the relay (see Figure 9.1) store the transmitted symbol at time τ − k.
Note that having a memory M1 does not increase the system complexity compared to
the conventional differential system. The difference is that the memory in this DiffDF
scheme stores the transmitted symbol at time τ − k instead of time τ − 1 as does the
conventional differential scheme.

The differentially re-encoded signal at the relay in phase 2 can be expressed as

x̃τ = vm x̃τ−k, (9.8)

where x̃τ is the differentially encoded symbol at the relay at time τ . We can see from
(9.7) and (9.8) that the differentially encoded symbols x̃τ at the relay and xτ at the
source convey the same information symbol vm . However, the two encoded symbols
can be different since the relay differentially encodes the information symbol vm with
the symbol in the memory, which may not be xτ−1 as used at the source. After differ-
ential re-encoding, the relay sends the symbol x̃τ to the destination with transmitted
power P2, and then stores the transmitted symbol x̃τ in the memory M1 for subsequent
differential encoding. The received signal at the destination from the relay in phase 2
can be expressed as

yτr,d =
{ √

P2hτr,d x̃τ + wτr,d : if relay correctly decodes (P̃τ2 = P2);
wτr,d : if relay incorrectly decodes (P̃τ2 = 0),

(9.9)

where hτr,d is the channel coefficient from the relay to the destination and wτr,d is an

additive noise. We assume that hτr,d is CN (0, σ 2
r,d) distributed, and wτr,d is CN (0,N0)

distributed.
The received signals at the destination comprise the received signal from the source in

phase 1 and that from the relay in phase 2. As discussed previously, in phase 2, the
relay may forward the information or remain idle. Without knowledge of the CSI, the

1 Practically, this can be done at the relay by applying a simple SNR threshold test on the received data,
although it can lead to some error propagation. Nevertheless, for practical ranges of operating SNR, the
event of error propagation can be assumed negligible.
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destination is unable to know whether the received signal from the relay contains the
information or not. In order for the destination to judge whether to combine the signals
from the source–destination and relay–destination links, we use a decision threshold ζ
at the destination node (see Figure 9.1). We consider the received signal with amplitude
|yτr,d| greater than the threshold ζ as a high-potential information bearing signal to be
used for further differential detection.

Particularly, if the amplitude of the received signal from the relay is not greater
than the decision threshold, i.e., |yτr,d| ≤ ζ , the destination estimates the transmitted
symbol based only on the received signal from the direct link. On the other hand, if
|yτr,d| > ζ , the received signal from the source and that from the relay are combined
together, and then the combined output is jointly differentially decoded. Note that, in
order to successfully decode, the differential detector requires the previously received
signal, which serves as a CSI estimate. Since the received signal from the relay may
contain the transmitted symbol or only noise, we use a memory M2 at the destination
as shown in Figure 9.1 to store the previously received signal at the relay–destination
link that tends to contain the information. An ideal situation is to let the memory store
the received signal yτr,d only when the signal contains the transmitted symbol; however,
such information is not available since the destination does not have the knowledge of
the CSI. So, to efficiently decode the received signal from the relay, the memory M2

is used to store the received signal yτr,d whose amplitude is greater than the decision
threshold. If the threshold is properly designed, then the signal in the memory M2 cor-
responds to the received signal from the relay that carries the encoded symbol stored in
the memory M1.

With an assumption that the channel coefficients stay almost constant for several
symbol periods, the signal in the memory M2 serves as a channel estimate of the
relay–destination link, which can then be used for efficient differential decoding at the
destination. When we combine all received signals for joint detection, the combined
signal prior to the differential decoding is

y =
{

a1(y
τ−1
s,d )

∗yτs,d + a2(y
τ−l
r,d )

∗yτr,d if |yτr,d| > ζ ;
(yτ−1

s,d )
∗yτs,d if |yτr,d| ≤ ζ,

(9.10)

where a1 and a2 are combining weight coefficients, and τ−l (l ≥ 1) represents the time
index of the latest signal in memory M2, i.e., yτ−l

r,d is the most recent received signal
from the relay whose amplitude is larger than the threshold. Note that different com-
bining weights, a1 and a2, result in different system performances. In Section 9.2.1.2,
the BER performance is derived in case of a1 = 1/2N0 and a2 = 1/2N0. The use
of these combining weights maximizes the signal-to-noise ratio (SNR) of the com-
biner output when the destination is able to differentially decode the signals from both
source and relay. Based on the combined signal in (9.10), the decoder at the destination
jointly differentially decodes the transmitted information symbol by using the following
decision rule:

m̂ = arg max
m=0,1,...,M−1

Re
{
v∗m y

}
.
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9.2.1.2 Performance Analysis
This section considers BER performance of the threshold-based differential DF scheme
employing DMPSK modulation. First, we classify different scenarios that lead to differ-
ent instantaneous SNRs at the combiner output of the destination. Next, the probability
that each scenario occurs is determined. Then, we evaluate an average BER performance
by taking into account all the possible scenarios.

Classification of different scenarios
There are different scenarios that result in different SNRs at the combiner output. Recall
that if the amplitude of received signal from the relay is larger than the decision thresh-
old (|yτr,d| > ζ ), then the destination jointly decodes the received signals from the source(

yτs,d

)
and the relay

(
yτr,d

)
. Otherwise, only the received signal yτs,d from the source is

used for differential detection. Therefore, we can classify the scenarios into two major
groups, namely the scenarios that |yτr,d| > ζ and |yτr,d| ≤ ζ . In case that |yτr,d| ≤ ζ , the
SNR can be simply determined based on the received signal from the direct link. On
the other hand, if |yτr,d| > ζ , the SNR at the combiner output depends not only on the
received signals from the direct link but also on that from the relay link.

According to the decision rule in (9.10), if |yτr,d| > ζ , the performance of the differ-
ential decoder relies on the received signals from the source at the current time τ (yτs,d)

and the previous time τ − 1
(

yτ−1
s,d

)
as well as the received signal from the relay at

the current time τ
(

yτr,d

)
and that stored in the memory

(
yτ−l

r,d

)
. The received signals

yτr,d and yτ−l
r,d from the relay may or may not contain the information, depending on the

correctness of the decoded symbol at the relay at time τ and time τ − l. If the relay
decodes the symbol correctly, then the relay sends the encoded symbol with transmitted
power P2. Thus, based on the transmitted power at the relay at time τ and time τ − l,
we can further classify the scenarios into four different categories, namely:

(a) P̃τ2 = P2 and P̃τ−l
2 = P2;

(b) P̃τ2 = P2 and P̃τ−l
2 = 0;

(c) P̃τ2 = 0 and P̃τ−l
2 = P2;

(d) P̃τ2 = 0 and P̃τ−l
2 = 0.

In case (a), the received signals yτr,d and yτ−l
r,d convey the symbols x̃τ and x̃τ−l , respec-

tively. Since the relay differentially encodes the information symbol from the source
with the symbol x̃τ−k in the memory M1, the SNR at the combiner output also depends
on whether the received signal yτ−l

r,d used for decoding corresponds to the symbol x̃τ−k

used for encoding. Therefore, the scenarios under case (a) can be further separated into
two cases, namely l = k and l �= k. All of these six possible scenarios are summarized
in Figure 9.2.

In order to facilitate the BER analysis in the subsequent subsection, we define six
different scenarios by �i , i = 1, 2, . . . , 6 as follows. We let the first scenario �1 be the
scenario that the amplitude of the received signal is not larger than the threshold ζ , i.e.,

�1 �
{|yτr,d| ≤ ζ} . (9.11)
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Differential detection at the destination

Two-channel differential detection
(direct link and relay link)

Relay decodes correctly Relay decodes incorrectly

Received signal
stored in memory M2

Single-channel differential detection
(direct link only)

Relay decodes correctly Relay decodes incorrectly

r,dyτ ζ< r,dyτ ζ>

= P2P2
~τ

= 0P2
~τ

= 0P2
~τ–l

= P2P2
~τ

= P2P2
~τ–l

= 0P2
~τ–l

= P2P2
~τ–l

= 0P2
~τ

l = k l ≠ k

Φ1

Φ4

Φ2 Φ3

Φ5 Φ6

Fig. 9.2 Two possible differential detection techniques at the destination: single-channel differential
detection or two-channel differential detection, with six possible scenarios based on the
currently received signal and the signal stored in memory M2.

When �1 occurs, the destination does not combine the received signal from the relay
with that from the source. The second scenario �2 is defined as the case that the ampli-
tude of the received signal is larger than the threshold, the relay transmitted powers at
both time τ and τ − l are equal to P2, and the received signal yτ−l

r,d stored in memory

M2 conveys the information symbol x̃τ−k stored in memory M1. Specifically, �2 can
be written as

�2 �
{
|yτr,d| > ζ, P̃τ2 = P2, P̃τ−l

2 = P2, l = k
}
. (9.12)

The scenario�3 is similar to the scenario�2 excepts that the received signal yτ−l
r,d does

not contain thesymbol x̃τ−k , i.e., l �= k. We express this scenario as

�3 �
{|yτr,d| > ζ, P̃τ2 = P2, P̃τ−l

2 = P2, l �= k
}
. (9.13)

The scenarios �4 to �6 correspond to the scenarios that |yτr,d| > ζ and either P̃τ2
or P̃τ−l

2 is zero. Under the scenario �4, the transmitted power P̃τ2 is P2 whereas the
transmitted power P̃τ−l

2 is 0. We express the scenario �4 as

�4 �
{|yτr,d| > ζ, P̃τ2 = P2, P̃τ−l

2 = 0
}
. (9.14)

Under the scenario �5, the transmitted power P̃τ2 is 0 whereas the transmitted power
P̃τ−l

2 is P2, i.e., �5 �
{|yτr,d| > ζ, P̃τ2 = 0, P̃τ−l

2 = P2
}
. The scenario �6 corresponds

to the scenario that both P̃τ2 and P̃τ−l
2 are zeros. We define the scenario �6 as

�6 �
{|yτr,d| > ζ, P̃τ2 = 0, P̃τ−l

2 = 0
}
. (9.15)

For subsequent performance derivation, we denote Ph
BER|�i as the conditional BER,

given a scenario �i and a set of channel realizations for the source–destination link,
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the source–relay link, and the relay–destination link. We also denote Ph
r (�i ) as the

chance that the scenario �i occurs given a set of channel realizations. Accordingly, the
conditional BER of the differential DF scheme can be expressed as

Ph
BER =

6∑
i=1

Ph
BER|�i Ph

r (�i ). (9.16)

By averaging (9.16) over all channel realizations, the average BER of the DiffDF
scheme is given by

PBER =
6∑

i=1

E
[

Ph
BER|�i Ph

r (�i )
]
=

6∑
i=1

P(i)BER, (9.17)

where E[·] represents the expectation operation.
In the following subsections, we determine the chance that each scenario occurs

(Ph
r (�i )), the conditional BER (Ph

BER|�i ), and finally obtain the average BER (PBER)
for the differential DF scheme.

Probability of occurrence
We first note that for a specific channel realization, the amplitude of the received signal
yτr,d depends on the relay transmitted power P̃τ2 , which in turn relies on the correctness
of the decoded symbol at the relay. With DMPSK signals, the chance of incorrect decod-
ing at the relay, and hence the chance of P̃τ2 = 0, can be obtained from the conditional
symbol error rate (SER) of the transmission from the source to the relay. The SER of
DMPSK signals is [145]:

Ph
r

(
P̃τ2 = 0

)
= �(γ τs,r) � 1

π

∫ (M−1)π/M

0
exp
[−g(φ)γ τs,r

]
dφ, (9.18)

where

γ τs,r =
P1|hτs,r|2

N0
(9.19)

is the instantaneous SNR per symbol at the relay due to the transmitted symbol from
the source, and

g(φ) = sin2(π/M)

1 + cos(π/M) cos(φ)
. (9.20)

The chance that the relay forwards the symbol with transmitted power P̃τ2 = P2 is
determined by the chance of correct decoding at the relay, hence

Ph
r

(
P̃τ2 = P2

)
= 1−�(γ τs,r), (9.21)

where �(γ τs,r) is specified in (9.18).
Consider the scenario �1 in which the amplitude of the received signal yτr,d is not

greater than the decision threshold. The chance that �1 occurs can be written as
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Ph
r (�1) = Ph

r

(
|yτr,d| ≤ ζ

∣∣ P̃τ2 = 0
)
�(γ τs,r)

+ Ph
r

(
|yτr,d| ≤ ζ

∣∣ P̃τ2 = P2

) [
1−�(γ τs,r)

]
. (9.22)

The conditional probabilities, Ph
r (|yτr,d| ≤ ζ

∣∣∣ P̃τ2 = 0) and Ph
r (|yτr,d| ≤ ζ

∣∣∣ P̃τ2 = P2)

can be obtained from the cumulative distribution function (CDF) of the random vari-
able |yτr,d|. The received signal yτr,d is a complex Gaussian random variable with mean√

P̃2hτr,d x̃τ and variance N0, i.e., yτr,d ∼ CN
(√

P̃2hτr,d x̃τ ,N0

)
. If P̃τ2 = 0, which

results from incorrect decoding at the relay, the received signal yτr,d is simply a zero-
mean, complex Gaussian random variable with variance N0, i.e., yτr,d ∼ CN (0,N0),
and its amplitude is Rayleigh distributed. Hence, the conditional probability that |yτr,d|
is not greater than the decision threshold given that the relay does not send information
can be expressed as

Ph
r

(
|yτr,d| ≤ ζ

∣∣∣ P̃τ2 = 0
)
= 1− exp(−ζ 2/N0). (9.23)

If P̃τ2 = P2, which corresponds to the case of correct decoding at the relay, then the
received signal yτr,d is Gaussian distributed with mean

√
P2hτr,d x̃τ and variance N0.

In this case, |yτr,d|2 can be viewed as a summation of two squared Gaussian random
variables with means

m1 = Re
{√

P2hτr,d x̃τ
}
, m2 = Im

{√
P2hτr,d x̃τ

}
,

and a common variance σ 2 = N0/2. We observe that |yτr,d|2 is non-central chi-square

distributed with parameter s2 = m2
1 + m2

2 [146]. In case of DMPSK signals, the
parameter s can be determined as

s =
√

P2|hτr,d x̃τ |2 =
√

P2|hτr,d|2, (9.24)

where the second equality results from the fact that each DMPSK symbol has unit
energy. From (9.24), the conditional probability that |yτr,d| is not greater than the deci-
sion threshold given that the relay sends the information with transmitted power P2 can
be written as

Ph
r

(
|yτr,d| ≤ ζ

∣∣∣ P̃τ2 = P2

)
= 1−M

(
P2|hτr,d|2, ζ

)
, (9.25)

where

M
(

P2|hτr,d|2, ζ
)

� Q1

⎛⎝√ P2|hτr,d|2
N0/2

,
ζ√
N0/2

⎞⎠ , (9.26)

in which Q1 (α, β) is the Marcum Q-function [188]:

Q1 (α, β) =
∫ ∞

β

λ exp

[
−
(
λ2 + α2

2

)]
I0(αλ)dλ, (9.27)
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and I0(·) is the zeroth-order modified Bessel function of the first kind. By substituting
(9.23) and (9.25) into (9.22), we can express the chance that �1 occurs as

Ph
r (�1) =

(
1− e(−ζ 2/N0)

)
�(γ τs,r)+

(
1−M

(
P2|hτr,d|2, ζ

)) [
1−�(γ τs,r)

]
. (9.28)

The rest of the scenarios, �2 to �6, are related to the situation when the amplitude
of the received signal from the relay, |yτr,d|, is greater than the decision threshold ζ . In
these scenarios, both the currently received signal (yτr,d) and that stored in the memory

M2 (yτ−l
r,d ) are used for differential detection at the destination. In the DiffDF scheme,

the memory M2 stores only the received signal from the relay whose amplitude is larger
than the threshold. This implies that the amplitude |yτ−l

r,d | is larger than the threshold.
Therefore, the chance that each of the scenarios�2 to�6 happens is conditioned on the
event that |yτ−l

r,d | > ζ . From (9.12), the chance that the scenario �2 occurs is given by

Ph
r (�2) = Ph

r

(
|yτr,d| > ζ, P̃τ2 = P2, P̃τ−l

2 = P2, l = k
∣∣∣|yτ−l

r,d | > ζ
)
. (9.29)

Since the events at time τ − l are independent of the events at time τ , Ph
r (�2) can be

written as a product of the probabilities:

Ph
r (�2) = Ph

r

(
|yτr,d| > ζ, P̃τ2 = P2

)
Ph

r

(
P̃τ−l

2 = P2, l = k
∣∣∣ |yτ−l

r,d | > ζ
)
. (9.30)

The first term on the right-hand side of (9.30) represents the probability that the relay
transmits the decoded symbol with power P2 and that the received signal from the relay
is larger than the threshold. This term can be expressed as

Ph
r

(
|yτr,d| > ζ, P̃τ2 = P2

)
= Ph

r

(
|yτr,d| > ζ

∣∣∣ P̃τ2 = P2

)
Ph

r

(
P̃τ2 = P2

)
. (9.31)

In (9.31), the chance that the amplitude of the received signal from the relay is larger
than the threshold given that the relay sends the information can be obtained from
(9.25) as

Ph
r

(
|yτr,d| > ζ

∣∣∣ P̃τ2 = P2

)
=M

(
P2|hτr,d|2, ζ

)
. (9.32)

Therefore, using the results in (9.21) and (9.32), (9.31) can be rewritten as

Ph
r

(
|yτr,d| > ζ, P̃τ2 = P2

)
=M

(
P2|hτr,d|2, ζ

) (
1−�(γ τs,r)

)
. (9.33)

The second term on the right-hand side of (9.30) represents the chance that the relay
transmits with power P̃τ−l

2 = P2, and the received signal yτ−l
r,d stored in the memory

M2 conveys the information symbol x̃τ−k stored in the memory M1. We can calculate
it as

Ph
r

(
P̃τ−l

2 = P2, l = k
∣∣∣|yτ−l

r,d | > ζ
)

=
∑
k≥1

Ph
r

(
P̃τ−k

2 = P2

∣∣∣|yτ−k
r,d | > ζ

)
Ph

r

(
|yτ−k

r,d | > ζ
)

×
k−1∏
i=1

Ph
r

(
|yτ−i

r,d | ≤ ζ
)

Ph
r

(
P̃τ−i

2 = 0
∣∣∣|yτ−i

r,d | ≤ ζ
)
. (9.34)
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Based on (9.33), the term Ph
r

(
P̃τ−k

2 = P2
∣∣|yτ−k

r,d | > ζ
)
Ph

r

(|yτ−k
r,d | > ζ

)
in (9.34)

can be evaluated as M
(
P2|hτ−k

r,d |2, ζ
)(

1 − �(γ τ−k
s,r )

)
, which can be approximated

byM
(
P2|hτr,d|2, ζ

)(
1 − �(γ τs,r)

)
if the channels stay almost constant for several time

slots. By applying Bayes’ rule and using the results in (9.18) and (9.23), we can express
the product term in (9.34) as

k−1∏
i=1

Ph
r

(
|yτ−i

r,d | ≤ ζ
)

Ph
r

(
P̃τ−i

2 = 0
∣∣∣|yτ−i

r,d | ≤ ζ
)

=
k−1∏
i=1

Ph
r

(
|yτ−i

r,d | ≤ ζ
∣∣∣P̃τ−i

2 = 0
)

Ph
r

(
P̃τ−i

2 = 0
)

≈
[
(1− e−ζ 2/N0)�(γ τs,r)

]k−1
, (9.35)

where the resulting approximation comes from approximating Ph
r (P̃

τ−i
2 = 0) = �(γ τ−i

s,r )

by �(γ τs,r) for all i . Accordingly, we can approximate (9.34) as

Ph
r

(
P̃τ−l

2 = P2, l = k
∣∣∣|yτ−l

r,d | > ζ
)

≈M
(
P2|hτr,d|2, ζ

)(
1−�(γ τs,r)

)∑
k≥1

[
(1− e−ζ 2/N0)�(γ τs,r)

]k−1

=
M
(

P2|hτr,d|2, ζ
) (

1−�(γ τs,r)
)

(1− e−ζ 2/N0)�(γ τs,r)
. (9.36)

Hence, by substituting (9.33) and (9.36) into (9.30), the chance that the scenario �2

happens can be approximated by

Ph
r (�2) ≈

M2
(

P2|hτr,d|2, ζ
) (

1−�(γ τs,r)
)2

(1− e−ζ 2/N0)�(γ τs,r)
. (9.37)

Next, we consider the scenario �3, which is similar to the scenario �2 except that
the received signal yτ−l

r,d stored in the memory M2 at the destination does not convey

the symbol x̃τ−k stored in the memory M2 at the relay. The chance that the scenario�3

happens can be given by

Ph
r (�3) = Ph

r

(
|yτr,d| > ζ, P̃τ2 = P2, P̃τ−l

2 = P2, l �= k
∣∣∣|yτ−l

r,d | > ζ
)
. (9.38)

Observe that the scenarios �2 and �3 are disjoint. Thus, the chance that the scenario
�3 happens can be obtained from Ph

r (�2) as

Ph
r (�3) = Ph

r (�2 ∪�3)− Ph
r (�2), (9.39)

where

Ph
r (�2 ∪�3) = Ph

r

(
|yτr,d| > ζ, P̃τ2 = P2, P̃τ−l

2 = P2,
∣∣|yτ−l

r,d | > ζ
)
.
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Since the signals at time τ and time τ − l are independent, we can express
Ph

r (�2 ∪�3) as

Ph
r (�2 ∪�3) = Ph

r

(
|yτr,d| > ζ, P̃τ2 = P2

)
Ph

r

(
P̃τ−l

2 = P2
∣∣|yτ−l

r,d | > ζ
)
. (9.40)

By applying Bayes’ rule, the second term on the right-hand side of (9.40) is given by

Ph
r

(
P̃τ−l

2 = P2
∣∣|yτ−l

r,d | > ζ
)
= Ph

r

(|yτ−l
r,d | > ζ, P̃τ−l

2 = P2
)

Ph
r

(
|yτ−l

r,d | > ζ
) . (9.41)

The numerator on the right-hand side of (9.41) is in the same form as (9.33) with τ
replaced by τ − l, whereas the denominator can be calculated by using the concept of
total probability:

P
(|yτ−l

r,d | > ζ
) = P

(|yτ−l
r,d | > ζ

∣∣P̃τ−l
2 = P2

)
P
(
P̃τ−l

2 = P2
)

+ P
(|yτ−l

r,d | > ζ
∣∣P̃τ−l

2 = 0
)
P
(
P̃τ−l

2 = 0
)
. (9.42)

In (9.42), the chance that the received signal |yτ−l
r,d | is greater than the decision threshold

given that the relay does not send information can be obtained from (9.23) as

Ph
r

(
|yτ−l

r,d | > ζ
∣∣∣ P̃τ2 = 0

)
= exp(−ζ 2/N0). (9.43)

Substitute (9.18), (9.33), and (9.43) into (9.42) resulting in

P
(
|yτ−l

r,d | > ζ
)
=M

(
P2|hτ−l

r,d |2, ζ
) (

1−�(γ τ−l
s,r )

)
+ exp(−ζ 2/N0)�(γ

τ−l
s,r )

� �(P1|hτ−l
s,r |2, P2|hτ−l

r,d |2). (9.44)

By assuming that the channel coefficients hτ−l
i, j ≈ hτi, j for any (i, j) link, then from

(9.33), (9.42), and (9.44), we can determine the chance Ph
r (�2 ∪�3) in (9.40) as

Ph
r (�2 ∪�3) =

M2
(

P2|hτr,d|2, ζ
) (

1−�(γ τs,r)
)2

�(P1|hτs,r|2, P2|hτr,d|2)
. (9.45)

Similarly, we can obtain the following results (proofs left as exercises):

Ph
r (�3) =M2

(
P2|hτr,d|2, ζ

) (
1−�(γ τs,r)

)2
×
(

1

�(P1|hτs,r|2, P2|hτr,d|2)
− 1

(1− e−ζ 2/N0)�(γ τs,r)

)
, (9.46)

Ph
r (�4) = Ph

r (�5) =
M
(

P2|hτr,d|2, ζ
)

exp(−ζ 2/N0)�(γ
τ
s,r)
(
1−�(γ τs,r)

)
�(P1|hτs,r|2, P2|hτr,d|2)

, (9.47)

Ph
r (�6) =

exp(−2ζ 2/N0)�(γ
τ
s,r)

�(P1|hτs,r|2, P2|hτr,d|2)
. (9.48)
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Average BER analysis
In this subsection, we provide the conditional BER given that each scenario �i for
i = 1, 2, . . . , 6 happens. From the resulting conditional BER together with the chance
that each scenario occurs as derived in the previous subsection, we then provide the
average BER formulation for the differential DF scheme.

Conditional BER of each scenario When the scenario �1 occurs, the destination estimates
the transmitted symbol vm from the source by using only the received signal yτs,d from
the source. The conditional BER for the scenario �1 is

Ph
BER|�1 = �1(γ1) � 1

4π

∫ π

−π
f1 (θ) exp [−α(θ)γ1]dθ, (9.49)

where γi represents the instantaneous SNR given that the scenario �i occurs, and

f1(θ) = 1− β2

1+ 2β sin θ + β2
, (9.50)

α(θ) = b2

2 log2 M
(1+ 2β sin θ + β2), (9.51)

in which M is the constellation size [188]. For the scenario �1, the instantaneous SNR
γ1 is specified as γ1 = P1|hτs,d|2/N0. In (9.50) and (9.51), the parameter β = a/b

is a constant whose value depends on constellation size. For example, a = 10−3 and

b = √
2 for DBPSK modulation, and a =

√
2−√2 and b =

√
2+√2 for DQPSK

modulation [188]. The values of a and b for larger constellation sizes can be obtained
by using the result in [146].

The scenarios �2 to �6 correspond to the case that the destination combines the
received signal yτs,d from the source and yτr,d from the relay. The conditional BER for
these scenarios depends on the combining weight coefficients a1 and a2 (see (9.10)).
Under the scenario �2, the received signals from the source and the relay can be
expressed as

yτs,d = vm yτ−1
s,d + w̃τs,d, (9.52)

yτr,d = vm yτ−l
r,d + w̃τr,d, (9.53)

where w̃τs,d and w̃τr,d are the additive noise terms, and each of them is zero-mean Gaus-
sian distributed with variance 2N0. Since the noise terms of the received signals from
both direct link and relay link have the same mean and variance, the SNR of the
combiner output under the scenario �2 can be maximized by choosing the weighting
coefficients a1 = a2 = 1/2N0. Such weighting coefficients lead to an optimum two-
branch differential detection with equal gain combining. With weighting coefficients
a1 = a2 = 1/2N0, the conditional BER can be determined as follows [188]:
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Ph
BER|�2 = �2(γ2) � 1

16π

∫ π

−π
f2 (θ) exp [−α(θ)γ2]dθ, (9.54)

where

f2(θ) =
b2(1− β2)[3+ cos(2θ)− (β + 1

β
) sin(θ)]

2α(θ)
, (9.55)

and α(θ) is specified in (9.51). The instantaneous SNR γ2 is given by

γ2 =
P1|hτs,d|2

N0
+ P2|hτr,d|2

N0
. (9.56)

For the remaining scenarios, namely �3 to �6, the destination also combines the
received signal from the source and that from the relay. However, the use of two-channel
differential detection for these four cases is not guaranteed to be optimum since either
the received signals yτr,d or yτ−l

r,d from the relay contain only noise. Up to now, the
conditional BER formulation for DMPSK with arbitrary-weighted combining has not
been available in the literature. For analytical tractability of the analysis, we resort to an
approximate BER, in which the signal from the relay is considered as noise when�3 to
�6 occur. As we will show in the succeeding section, the analytical BER obtained from
this approximation is very close to the simulation results. The approximate conditional
BER for the scenarios �i , i = 3, . . . , 6, are Ph

BER|�i ≈ �2(γi ), where

γi =
P1|hτs,d|2

N0 +Ni/(P1|hτs,d|2/N0)
, (9.57)

in which Ni represents the noise power that comes from the relay link given that the
scenario �i occurs. The noise power Ni depends on the received signal from the relay
at the current time τ (yτr,d) and that stored in the memory (yτ−l

r,d ). Under the scenario

�3, N3 is given by (P2|hr,d|2 + N0)
2/N0. Under the scenarios �4 and �5, the relay

does not send the information at either time τ or time τ − l. These two scenarios result
in the same noise power such that N4 = N5 = P2|hr,d|2 +N0. The last scenario, i.e.,
�6, corresponds to the case when both yτr,d and yτ−l

r,d does not contain any information
symbol. The noise power N6 is equal to the noise variance N0.

Average BER In what follows, we determine the average BER

P(i)BER � E
[

Ph
BER|�i Ph

r (�i )
]

for each scenario. The average BER for each scenario, �i , i = 1, 2, . . . , 6, can be
determined as follows (proofs left as exercises):
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• For �1:

P(1)BER = F1

(
1+ α(θ)P1σ

2
s,d

N0

)[(
1− e−ζ 2/N0)

)
G

(
1+ g(φ)P1σ

2
s,r

N0

)

+
(

1− 1

σ 2
r,d

∫ ∞

0
M (P2q, ζ ) e−q/σ 2

r,ddq

)

×
(

1− G

(
1+ g(φ)P1σ

2
s,r

N0

))]
, (9.58)

where g(φ) and f1(θ) are specified in (9.20) and (9.50), respectively, and

G(c(φ)) = 1

π

∫ (M−1)π/M

0

1

c(φ)
dφ, (9.59)

F1(c(θ)) = 1

4π

∫ π

−π
f1(θ)

c(θ)
dθ, (9.60)

in which c(θ) is an arbitrary function of θ .
• For �2:

P(2)BER ≈
1

σ 2
r,d

∫ ∞

0
s2(q)M2 (P2q, ζ ) e−q/σ 2

r,ddz

× 1

σ 2
s,r

∫ ∞

0

(
1−�

(
P1u
N0

))2

1− (1− e−ζ 2/N0)�
(

P1u
N0

)e−u/σ 2
s,rdu, (9.61)

where

s2(q) = 1

16π

∫ π

−π
f2(θ)

1+ α(θ)P1σ
2
s,d

N0

e−α(θ)P2q/N0dθ. (9.62)

• For �3:

P(3)BER ≈
1

σ 2
s,r

∫ ∞

0

[
1

4π

∫ π

−π
f2(θ)s3(u, θ)dθ

]
e−u/σ 2

s,rdu, (9.63)

where

s3(u, θ) = 1

σ 2
s,dσ

2
r,d

∫ ∞

0

∫ ∞

0
exp

(
− α(θ)P1z

N0 + (P2q+N0)
2

P1z

− z

σ 2
s,d

− q

σ 2
r,d

)

×
(

1−�
(

P1u

N0

))2

×M2 (P2q, ζ )

×
(

1

�(P1u, P2q)
− 1

1− (1− e−ζ 2/N0)�
( P1u
N0

)) dq dz. (9.64)

• For �4 and �5:

P(4)BER = P(5)BER ≈
1

σ 2
s,r

∫ ∞

0

[
1

4π

∫ π

−π
f2(θ)s4(u, θ)dθ

]
e−u/σ 2

s,rdu, (9.65)
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where

s4(u, θ) = 1

σ 2
s,dσ

2
r,d

∫ ∞

0

∫ ∞

0
exp

(
− α(θ)P1z

N0 + P2q+N0
P1z/N0

− ζ 2

N0
− z

σ 2
s,d

− q

σ 2
r,d

)

×M (P2q, ζ )
�
(

P1u
N0

) (
1−�

(
P1u
N0

))
�(P1u, P2q)

dq dz. (9.66)

• For �6:

P(6)BER ≈ exp(−2ζ 2/N0)

[
1

16π

∫ π

−π
f2(θ)s6(θ)dθ

]
× 1

σ 2
s,r

1

σ 2
r,d

∫ ∞

0

∫ ∞

0

�2 (P1u/N0)

�(P1u, P2q)
exp

(
− u

σ 2
s,r
− q

σ 2
r,d

)
dq du, (9.67)

where

s6(θ) = 1

σ 2
s,d

∫ ∞

0
exp
(
− α(θ)P1z

N0 +N0/(P1z/N0)
− z

σ 2
s,d

)
dz. (9.68)

Finally, the average BER, PBER, can be determined by summing together the average
BER P(i)BER for i = 1, 2, . . . , 6:

PBER = P(1)BER + P(2)BER + P(3)BER + 2P(4)BER + P(6)BER, (9.69)

in which P(i)BER are specified in (9.58), (9.61), (9.64), (9.65), and (9.67), respectively.

9.2.1.3 Upper bound and lower bound
Since the closed-form BER result of the threshold-based differential DF scheme in the
previous section involves integrals, it is hard to understand the system performance
based on the result. We provide in this section, therefore, the expressions for the BER
upper and lower bounds. We show through simulation results that when the power
allocation and the decision threshold are properly designed, the BER upper and lower
bounds are close to the simulated BER.

To obtain a BER upper bound, we first note that the conditional BER for each case,
Ph

BER|�i , is at most 1/2. In addition, if the threshold is properly designed, then the
chance that the scenarios �3 to �6 happen are small compared to the chance that the
scenarios �1 and �2 happen. Therefore, the BER of the differential DF cooperative
scheme can be obtained by bounding the conditional BER Ph

BER|�3 , Ph
BER|�4 , Ph

BER|�5 ,
and Ph

BER|�6 by 1/2. The resulting BER upper bound can be expressed as

PBER ≤ P(1)BER + P(2)BER +
1

2
{Ph

r (�3)+ Ph
r (�4)+ Ph

r (�5)+ Ph
r (�6)}, (9.70)

where P(1)BER and P(2)BER are determined in (9.58) and (9.61), and Ph
r (�i ), i = 3, 4, 5, and

6, are given in (9.38), (9.47), and (9.48), respectively.
Next, we determine a BER lower bound as follows. Since the exact expressions of

the chances that the scenarios �2 and �3 occur involve the approximation that the
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channel coefficients are constant for several symbol periods, and the BER formulation
given that the scenario�3 happens is currently unavailable, it is hard to obtain the exact
BER of P(2)BER and P(3)BER. As we will show later in this section, if the power ratio and the
threshold are properly designed, the chance that the scenario�3 occurs tends to be small
compared to the chance that the scenario �2 occurs. In addition, the conditional BER
under the scenario �3 (Ph

BER|�3 ) is larger than that under the scenario �2 (Ph
BER|�2 ).

Therefore, the BER lower bound of the DiffDF scheme can be obtained by bounding
the conditional BER Ph

BER|�3 with Ph
BER|�2 . In this way, the BER under the scenarios

�2 and �3 can be lower bounded as

P(2)BER + P(3)BER ≥ E
[
Ph

BER|�2 Ph
r (�2 ∪�3)

]
, (9.71)

where Ph
r (�2∪�3), which is evaluated in (9.45), is the chance that the scenarios�2 and

�3 occur. According to (9.37) and (9.54), the average BER in (9.71) can be expressed as

P(2)BER + P(3)BER ≥ E

[
�2

(
P1|hτs,d|2

N0
+ P2|hτr,d|2

N0

)

×
M2

(
P2|hτr,d|2, ζ

)(
1−�

(
P1|hτs,r|2
N0

))2

�(P1|hτs,r|2, P2|hτr,d|2)

⎤⎥⎥⎥⎦ . (9.72)

By averaging over the channel realization, we obtain

P(2)BER + P(3)BER ≥
1

σ 2
s,r

∫ ∞

0

⎡⎢⎣ 1

16π

∫ π

−π
f2(θ)s(u, θ)

1+ α(θ) P1σ
2
s,d

N0

dθ

⎤⎥⎦ exp(−u/σ 2
s,r)du.

� LB{P(2)BER + P(3)BER} (9.73)

where

s(u, θ) = 1

σ 2
r,d

∫ ∞

0

M2 (P2q, ζ )
(
1−�( P1u

N0

))2
�(P1u, P2q)

exp

(
−α(θ)P2q

N0
− q

σ 2
r,d

)
dq.

(9.74)
Since the exact BER formulations under the scenarios 4, 5, and 6 are currently unavail-
able, and the chances that these three scenarios happen are small at high SNR, we
further lower bound the BER P(4)BER, P(5)BER, and P(6)BER by 0. As a result, the BER of
the differential DF scheme can be lower bounded by

PBER ≥ P(1)BER + LB{P(2)BER + P(3)BER}, (9.75)

where P(1)BER is determined in (9.58).

Example 9.1 This example compares the BER approximation (9.69), the BER upper
bound (9.70), and the BER lower bound (9.75) with the simulated performance in case
of DQPSK modulation. In Figure 9.3(a)–(c), we consider the differential DF cooper-
ation system with σ 2

s,d = σ 2
s,r = σ 2

r,d = 1, i.e., all the channel links have the same
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Fig. 9.3 DQPSK: BER performance versus P/N0 for σ 2
s,d = 1, σ 2

s,r = 1. (a) P1 = 0.5P , P2 = 0.5P ,

ζ = 1, σ 2
r,d = 1; (b) P1 = 0.8P , P2 = 0.2P , ζ = 1, σ 2

r,d = 1; (c) P1 = 0.8P , P2 = 0.2P , ζ = 2,

σ 2
r,d = 1; (d) P1 = 0.5P , P2 = 0.5P , ζ = 1, σ 2

r,d = 10; (e) P1 = 0.5P , P2 = 0.5P , ζ = 2,

σ 2
r,d = 10; (f) P1 = 0.8P , P2 = 0.2P , ζ = 2, σ 2

r,d = 10.
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qualities. From the figures, we can see that the approximated BER closely matches the
simulated BER, and both the approximated and simulated BER lie between the BER
upper and lower bounds. Moreover, the system performance depends on the power allo-
cation and the threshold. By choosing proper power allocation and threshold, not only
the BER performance improves, but also the lower bound is closer to the simulated
performance.

For example, considering a system with threshold of ζ = 1 and total transmit power
P1+ P2= P where P1 and P2 are transmitted power of the source and the relay, respec-
tively. By changing the power allocation from P1/P = 0.5 to P1/P = 0.8 the BER
performance is improved by 1 dB at a BER of 10−4, while the performance gap between
the simulated BER and the BER lower bound is reduced by 2 dB at the same BER.

This result follows the fact that when the threshold ζ is appropriately chosen, the
scenarios �3 to �6 occur with much smaller probability than the scenarios �1 and �2.
Even though the BER under each of the scenarios �3 to �6 is larger than that under
the scenarios �1 or �2, the average BER P(i)BER, i = 3, . . . , 6 are smaller. The BER
PBER is dominated by the BER under scenarios�1 and�2. Therefore, the performance
gaps between the bounds and the approximate BER is small if the threshold is properly
designed.

For a system with σ 2
s,d = 1, σ 2

s,r = 1, and σ 2
r,d = 10, the same observation can

be obtained in Figure 9.3(d)–(f). At a threshold of ζ = 1, the performance can be
improved by allocating more power at the source and less power at the relay. It illustrates
that the channel link between source and relay and the channel link between relay and
destination should be balanced in order to achieve a performance diversity of two.

Interestingly, by choosing a proper threshold, the performance can be significantly
improved, regardless of the power allocation. For instance, increasing the threshold from
1 to 2, the performance of the DiffDF scheme with equal power allocation improves
4 dB at a BER of 10−4. At the threshold of ζ = 2, by changing the power allocation
from P1/P = 0.5 to P1/P = 0.8, the system performance is further improved by only
0.5 dB at the same BER. This implies that the effect of the threshold dominates; the
performance does not severely depend on the power allocation after the threshold is
properly designed.

Another observation obtained from Figure 9.3 is that the threshold depends on the
channel link qualities. To be specific, the threshold should be increased as the link qual-
ity between the relay and the destination increases. For example, under the scenario
σ 2

s,d = σ 2
s,r = 1, the threshold ζ = 1 results in superior performance in case of σ 2

r,d = 1,

while the threshold ζ = 2 leads to better performance in case of σ 2
r,d = 10. This obser-

vation can be explained as follows. When the link quality between the relay and the
destination is good, i.e., the channel variance is high, the received signal from the relay
tends to have large energy if it carries the information. As a result, by increasing the
threshold from 1 to 2, we reduce the chance that the received signal whose amplitude
is larger than the threshold contains no information. Thus, with a threshold of 2, the
received signals from the relay and the destination are efficiently combined, and hence
result in better performance. �
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9.2.1.4 Optimum decision threshold and power allocation
As we observe in the above examples in the previous section, the choice of power
allocation and threshold ζ affect the performance a lot; we determine in this section
the optimum decision threshold and the optimum power allocation for the differential
DF cooperation system based on the tight BER approximation in (9.69). To sim-
plify the notation, let us denote r = P1/P as the power ratio of the transmitted
power at the source (P1) over the total power (P). For a fixed total transmitted power
P1 + P2 = P , we will jointly optimize the threshold ζ and the power ratio r such that
the tight BER approximation in (9.69) is minimized. The optimization problem can be
formulated as

min
ζ,r

PBER(ζ, r), (9.76)

where PBER(ζ, r) represents the BER approximation with P1 = r P and P2 = (1−r)P .
Figure 9.4 shows the BER performance of the DiffDF scheme with DQPSK signals

as a function of power allocation and threshold. In Figure 9.4(a)–(c), we consider the
case when the channel variances of all communication links are equal, i.e., σ 2

s,d = σ 2
s,r =

σ 2
r,d = 1. The BER approximation is plotted in Figure 9.4(a) and its cross sections are

shown in Figure 9.4(b) and (c) together with the simulated BER curves. Based on the
approximated BER in Figure 9.4(a), the jointly optimum power allocation and decision
threshold are r = 0.7 and ζ = 1. Figure 9.4(b) compares the cross sectional curve
of the approximated BER with r = 0.7 with the simulated BER. We can see that the
approximate BER is close to the simulated BER.

Furthermore, the DiffDF scheme with any threshold less than 1.5 yields almost the
same BER performance, and the performance significantly degrades as the thresh-
old increases above 1.5. This is because as the threshold increases, the chances that
the scenarios �4 to �6 occur increases, and hence the average BER is dominated
by the BER under these scenarios. Figure 9.4(c) depicts the approximated and simu-
lated BER curves as functions of power allocation in case of the decision threshold
ζ = 1. We can obviously see that the power ratio of r = 0.7 results in the optimum
performance.

In Figure 9.4(d)–(f), we consider the case of channel variances σ 2
s,d = 1, σ 2

s,r = 1,

σ 2
r,d = 10. Figure 9.4(d) depicts the BER of the DiffDF scheme as a function of the

power allocation r and the decision threshold ζ . In this scenario, we can see that the
jointly optimum power allocation and decision threshold are r = 0.8 and ζ = 1.7.
Figure 9.4(e) shows a cross-sectional curve of the approximate BER in Figure 9.4(d)
at r = 0.8 together with the simulated BER performance of the cooperation sys-
tem with the same power allocation. We can see that the approximated BER closely
matches to the simulated BER for every threshold value. According to both the simu-
lated and approximated BER, the optimum threshold for this case is about 1.7. We show
in Figure 9.4(f) a comparison of the approximated and simulated BER with a decision
threshold ζ = 1.7 under different power allocations. Clearly, the approximated BER
follows the same trend as the simulated BER, and the optimum power allocation is
r = 0.8 for the differential DF system with a decision threshold ζ = 1.7.
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Fig. 9.4 DQPSK: performance comparison of theoretical and simulated BER curves. (a)–(c)
σ 2

s,d = σ 2
s,r = σ 2

r,d = 1; (d)–(f) σ 2
s,d = 1, σ 2

s,r = 1, σ 2
r,d = 10: (a) jointly optimum ζ and r ; (b)

vary ζ , P1 = 0.7P and P2 = 0.3P; (c) vary r , ζ = 1; (d) jointly optimum ζ and r ; (e) vary ζ ,
P1 = 0.8P and P2 = 0.2P; (f) vary r , ζ = 1.7.
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9.2.1.5 Examples for single-relay DiffDF scheme
In what follows, a two-user cooperation system employing the DF protocol is consid-
ered. The channel fading coefficients are modeled according to the Jakes’ model (see
Section 1.1.5) with the Doppler frequency fD = 75 Hz and normalized fading parame-
ter fDTs = 0.0025 where Ts is the sampling period. The noise variance is N0 = 1. The
DQPSK modulation is used in all examples. We plot the BER performance curves as
functions of P/N0, where P is the total transmitted power. We assume that the power
allocation at the source node and relay node are fixed at P1 + P2 = P .

Example 9.2 This example compares the performance of the threshold-based differen-
tial DF scheme to that of the differential DF scheme without threshold at the destination
and that of the differential DF scheme where the relay always forwards the decoded
symbols to the destination. We consider the system with power allocation P1 = 0.5P ,
P2 = 0.5P , and channel variances σ 2

s,d = 1, σ 2
s,r = 1, and σ 2

r,d = 10. We can see that the
threshold-based differential DF scheme outperforms the other two schemes. The reason
is that a decoding error at the relay tends to result in an error at the destination. Hence,
the performance of the differential DF scheme in which all the decoded symbols at the
relay are forwarded is worse than that of the DiffDF scheme. In particular, the perfor-
mance degradation of 11 dB can be observed at a BER of 10−3. Adding a threshold at
the destination can reduce the chance that the incorrectly decoded signal from the relay
is combined to the signal from the source. Therefore, the DiffDF scheme yields superior
performance to the differential DF scheme without threshold.

4 8 12 16 20 24 28
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10–3

10–2

10–1

100
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R

Differential : relay always forwards

Proposed scheme without threshold

Proposed scheme with threshold = 2

Coherent

P/�0 [dB]

Fig. 9.5 DQPSK with or without CRC at relay node, and with or without threshold at destination node,
P1 = P2 = 0.5P , σ 2

s,d = 1, σ 2
s,r = 1, σ 2

r,d = 10.
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As seen in Figure 9.5, the DiffDF scheme yields a gain of about 4 dB at a BER of 10−3

compared to the scheme without threshold. We also compare the performance of the
coherent DF scheme in which the relay forwards only the correctly decoded symbols.
Such scheme is the coherent counterpart of both the DiffDF scheme and the differen-
tial DF scheme without threshold. The DiffDF scheme shows a 5 dB performance gap
in comparison to its coherent counterpart, but the differential scheme without a deci-
sion threshold looses about 9 dB in comparison to its coherent counterpart at a BER
of 10−3. �

Example 9.3 We now look at the BER performances of the DiffDF scheme with differ-
ent thresholds. In Figure 9.6(a), the power allocation is P1 = 0.7P and P2 = 0.3P , and
the channel variances are σ 2

s,d = σ 2
s,r = σ 2

r,d = 1. We can see that the DiffDF scheme
achieves a performance diversity of two at high SNR for any threshold. However, the
performance degrades as the threshold increases.

Figure 9.6(b) shows the BER performance in for a power allocation P1 = 0.7P and
P2 = 0.3P , and channel variances σ 2

s,d = 1, σ 2
s,r = 1, and σ 2

r,d = 10. Obviously,
different thresholds result in different BER performances. The threshold of ζ = 1.7
provides the best performance in this scenario. Furthermore, if the threshold is too
small, e.g. ζ = 1, not only the BER performance degrades but also the diversity
order is less than two. This is because when the threshold is small, the destination
tends to combine the signals from both the relay and the destination. As a result, the
incorrect decoding at the relay leads to a significant performance degradation at the
destination. �

Example 9.4 Next we study effect of power allocation on BER performance of the
differential DF scheme with a fixed threshold. In Figure 9.7(a), we consider the coop-
eration system with channel variances σ 2

s,d = σ 2
s,r = σ 2

r,d = 1 and a threshold ζ = 2.
We can see that the power ratios r = P1/P = 0.5, 0.6, and 0.7 yield almost the same
performances. When the power ratio increases to r = 0.9, the performance degrada-
tion is about 2 dB at a BER of 10−4 compared to the equal power allocation scheme.
This is due to the fact that at r = 0.9, only low power is allocated at the relay. Conse-
quently, even though the received signal from the relay carries information, there is a
high chance that its amplitude is smaller than the threshold, and hence the detection is
based only on the received signal from the direct link.

Figure 9.7(b) depicts the performance in the case of channel variances σ 2
s,d = 1,

σ 2
s,r = 1, and σ 2

r,d = 10, and a threshold ζ = 1. We can see that the performance
improves as the power ratio increases from r = 0.5 to r = 0.9. The reason is that
the relay–destination link is of high quality while the threshold is small. With only low
power at the relay, the amplitude of the received signal from the relay can be larger
than the threshold. Therefore, by allocating more power at the source, we not only
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increase the chance of correct decoding at the relay, but also increase the SNR of the
MRC output. Based on the numerical results in Figure 9.4(d), the optimum power ratio
for this scenario is r = 0.9 at an SNR of P/N0 = 16 dB. Clearly, the simulation
results in Figure 9.7(b) agree with the numerical results at the SNR of 16 dB. Moreover,
Figure 9.7(b) illustrates that the power ratio of r = 0.9 results in optimum performance
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Fig. 9.7 DQPSK: different power allocations with fixed threshold. (a) ζ = 2, σ 2
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r,d = 10.

for the entire SNR range. At the threshold ζ = 1, the differential DF scheme with
optimum power allocation achieves an improvement of about 5 dB over that with equal
power allocation at a BER of 10−4. �

Example 9.5 Here we compare the performances of the differential DF scheme with
different power allocation and decision threshold. We consider the case of σ 2

s,d = σ 2
s,r =
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σ 2
r,d = 1 in Figure 9.8(a), and the case of σ 2

s,d = σ 2
s,r = 1, and σ 2

r,d = 10 in Figure 9.8(b).
From both figures, it is clear that the DiffDF scheme with jointly optimum power allo-
cation and optimum threshold yields the best performance over the entire SNR range. In
the case of equal link qualities, i.e., σ 2

s,d = σ 2
s,r = σ 2

r,d = 1, optimum power allocation

and optimum threshold yields a performance improvement of 2 dB at a BER of 10−4

compared to the scheme with equal power allocation and without threshold.
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In addition, if the power allocation is optimum, the scheme without threshold yields
almost the same performance as that with optimum threshold. When the quality of the
relay–destination link is very good, e.g. σ 2

r,d = 10, the use of optimum threshold is
more important than the use of optimum power allocation at high SNR. Specifically, by
properly choosing the threshold, the differential DF scheme achieves almost the same
performance for any power allocation at high SNR.

As we can see from Figure 9.8(b), in case of equal power allocation, using the
optimum threshold leads to an improvement gain of more than 5 dB over the scheme
without threshold at a BER of 10−4. With optimum threshold, the performance differ-
ence between the differential DF scheme with optimum power allocation and that with
equal power allocation is only about 0.5 dB at a BER of 10−4. �

9.2.2 DiffDF with multi-relay systems

This section considers DiffDF schemes in multi-node cooperative networks. Due to
their low complexity implementations, the multi-node DiffDF scheme can be deployed
in sensor and ad-hoc networks in which multi-node signal transmissions are necessary
for reliable communications among nodes. In the DiffDF scheme, each relay decodes
the received signal and it forwards only correctly decoded symbols to the destination.
A number of decision thresholds that correspond to the number of relays are used at
the destination to efficiently combines received signals from each relay–destination link
with that from the direct link. The BER performance of DiffDF schemes is analyzed
and optimum power allocation and threshold is provided to further improve the system
performance. In addition, BER approximation and a tractable BER lower bound are
provided. Then, power allocation and thresholds are jointly optimized.

9.2.2.1 Signal models for multi-node DiffDF scheme
For the DiffDF scheme, as in Figure 9.9, each relay decodes each received signal and
then forwards only correctly decoded symbols to the destination. In order to take advan-
tage of the DiffDF protocol, by which only correctly decoded symbols at each relay are
forwarded with a certain amount of power to the destination, a decision threshold (ζi )
is used at the destination to allow only high potential information bearing signals from
each of the i-th relay links to be combined with that from the direct link before being
differentially decoded.

With N cooperative relays in the network, signal transmissions comprise N + 1
phases. The first phase belongs to direct transmission, and the remaining N phases are
for signal transmission for each of the N relays. The signal models for each of the N+1
transmission phases are as follows.

In phase 1, suppose that differential M-ary phase shift keying (DMPSK) modulation
is used, the modulated information at the source is vm = ejφm , where φm = 2πm/M for
m = 0, 1, . . . ,M−1, and M is the constellation size. The source differentially encodes
vm by xτ = vmxτ−1, where τ is the time index, and xτ is the differentially encoded
symbol to be transmitted at time τ . After that, the source transmits xτ with transmitted
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Fig. 9.9 System description of the multi-node differential DF scheme.

power Ps to the destination. Due to the broadcasting nature of the wireless network, the
information can also be received by each of the N relays. The corresponding received
signals at the destination and the i-th relay, for i = 1, 2, . . . , N , can be expressed as

yτs,d =
√

Psh
τ
s,dxτ + ητs,d,

and

yτs,ri =
√

Psh
τ
s,ri x

τ + ητs,ri .

where hτs,d and hτs,ri represent the channel coefficients from the source to the destination
and from the source to the i-th relay, respectively. The channel coefficients hτs,d and hτs,ri
are modeled as complex Gaussian random variables with zero means and variances σ 2

s,d

and σ 2
s,ri , respectively. The terms ητs,d and ητs,ri are additive white Gaussian noise at the

destination and the i-th relay, respectively. Both of these noise terms are modeled as
zero-mean, complex Gaussian random variables with the same variance of N0.

In phases 2 to N + 1, depending on the cooperation protocol under consideration,
each of the N relays forwards the decoded signal to the destination. In this cooperation
system, each relay forwards only correctly decoded symbols to the destination, i.e.,
P̃i = Pi when the i-th relay decodes correctly, and P̃i = 0 otherwise. As shown in
Figure 9.9, N decision thresholds are used at the destination to allow only high potential
information bearing signals from each of the i-th relays to be combined with that from
the direct link before being differentially decoded.

Specifically, in phases 2 to N + 1, each of the i-th relays differentially decodes the
received signal from the source by using the decision rule:

m̂ = arg max
m=0,1,...,M−1

Re
{(
vm yτ−1

s,ri

)∗
yτs,ri
}
.
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Here, we assume an ideal relay that can make a judgement on the decoded information
as to whether it is correct or not. If any of the i-th relays incorrectly decodes, the incor-
rectly decoded symbol is discarded. Otherwise, the i-th relay differentially re-encodes
the information symbol as x̃τ = vm x̃τ−ki , where ki represents the time index that the
i-th relay correctly decodes before time τ . Then, x̃τ is forwarded to the destination with
transmitted power P̃i = Pi . After that, x̃τ is stored in a memory, represented by Mi

1
in Figure 9.9, for subsequent differential encoding. Note that the time index τ − ki in
x̃τ−ki can be any time before time τ depending on the decoding result in the previous
time. The received signal at the destination in phases 2 to N + 1 can be expressed as

yτri ,d =
{ √

Pi h
τ
ri ,d

x̃τ + ητri ,d, if relay correctly decodes (P̃i = Pi );
ητri ,d

, Otherwise (P̃i = 0),
(9.77)

where i = 1, 2, . . . , N , hτri ,d denotes the channel coefficient between the i-th relay and
the destination, and ητri ,d represents an additive noise.

Since the perfect knowledge of CSI is not available at each time instant, the des-
tination does not know when the received signal from the i-th relay contains the
information. For each i-th relay–destination link, a decision threshold ζi is used at the
destination to make a decision as to whether to combine yτri ,d with the received signal
from the direct link. Specifically, if |yτri ,d| ≤ ζi for all i , where |x | denotes the absolute
value of x , the destination estimates the transmitted symbol based only on the received
signal from the direct link. However, if |yτri ,d| > ζi for any i , the received signals from
the source and from the i-th relay are combined for joint decoding. In this way, the
combined signal at the destination can be written as

yDF = wDF
s (y

τ−1
s,d )

∗yτs,d +
N∑

i=1

wDF
i Iζi [|yτri ,d|](yτ−li

ri ,d
)∗yτri ,d. (9.78)

where wDF
s and wDF

i are combining weights. In (9.78), yτ−li
ri ,d

(li ≥ 1) is the most recent

received signal from the i-th relay with |yτ−li
ri ,d

| > ζi . It is stored in a memory, rep-

resented by Mi
2 in Figure 9.9, at the destination. The function Iζi [|yτri ,d|] in (9.78)

represents an indicator function in which

Iζi [|yτri ,d|] =
{

1, if |yτri ,d| > ζi ;
0, otherwise.

After signal combining, the destination jointly differentially decodes the transmitted
information by

m̂ = arg max
m=0,1,...,M−1

Re
{
v∗m yDF

}
.

Note that using different combining weights (wDF
s and wDF

i ) results in different system
performances. In the following, we use wDF

s = wDF
i = 1/(2N0) which maximizes the

signal-to-noise ratio (SNR) at the combiner output.



336 Differential modulation for cooperative communications

9.2.2.2 BER Analysis
BER analysis of the multi-node DiffDF scheme is considered in this subsection. First,
different SNR scenarios are characterized according to the received signal yτri ,d, thresh-

old ζi , and memories Mi
1 and Mi

2. Then, the probability of occurrence is provided for
each of these SNR scenarios. After that, the average BER is derived based on the prob-
ability of occurrence and the combined SNR for each scenario. Finally, a tractable BER
lower bound is provided.

Characterization of different SNR scenarios
At the destination, different combined SNRs may occur based on the received signal
(yτri ,d), the threshold (ζi ), and the signals stored in memory Mi

1 and Mi
2. In this way, the

destination encounters six possible SNR scenarios at each relay–destination link, and
we characterize each of them as follows. For a given network state j , we denote si

j as
an integer number that represents an SNR scenario at the i-th relay–destination link,
i.e., si

j ∈ {1, 2, 3, 4, 5, 6}. A set of joint events �i
si

j
for i = 1, 2, . . . , N will be related

to each of the scenarios si
j . Specifically, when si

j = 1,

�i
1 �

{
|yτri ,d| ≤ ζi

}
represents a joint event that received signals from the i-th relay link are not greater than
the thresholds. We characterize

�i
2 �

{|yτri ,d| > ζi , P̃τi = Pi , P̃τ−li
i = Pi , li = ki

}
as a joint event including |yτri ,d| > ζi , the relay correctly decodes at time τ and τ − li ,

and the information symbols at time ki and li in memories Mi
1 and Mi

2 are the same.
The remaining scenarios are

�i
3 �

{|yτri ,d| > ζi , P̃τi = Pi , P̃τ−li
i = Pi , li �= ki

}
,

�i
4 �

{|yτri ,d| > ζi , P̃τi = Pi , P̃τ−li
i = 0

}
,

�i
5 �

{|yτri ,d| > ζi , P̃τi = 0, P̃τ−li
i = Pi

}
,

�i
6 �

{|yτri ,d| > ζi , P̃τi = 0, P̃τ−li
i = 0

}
.

They are interpreted in a similar way to �i
2.

Probability of occurrence for each SNR scenario
To determine the probability of occurrence for each scenario, we first find that the prob-
ability that the i-th relay forwards information with transmitted power P̃i = 0 due to
incorrect decoding is related to the symbol error rate of DMPSK modulation as

�(γ DF
s,ri ) =

1

π

∫ (M−1)π/M

0
exp [−g(φ)γ DF

s,ri ]dφ, (9.79)

where γ DF
s,ri = Ps |hτs,ri |2/N0 represents an instantaneous SNR at the i-th relay, and g(φ)

is given by (9.20). Accordingly, the probability of correct decoding at the i-th relay (or
probability of forwarding with transmitted power P̃i = Pi ) is 1−�(γ DF

s,ri ). Therefore, the
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chance that �i
1 occurs is determined by the weighted sum of conditional probabilities

given that P̃i = Pi or 0, so that

Ph,DF
r (�i

1) = Ph,DF
r

(
|yτri ,d| ≤ ζi

∣∣ P̃τi = 0
)
�(γ τs,ri )

+ Ph,DF
r

(
|yτri ,d| ≤ ζi

∣∣ P̃τi = Pi

) [
1−�(γ τs,ri )

]
=
(
1− exp(−ζ 2

i /N0)
)
�(γ τs,ri )+

(
1−M

(
Pi |hτri ,d|2, ζi

)) [
1−�(γ τs,ri )

]
,

(9.80)

where

M
(

Pi |hτri ,d|2, ζi
)

� Q1
(√

Pi |hτri ,d|2/(N0/2), ζi/
√
N0/2

)
, (9.81)

in which Q1 (α, β) is the Marcum Q-function [188](proof left as an exercise).
According to the definition of each SNR scenario in Section 9.2.2.2, the chance that

each of the scenarios �2 to �6 happens is conditioned on an event that |yτ−li
ri ,d

| > ζi .

Since the events at time τ − li and time τ are independent, then the probability that �i
2

occurs is given by

Ph,DF
r (�i

2) = Ph,DF
r

(
|yτri ,d| > ζi , P̃τi = Pi

)
Ph,DF

r

(
P̃τ−li

i = Pi , li = ki

∣∣∣ |yτ−li
ri ,d

| > ζi
)
.

≈
M2

(
Pi |hτri ,d|2, ζi

) (
1−�(γ τs,ri )

)2
1− (1− e−ζ 2

i /N0)�(γ τs,ri )
. (9.82)

Next, the chance that the scenario �i
3 happens can be written as

Ph,DF
r (�i

3) = Ph,DF
r (�i

2 ∪�i
3)− Ph,DF

r (�i
2), (9.83)

where

Ph,DF
r (�i

2 ∪�i
3) � Ph,DF

r (|yτri ,d| > ζi , P̃τi = Pi , P̃τ−li
i = Pi ,

∣∣|yτ−li
ri ,d

| > ζi )
= Ph,DF

r
(|yτri ,d| > ζi , P̃τi = Pi

)
× Ph,DF

r
(|yτ−li

ri ,d
| > ζi , P̃τ−li

i = Pi
)

Ph,DF
r
(|yτ−li

ri ,d
| > ζi

) , (9.84)

Substituting (9.82) and (9.84) into (9.83), after some manipulations, we have

Ph,DF
r (�i

3) =M2(Pi |hτri ,d|2, ζi
)(

1−�(γ τs,ri )
)2

×
⎛⎝ 1

�(Ps |hτs,ri |2, Pi |hτri ,d|2)
− 1(

1− (1− e−ζ 2
i /N0)�(γ τs,ri )

)
⎞⎠ ,
(9.85)

in which �(Ps |hτ−li
s,ri |2, Pi |hτ−li

ri ,d
|2) is defined as an expression that results from applying

the concept of total probability[195] to Ph,DF
r

(
|yτ−li

ri ,d
| > ζi

)
:

Ph,DF
r
(|yτ−li

ri ,d
| > ζi

) =M
(
Pi |hτ−li

ri ,d
|2, ζi

)(
1−�(γ τ−li

s,ri )
)+ e−ζ 2

i /N0�(γ τ−li
s,ri )

� �(Ps |hτ−li
s,ri |2, Pi |hτ−li

ri ,d
|2). (9.86)
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With the assumption of almost constant channels at time τ and τ − li , we have
Ph,DF

r (�i
4) = Ph,DF

r (�i
5), i.e., scenarios �i

4 and �i
5 occur with the same probability.

Following the calculation steps used in (9.84), we have

Ph,DF
r (�i

4) = Ph,DF
r (�i

5) =
M
(
Pi |hτri ,d|2, ζi

)
e−ζ 2

i /N0�(γ τs,ri )
(
1−�(γ τs,ri )

)
�(Ps |hτs,ri |2, Pi |hτri ,d|2)

. (9.87)

Finally, the chance that scenario �i
6 occurs can be determined as

Ph,DF
r (�i

6) =
Ph,DF

r
(|yτri ,d| > ζi , P̃τi = 0

)
Ph,DF

r
(|yτ−li

ri ,d
| > ζi , P̃τ−li

i = 0
)

Ph,DF
r
(|yτ−li

ri ,d
| > ζi

)
= e−2ζ 2

i /N0�(γ τs,ri )

(
1

�(Ps |hτs,ri |2, Pi |hτri ,d|2)

)
. (9.88)

Approximated BER expression for the DiffDF scheme
We know from Section 9.2.2.2 that each relay contributes six possible SNR scenarios at
the destination. For a network with N relays, there are a total of 6N numbers of network
states. We denote S j � [s1

j s2
j · · · sN

j ] as an 1 × N matrix of a network state j , where

si
j ∈ {1, 2, . . . , 6}. Accordingly, the average BER can be expressed as

PDF
b = E

[
Ph,DF

b

]
=

6N∑
j=1

E

[(
Ph,DF

b |S j

) N∏
i=1

Ph,DF
r (�i

si
j
)

]
, (9.89)

where Ph,DF
r (�i

si
j
) for each si

j is specified in (9.80)–(9.88), Ph,DF
b |S j represents a

conditional BER for a given S j , and E[·] denotes the expectation operator.
Since it is difficult to find a closed-form solution for the BER in (9.89), we further

simplify (9.89) by separating a set of all possible network states, denoted by S, into two
disjoint subsets as S = S1,2 ∪ (S1,2)c, where S1,2 denotes all possible network states
that every element in the network state S j is either one or two, and (S1,2)c denotes
the remaining possible network states. Note that the cardinality of S1,2 and (S1,2)c are
|S1,2| = 2N and |(S1,2)c| = 6N − 2N , respectively. In this way, we can express the
average BER (9.89) as

PDF
b =

2N∑
j=1

E

[(
Ph,DF

b |S j∈S1,2

) N∏
i=1

Ph,DF
r (si

j )

]

+
6N−2N∑

j=1

E

[(
Ph,DF

b |S j∈(S1,2)c

) N∏
i=1

Ph,DF
r (si

j )

]
,

� PDF
b,1 + PDF

b,2 . (9.90)

The first term in the right-hand side of (9.90), PDF
b,1 , results from the cases where every

element in the network state S j is either one or two; the second term, PDF
b,2 , results from

the remaining cases. These two terms can be determined as follows.
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First, for notational convenience, let us denote L(S j ) as the number of combining
branches. By definition, we can express L(S j ) as

L(S j ) =
N∑

i=1

L̂(si
j )+ 1, (9.91)

where L̂(si
j ) = 0 when si

j = 1, and L̂(si
j ) = 1 otherwise. Note that the addition of 1 in

(9.91) corresponds to the contribution of the signal from the direct link.
Next, consider the case that every element in the network state S j is either one or two.

Therefore, the conditional BER Ph,DF
b |S j∈S1,2 can be obtained from the multi-branch

differential detection of DMPSK signals as

Ph,DF
b |S j∈S1,2 = 1

22L(S j )π

∫ π

−π
f
(
θ, β, L(S j )

)
exp

[
−α(θ)γ DF

S j∈S1,2

]
dθ

� �(γ DF

S j∈S1,2
), (9.92)

in which α(θ) and f (θ, β, L(S j )) are specified in (9.51) and (9.140), respectively. The
term γ DF

S j∈S1,2
is the SNR at the combined output, which is given by

γ DF

S j∈S1,2
= Ps |hτs,d|2

N0
+

N∑
i=1

(si
j − 1)Pi |hτri ,d|2

N0
, si

j ∈ {1, 2}, ∀i. (9.93)

Then, the conditional BER Ph,DF
b |S j∈(S1,2)c for the remaining cases can be found as

follows. Since up to now the conditional BER formulation for DMPSK with arbitrary-
weighted combining has not been available in the literature, Ph,DF

b |S j∈(S1,2)c cannot be
exactly determined. For analytical tractability of the analysis, we resort to an approx-
imated BER, in which the signal from the relay i is considered as noise when any
scenario from�i

3 to�i
6 occurs. As we will show in the following section, the analytical

BER obtained from this approximation is close to the simulation results. The conditional
BER for these cases can be approximated as

Ph,DF
b |S j∈(S1,2)c ≈ �

(
γ DF

S j∈(S1,2)c

)
,

where

γ DF
S j∈(S1,2)c

=
Ps |hτs,d|2 +

∑N
i=1 I2[si

j ]Pi |hτri ,d|2
N0 + N̂0

, si
j ∈ {1, 2, . . . , 6}, ∀i, (9.94)

in which

N̂0 �
(

N∑
i=1

(1− I2[si
j ])Nsi

j

)/(
Ps |hτs,d|2/N0 +

N∑
i=1

I [si
j ]Pi |hτri ,d|2N0

)
,

and Nsi
j

depends on si
j as follows:

Nsi
j
=

⎧⎪⎨⎪⎩
(Pi |hτri ,d|2 +N0)

2/N0, when si
j = 2;

Pi |hτri ,d|2 +N0, when si
j = 3, 4, 5;

N0, when si
j = 6.
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In (9.94), I2[si
j ] is defined as an indicator function based on the occurrence of si

j such

that I2[si
j ] = 1 when si

j = 2, and I2[si
j ] = 0 when si

j = 1, 3, 4, 5, 6.

From the above results, PDF
b,2 in (9.90) can be approximated as (proof left as an

exercise)

PDF
b,2

≈
6N−2N∑

j=1

1

4L(S j )π

∫ π

−π
f
(
θ, β, L(S j )

)
E
[
e

(
−α(θ)γDF

S j∈(S1,2)c

) N∏
i=1

Ph,DF
r (si

j )
]
dθ,

(9.95)

where

E
[
e

(
−α(θ)γDF

S j∈(S1,2)c

) N∏
i=1

Ph,DF
r (si

j )
]

=
∫
· · ·
∫

︸ ︷︷ ︸
2N+1 folds

exp

(
−α(θ)γ DF

S j∈(S1,2)c

)

×
N∏

i=1

Ph,DF
r (si

j ) f (ε1) f (ε2) · · · f (ε2N+1)dε1dε2 · · · dε2N+1, (9.96)

in which γ DF
S j∈(S1,2)c

is given in (9.94), and
∏N

i=1 Ph,DF
r (si

j ) is calculated using (9.80)–

(9.88). We can see from (9.95) that the evaluation of PDF
b,2 involves at most (2N + 2)-fold

integration. Although PDF
b,2 can be numerically determined, the calculation time is

prohibitively long even for a cooperation system with a small number of relays.
Now we determine PDF

b,1 in (9.90) as follows. The term
∏N

i=1 Ph,DF
r (si

j ) is a product
of the probabilities of occurrence of scenarios 1 and 2, and can be expressed as

N∏
i=1

Ph,DF
r (si

j ) =
N∏

i=1

[
(2− si

j )P
h,DF
r (�i

1)+ (si
j − 1)Ph,DF

r (�i
2)
]
. (9.97)

Substitute (9.92), (9.93), and (9.97) into the expression of PDF
b,1 in (9.90), and then

average over all CSIs, resulting in

PDF
b,1 ≈

2N∑
j=1

( 1

22L(S j )π

) ∫ π

−π

(
f (θ, β, L(S j ))

1+ α(θ)Psσ
2
s,d/N0

)
N∏

i=1

[
(2− si

j )X + (si
j − 1)Y

]
dθ,

(9.98)

where we denote X � E
[

Ph,DF
r (�i

1)
]
, which can be determined as

X = (1− e−ζ 2
i /N0)G

(
1+ g(φ)Psσ

2
s,ri

N0

)

+
(

1−
∫ ∞

0

M(Piq, ζi )

σ 2
ri ,d

e
−q/σ 2

ri ,ddq

)(
1− G(1+ g(φ)Psσ

2
s,ri

N0
)

)
, (9.99)
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in which

G(c(φ)) � 1

π

∫ (M−1)π/M

0
[c(φ)]−1dφ, (9.100)

and

Y � E
[
exp(−α(θ)Pi |hτri ,d|2/N0) · Ph,DF

r (�i
2)
] 1

π

∫ (M−1)π/M

0
[c(φ)]−1dφ, (9.101)

which can be further approximated as

Y ≈ 1

σ 2
s,riσ

2
ri ,d

∫ ∞

0

∫ ∞

0

M2(Piq, ζi )(1−�(Psu/N0))
2

1− (1− e−ζ 2
i /N0)�(Psu/N0)

× e
−(α(θ) Pi

N0
+ 1
σ2
ri ,d
)q

e−u/σ 2
s,ri dq du. (9.102)

Substituting (9.95) and (9.98) into (9.90), we finally obtain the average BER of the
multi-node DiffDF scheme.

To gain a more insightful understanding, we further determine a BER lower bound
of the multi-node DiffDF scheme as follows. Since the exact BER formulations under
the scenarios�i

4,�i
5, and�i

6 are currently unavailable, and the chances that these three
scenarios happen are small at high SNR, we lower bound the BER from these scenarios
by zero. Also, we lower bound the BER under the scenario �i

3 by that under �i
2; this

allows us to express the lower bound in terms of Ph
r (�

i
2 ∪ �i

3) (instead of Ph
r (�

i
3) or

Ph
r (�

i
2)) which can be obtained without any approximation. In this way, the BER of the

multi-node DiffDF scheme can be lower bounded by

Plb,DF
b

≈
2N∑
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(
1

22L(S j )π

)∫ π

−π

(
f (θ, β, L(S j ))

1+ α(θ)Psσ
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)
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[
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j )X + (si
j − 1)Ŷ

]
dθ,

(9.103)

where X is given in (9.99) and

Ŷ � E
[
exp(−α(θ)Pi |hτri ,d|2/N0) · Ph,DF

r (�i
2 ∪�i

3)
]

= 1

σ 2
s,ri

∫ ∞

0
s(u, θ)e−u/σ 2

s,ri du,
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in which

s(u, θ) �
∫ ∞

0

M2(Pi q, ζi )(1−�(Psu/N0))
2

σ 2
ri ,d
�(Psu, Pi q)

e
−
(
α(θ)

Pi
N0
+ 1
σ2
ri ,d

)
q

dq. (9.104)

We will show through numerical evaluation that the BER lower bound (9.103) is very
close to the simulated performance.

9.2.2.3 Optimizing power allocation and thresholds
This subsection considers the performance improvement of the DiffDF scheme through
the joint optimization of power allocation and thresholds based on the BER lower bound
(9.103). Specifically, for a fixed total power P = Ps +∑N

i=1 Pi , we jointly optimize
the threshold ζi , the power allocation at the source as = Ps/P , and the power alloca-
tion at each of the i-th relays ai = Pi/P with an objective to minimize the BER lower
bound (9.103):

({ζ̂i }Ni=1, âs, {âi }Ni=1) = arg min
{ζi }Ni=1,as ,{ai }Ni=1

Plb,DF
b ({ζi }Ni=1, as, {ai }Ni=1), (9.105)

where Plb,DF
b ({ζi }Ni=1, as, {ai }Ni=1) results from substituting Ps = as P and Pi = ai P

into (9.103). However, joint optimization in (9.105) involves 2N + 1 dimensional
searching, which includes N + 1 power allocation ratios and N decision thresholds.
To make the optimization problem tractable and to gain some insights into the optimum
power allocation and the optimum thresholds, each relay is assumed to be allocated with
the same transmitted power, and the decision thresholds are assumed to be the same at
the destination for each relay–destination link. Accordingly, the source is allocated with
power as = Ps/P and every relay is allocated with power ai = (1− as)/N . Hence, the
search space for this optimization problem reduces to two-dimensional searching over
as and ζ :

(ζ ∗, a∗s ) = arg min
ζ,as

Plb,DF
b (ζ, as, {ai }Ni=1), (9.106)

where Plb,DF
b (ζ, as, {ai }Ni=1) results from substituting ζi = ζ , Ps = as P , and Pi =

(1− as)P/N into (9.103).
Table 9.1 summarizes theobtained power allocation and thresholds based on the opti-

mization problem (9.106). The DBPSK and DQPSK cooperation systems with two
relays are considered, and different channel variances are used to investigate power
allocation and thresholds for different cooperation network setups. From the results in
Table 9.1, even though the obtained power allocation is sub-optimum, it provides some
insights into how much power should be allocated to improve system performance. In
particular, as the channel quality of the relay–destination links increases, the threshold
should be increased and more power should be allocated at the source to maintain link
reliability.

For example, if all the channel links are of the same quality, about half of the trans-
mitted power should be allocated at the source and the optimum threshold is 0.4. On the
other hand, if the channel link between each relay and the destination is very good, then
the optimum power allocation at the source increases to about 70% of the transmitted
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Table 9.1 DiffDF: optimum power allocation and thresholds for a cooperation system with two relays.

DBPSK DQPSK[
σ 2

s,d, σ
2
s,ri , σ

2
ri ,d

] [
as , a1, a2, ζ

] [
as , a1, a2, ζ

]
[
1, 1, 1

] [
0.50, 0.25, 0.25, 0.4

] [
0.52, 0.24, 0.24, 0.4

][
1, 10, 1

] [
0.44, 0.28, 0.28, 0.4

] [
0.40, 0.30, 0.30, 0.4

][
1, 1, 10

] [
0.68, 0.16, 0.16, 1.6

] [
0.70, 0.15, 0.15, 1.8

]

power, and the optimum threshold increases to 1.6 and 1.8 for DBPSK and DQPSK
modulations, respectively.

9.2.2.4 Examples for the multi-node DiffDF scheme
Let us see some simulation performances of the multi-node DiffDF scheme with
DBPSK and DQPSK modulations. Let us consider the scenarios where two or three
relays (N = 2 or 3) are in the networks. The channel coefficients follow the Jakes’
model (see Section 1.1.5) with Doppler frequency fD = 75 Hz and normalized fad-
ing parameter fDTs = 0.0025, where Ts is the sampling period. The noise variance is
assumed to be one (N0 = 1). The average BER curves are plotted as functions of
P/N0.

Example 9.6 We first compare the BER lower bound with the simulated performance.
Let us consider a DQPSK cooperation system with two relays. All nodes are allocated
with equal power. The decision threshold is set at ζ = 1 and the channel variances
are σ 2

s,d = σ 2
s,ri = σ 2

ri ,d
= 1 for all i . We can see from Figure 9.10(a) that the BER

lower bound yields the same diversity order as that from the simulated performance
even though there is a performance gap of 2 dB between these two curves. Also in
the figure, the performance of the multi-node DiffDF scheme is 5 dB away from the
performance with coherent detection at a BER of 10−3. An interesting observation is
that when the transmitted powers are optimally allocated (Ps = 0.6P, Pi = 0.2P) at
a fixed threshold of ζ = 1, as shown in Figure 9.10(b), the performance gap between
the simulated performance and the BER lower bound is reduced to about 1 dB at a
BER of 10−3.

In addition, the performance of the DiffDF scheme is closer to the performance of
coherent detection scheme. From the two figures, we can see that the performance gap
between the differential detection and coherent detection is larger than 3 dB. The reason
is that the power allocation and the combining weights used in the proposedmulti-node
DiffDF scheme is not optimum, hence the maximum SNR of the combined signal can-
not be achieved. However, when we discard the scenarios that the signals from the relays
do not contain any information, the resulting BER lower bound is about 3 dB away from
the performance with coherent detection. �
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Fig. 9.10 DiffDF scheme with DQPSK: σ 2
s,d = σ 2

s,ri = σ 2
ri ,d

= 1, and ζ = 1 : (a) equal power allocation
and (b) optimum power allocation.

Example 9.7 Next we show the performance of the DiffDF scheme with DQPSK mod-
ulation for different number of relays. The channel variances are σ 2

s,d = σ 2
s,ri = σ 2

ri ,d
=

1 for all i . All nodes are allocate with equal power, and the threshold at the destination
is fixed at ζ = 1. We can see from
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Fig. 9.11 DiffDF with DQPSK : different number of relays, equal power allocation, threshold = 1, and
σ 2

s,d = σ 2
s,ri = σ 2

ri ,d
= 1.

Figure 9.11 that diversity order increases when higher numbers of relays are used.
We observe a performance improvement of about 3.5 dB at a BER of 10−4 when the
number of relays increases from one to two relays. An additional 2 dB gain at the same
BER is obtained when the system increases from two to three relays. We also observe a
performance gap of about 5.5 dB at a BER of 10−3 between the DiffDF scheme and its
coherent counterpart for a cooperation system with three relays. �

Example 9.8 Figure 9.12(a) shows the effect of using different thresholds on the perfor-
mance of the multi-node DiffDF scheme, by considering a DBPSK cooperation system
with three relays, and all nodes are allocated with equal power. The channel variances
are σ 2

s,d = σ 2
s,ri = 1, and σ 2

ri ,d
= 10 for all i . Clearly, different thresholds result in

different performance. Specifically, the multi-node DiffDF scheme with ζ = 2 provides
the best performance under this simulation scenario. When ζ = 1, not only BER dete-
riorates but also the diversity order reduces. Hence, an appropriate decision threshold
should be employed such that the DiffDF scheme yields reasonable good performance.
Comparing the simulated performance when ζ = 2 with the coherent cooperative
scheme without threshold, we observe a performance gap of about 6 dB between the
two performance curves at a BER of 10−3. This performance gap is large because in the
DiffDF scheme, the CSIs are not available at the receivers, and the destination does not
know whether the relay transmits or not. �
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Fig. 9.12 DiffDF scheme with σ 2
s,d = σ 2

s,ri = 1, σ 2
ri ,d

= 10: (a) DBPSK: three relays, fixed power
allocation but different thresholds and (b) DQPSK: two relays, different power allocation
and thresholds.

Example 9.9 Finally, Figure 9.12(b) shows the performance improvement when power
allocation and decision thresholds are jointly optimized. It assumes a DQPSK coopera-
tion system with two relays. The channel variances are σ 2

s,d = σ 2
s,ri = 1, and σ 2

ri ,d
= 10

for all i . In this scenario, the optimum power allocation is as = 0.70, a1 = 0.15, and
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a2 = 0.15, and the optimum threshold is ζ = 1.8. We can see that the performance
curve with optimum power allocation and threshold significantly improves from that
with equal power allocation and an arbitrary decision threshold (ζ = 1 in this case). A
performance gain of 4–5 dB is observed at a BER of 10−3–10−4.

Also in the figure, we compare the performance of optimum power allocation and
threshold with that of optimum power allocation (as = 0.8, a1 = 0.1, and a2 = 0.1)
but an arbitrary threshold (ζ = 1). We can see that jointly optimizing power allocation
and threshold leads to a gain of about 1–2.5 dB over the scheme with optimum power
allocation but arbitrary threshold at BER range between 10−3 and 10−5. Note that the
performance of the DiffDF scheme with optimum power allocation and threshold is
5 dB away from that of coherent detection. �

9.3 Differential modulation for AF cooperative communications

We now consider differential modulation schemes for amplify-and-forward cooperative
communications, DiffAF schemes in short, and we start from a single relay scheme.

9.3.1 DiffAF with single-relay systems

This section considers a DiffAF protocol in a two-user cooperative communications sys-
tem. The scheme efficiently combines signals from all branches, in which only long term
average of the received signals is required. As a performance benchmark, we provide an
exact BER formulation and its simple bounds for the optimum-combining cooperation
system with DMPSK signals. Based on the theoretical BER benchmark, the optimum
power allocation can be obtained, and it is used to further improve the performance of
the DiffAF scheme.

9.3.1.1 Signal model and protocol description for the DiffAF scheme
We consider a two-user cooperative communications system employing the AF proto-
col. Each user can be a source node that sends its information to the destination, or it
can be a relay node that helps transmit the other user’s information. Basically, signal
transmission can be separated into two phases. In phase 1, the source node transmits
the information to its destination. Due to the broadcasting nature of wireless networks,
this information is also received by the relay node. In phase 2, while the source node
is silent, the relay node amplifies the received signal and forwards it to the destination.
In both phases, the signals of all users are transmitted through orthogonal channels by
using existing schemes such as TDMA, FDMA, or CDMA.

In differential transmission, the information is conveyed in the difference of the
phases of two consecutive symbols. Specifically, information symbols to be broadcasted
by the source are given by vm = ejφm ,where {φm}M−1

m=0 is a set of M information phases.
In the case of DMPSK, φm can be specified as φm = 2πm/M for m = 0, 1, . . . ,M−1.
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Instead of directly transmitting the information as in coherent transmission, the source
node differentially encodes the information symbol vm as

xτ = vm xτ−1, (9.107)

where τ is the time index, and xτ is the differentially encoded symbol to be transmitted
at time τ .

In phase 1, the source sends out the symbol xτ with transmit power P1. The
corresponding received signals at the destination and the relay nodes can be expressed as

yτs,d =
√

P1hτs,dxτ + wτs,d,
and

yτs,r =
√

P1hτs,rx
τ + wτs,r,

respectively. Here, hτs,d and hτs,r represent the channel coefficients from the source to
the destination and from the source to the relay, respectively, whereas wτs,d and wτs,r are
additive noise.

In phase 2, the relay amplifies the received signal and forwards it to the destination
with transmit power P2. The received signal at the destination can be modeled as

yτr,d =
√

P̃2hτr,dyτs,r + wτr,d, (9.108)

where hτr,d is the channel coefficient from the relay to the destination, and wτr,d is addi-
tive noise. In a Rayleigh fading environment, the channel coefficients hτs,d, hτs,r, and hτr,d
can be modeled as independent zero-mean complex Gaussian random variables with
variances σ 2

s,d, σ 2
s,r, and σ 2

r,d, respectively. All of the fading coefficients are unknown
to either the transmitter or the receiver, and they are assumed to be constant over
two symbol periods. The noise wτs,d, wτs,r, and wτr,d are modeled as independent com-
plex Gaussian random variables with zero means and variances N0. To ensure that the
average transmit power of the relay node is P2, the normalized power P̃2 is specified as

P̃2 = P2

P1σ 2
s,r +N0

, (9.109)

where the variance σ 2
s,r can be obtained from the long-term average of the received

signals. The normalized power in (9.109) differs from its coherent counterpart in that
the latter uses instantaneous fading amplitude, i.e.,

∣∣hs,r
∣∣2, instead of σ 2

s,r.
At the destination, the received signal from the source through direct transmission in

phase 1 (yτs,d) and that from the relay in phase 2 (yτr,d) are combined together, and then
the combined output is differentially decoded. The combined signal prior to differential
decoding is

y = a1
(
yτ−1

s,d

)∗
yτs,d + a2

(
yτ−1

r,d

)∗
yτr,d, (9.110)

where the coefficients a1 and a2 are given by

a1 = 1

N0
, a2 =

P1σ
2
s,r +N0

N0(P1σ 2
s,r + P2σ

2
r,d +N0)

, (9.111)
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which are determined to maximized the SNR of the combined signal. Without acquiring
CSI, the decoder use the sufficient statistics given in (9.110), and its decision rule for
decoding information symbol follows:

m̂ = arg max
m = 0,1,...,M−1

Re
{
v∗m y

}
.

9.3.1.2 Performance analysis and discussions
While the exact BER formulation that is applicable for multi-channel differential
scheme with arbitrary-weight combining as in (9.111) is currently not available, in this
section we discuss a BER formulation for the case of optimum combining weights,
which are specified in the following:

â1 = 1

N0
, â2 =

P1σ
2
s,r +N0

N0(P1σ 2
s,r + P2|hr,d|2 +N0)

. (9.112)

Even though these optimum weights are not practical for the DiffAD scheme because
the instantaneous channel amplitude at the relay–destination link, i.e.,

∣∣hr,d
∣∣2, is

assumed unknown to the receiver, the performance evaluation based on optimum
weights (9.112) can be used as a performance benchmark for the DiffAF scheme.

With the optimum weight â1 and â2, the instantaneous SNR per bit of the optimum
combiner output can be calculated as

γ = γ1 + γ2, (9.113)

where

γ1 = P1
∣∣hs,d

∣∣2
N0

, (9.114)

and

γ2 = P1 P2
∣∣hs,r

∣∣2 ∣∣hr,d
∣∣2

N0

(
P1σ 2

s,r + P2
∣∣hr,d

∣∣2 +N0

) . (9.115)

To simplify the notation, we omit the time index τ in this section for convenience in the
derivation.

Similar to the DiffDF scheme, the conditional BER of the DiffAF is given by

Pb|γ = 1

16π

∫ π

−π
f (θ) exp [−α(θ)γ ]dθ, (9.116)

where

f (θ) = b2(1− β2) [3+ cos(2θ)− (β + 1/β) sin θ ]

2α(θ)
, (9.117)

and

α(θ) = b2(1+ 2β sin θ + β2)

2
, (9.118)

in which β = a/b denotes a constant parameter in which a and b depend on the mod-
ulation size [188]. Specifically, a = 10−3 and b = √

2 for DBPSK modulation, and
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a =
√

2−√2 and b =
√

2+√2 for DQPSK modulation [188]. The values of a and b
for larger modulation sizes can be obtained by using the result in [146].

By averaging the conditional BER over the Rayleigh fading channels, hs,d, hs,r, and
hr,d, we have an average BER formulation in terms of MGF functions as follows:

Pb = 1

16π

∫ π

−π
f (θ)Mγ1 (θ)Mγ2 (θ) dθ, (9.119)

where

Mγi (θ) =
∫ +∞

−∞
e−α(θ)λ pγi (λ)dλ, (9.120)

denotes the MGF of the SNR γi for i = 1, 2, evaluating at α(θ), and f (θ) and α(θ) are
specified in (9.117) and (9.118), respectively. Observe that the exact evaluation of the
BER in (9.141) involves triple integration, which is hard to obtain. In what follows, we
provide a simplified exact BER formulation that involve only double integration. The
BER formulation in (9.119) can be further calculated as follows.

The simplified BER formulation can be obtained by calculating Mγ1 (θ) and Mγ2

separately as follows. For Rayleigh fading channels,
∣∣hs,d

∣∣2,
∣∣hs,r

∣∣2, and
∣∣hr,d

∣∣2 are
independent exponential random variables with parameters 1/σ 2

s,d, 1/σ 2
s,r, and 1/σ 2

r,d,
respectively. Based on (9.120), Mγ1(θ) can be expressed as (proof left as an exercise)

Mγ1(θ) =
1

1+ ks,d(θ)
, (9.121)

where

ks,d(θ) � α(θ)P1σ
2
s,d/N0. (9.122)

Observe that Mγ2(θ) depends on both
∣∣hs,r

∣∣2 and
∣∣hr,d

∣∣2. By averaging over
∣∣hs,r

∣∣2, and
after some manipulations, we can express Mγ2(θ) as (proof left as an exercise)

Mγ2(θ)

= 1

1+ ks,r(θ)

(
1+ ks,r(θ)

1+ ks,r(θ)

P1σ
2
s,r +No

P2

1

σ 2
r,d

∫ ∞

0

exp
(
−u/σ 2

r,d

)
u + R(θ)

du

)
,

(9.123)

where

R(θ) �
P1σ

2
s,r +No

P2
(
1+ ks,r(θ)

) , (9.124)

in which ks,r(θ) is given by

ks,r(θ) � α(θ)P1σ
2
s,r/N0, (9.125)

Finally, by substituting (9.121) and (9.123) into (9.119), we obtain a BER expression
that involves only double integration. In what follows, we can further obtain single-
integral BER lower bound, single-integral BER upper bound, and their corresponding
simple BER approximations that involve no integration.
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The BER expression in (9.119) can be upper bounded by using the upper bound
of Mγ2(θ) in (9.123). We will bound the integration term in (9.123) with a constant
Zmax that is not a function of θ . The value of Zmax can be found by replacing R(θ)
in the integrand with its minimum value. We can see from (9.125) and (9.124) that
R(θ) reaches its minimum value when B(θ) attains its maximum at θ = π/2, i.e.,
B(θ) ≤ −b2(1+ β)2/2. Accordingly, the minimum value of R(θ) is given by

R(θ) ≥ P1σ
2
s,r +No

P2

[
1− P1σ

2
s,rb

2(1+ β)2
2N0

]−1

� Rmin. (9.126)

Substituting R(θ) in (9.123) with Rmin, the BER upper bound is given by

Pb ≤ 1

16π

∫ π

−π
F (θ)

1

[1+ ks,d(θ)][1+ ks,r(θ)]

×
(

1+ P1σ
2
s,r + 1

P2σ
2
r,d

ks,r(θ)

1+ ks,r(θ)
Zmax

)
dθ, (9.127)

in which

Zmax =
∫ ∞

0
exp(−u/σ 2

r,d)
[
u + Rmin

]−1du (9.128)

is a constant that can be easily obtained for any given values of σ 2
r,d and Rmin. The upper

bound in (9.127) involves only single integration, and it is simpler than the exact BER
provided in (9.119).

To gain further insight, we further simplify the BER upper bound in (9.127) as fol-
lows. For high enough SNR, we can ignore all 1’s in the denominator of (9.127). This
results in

Pb ≤
(

1+ P1σ
2
s,r + 1

P2σ
2
r,d

Zmax

)
1

16π

∫ π

−π
f (θ)

ks,d(θ)ks,r(θ)
dθ

=
(
P1σ

2
s,r + 1

)
Zmax + P2σ

2
r,d

P2
1 P2σ

2
s,dσ

2
s,rσ

2
r,d

N 2
0 C (β, θ) , (9.129)

where

C (β, θ) = 1

8πb4

∫ π
−π

(1− β2)[3+ cos(2θ)− (β + 1/β) sin θ ]
(1+ 2β sin θ + β2)3

dθ (9.130)

is a constant that depends on the modulation size.
The BER lower bound can be obtained in a similar way to the BER upper bound. We

will briefly provide details of the derivations. In this case, R(θ) reaches its maximum
value when B(θ) attains its minimum at θ = −π/2, i.e., B(θ) ≥ −b2(1 − β)2/2.
Accordingly, the maximum value of R(θ) is given by

R(θ) ≤ P1σ
2
s,r +No

P2

[
1+ P1σ

2
s,rb

2(1− β)2
2N0

]−1

� Rmax. (9.131)
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Therefore, the lower bound is given by

Pb ≥ 1

16π

∫ π

−π
f (θ)

1

[1+ ks,d(θ)][1+ ks,r(θ)]

×
(

1+ P1σ
2
s,r + 1

P2σ
2
r,d

ks,r(θ)

1+ ks,r(θ)
Zmin

)
dθ, (9.132)

in which

Zmin =
∫ ∞

0
exp(−u/σ 2

r,d)
[
u + Rmax

]−1du

is a constant that can be easily obtained for any given values of σ 2
r,d and Rmax. We will

show in the examples that the lower bound is tight in the high SNR region.
We further simplify the BER lower bound in (9.132) for high enough SNR by ignor-

ing all 1’s in the denominator of (9.132). The resulting BER approximation of (9.132)
can be expressed as

Pb ≈
(
P1σ

2
s,r + 1

)
Zmin + P2σ

2
r,d

P2
1 P2σ

2
s,dσ

2
s,rσ

2
r,d

N 2
0 C (β, θ) , (9.133)

where C (β, θ) is specified in (9.130). The approximated BER in (9.133) is tight at high
SNRs.

Based on the analysis in this section, we will show in the next section that the BER
expression, and its upper and lower bounds, together with their simple BER approxima-
tions, provide performance curves as a performance benchmark of the DiffAF scheme.
Moreover, the optimum power allocation based on this BER expression can be used to
further improve the performance of our propose scheme.

9.3.1.3 Examples for single-relay DiffAF scheme
Let us see some examples for the two-user cooperation systems employing the AF
protocol with DQPSK signals. The channel fading coefficients are assumed to be inde-
pendent between communication links, but are time correlated according to the Jakes’
model as in Section 1.1.5, in which the Doppler frequency is fD = 75 Hz and the nor-
malized fading parameter is fDTs = 0.0025, where Ts is the sampling period. The noise
variance is assumed to be unity (N0 = 1). We plot the performance curves in terms of
average BER versus P/N0, where P is the total transmit power. We assume that the
power allocation at the source and relay nodes is fixed at P1 + P2 = P .

Example 9.10 First let us compare simulated performances of the DiffAF scheme to
various transmission techniques, including differential direct transmission, and their
coherent counterparts. For fair comparison, we simulate the direct transmission schemes
with DBPSK signals. Here, the channel variances at the relay link are chosen as
σ 2

s,d = σ 2
s,r = σ 2

r,d = 1, and the power ratios are given by P1 = 0.7P and P2 = 0.3P .
From Figure 9.13, it is apparent that the DiffAF scheme achieves higher diversity
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Fig. 9.13 Cooperative communication system with DQPSK signals, σ 2
s,d = σ 2

s,r = σ 2
r,d = 1, P1/P = 0.7,

and P2/P = 0.3.

orders than the DBPSK with direct transmission at high SNRs. We observe a perfor-
mance gain of about 4 dB at a BER of 10−3. In addition, at SNRs higher than 21 dB,
the DiffAF scheme provides significant performance improvement over that of the
directly transmitted BPSK with coherent detection. Therefore, the differential coop-
erative scheme can be a viable candidate for exploiting the inherent spatial diversity
of virtual antenna arrays in wireless networks with low complexity and simple imple-
mentation. Also in Figure 9.13, we can observe that the performance of the DiffAF
scheme is 3 dB away from its coherent counterpart at the high SNR region, which is as
expected. �

Example 9.11 In Figure 9.14, we compare the performance of the DiffAF scheme
and the optimum-combining scheme in case of equal power allocation, i.e.,
P1 = P2 = 0.5P . We can see that when σ 2

s,d = σ 2
s,r = σ 2

r,d = 1, the performance of
both schemes are comparable, and both performance curves are close to the analytical
BER curve with optimum weights. When σ 2

s,d = σ 2
s,r = 1 and σ 2

r,d = 10, we observe
that the performance of the DiffAF scheme and the optimum optimum-combining
scheme are about 0.7 dB different at a BER of 10−3. However, the performance curve
of the optimum-combining scheme are the same as the theoretical curve with optimum
weights. Hence, the equal power allocation strategy does not always provide the best
performance. Moreover, the results illustrate that we can use the performance curve
with optimum weights as a benchmark for the performance of the DiffAF scheme. �
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Fig. 9.14 Performance comparison of the DiffAF scheme and that with optimum weights, P1 = 0.5P ,
P2 = 0.5P .
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Fig. 9.15 Asymptotically tight curve of the BER formulations with optimum weights to the simulated
performance of the DiffAF scheme with DQPSK signals, σ 2

s,d = σ 2
s,r = σ 2

r,d = 1; P1 = 0.7P ,
P2 = 0.3P .

Example 9.12 We illustrate in Figure 9.15 the numerically evaluated BER with opti-
mum weights in comparison to simulated performance of the DiffAF scheme. For
σ 2

s,d = σ 2
s,r = σ 2

r,d = 1, and P1 = 0.7P and P2 = 0.3P , we can see that the BER
expression with optimum weights in (9.119) is close to the simulated performance of



9.3 Differential modulation for AF cooperative communications 355

the DiffAF scheme. The upper bound (9.127) and its simple approximation (9.129) are
asymptotically parallel with the BER curve with optimum weights. The lower bound in
(9.132) is asymptotically tight to the simulated performance and the BER curve using
optimum weights. There is only a small difference at low SNRs. The simple approxi-
mated BER in (9.133) is loose at low SNRs, but appears to be asymptotically tight for a
reasonably high range of SNRs. �

Example 9.13 Now let us use the BER formulation with optimum weights to numer-
ically find the optimum power allocation at an SNR of 20 dB. We find that both the
exact BER with optimum weights and its approximated BER formulations yield the
same optimum power allocation. In Figure 9.16, for the case where all the channel vari-
ances are unity, we show the performance comparison of the simulated performance
of the DiffAF scheme, the DiffAF scheme with optimum weights, and the analytical
BER formulation with optimum weights; there is no performance gap observed in the
figure. For the case where σ 2

s,d = σ 2
s,r = 1, and σ 2

r,d = 10, the optimum powers at the

source node and the relay node are P̂1 = 0.8P and P̂2 = 0.2P , respectively. We can see
in Figure 9.16 that the obtained optimum power allocation can significantly reduce the
performance gap between the simulated performance of the DiffAF scheme and that
with optimum weights. Furthermore, the two curves are close to the analytical BER
curve using optimum weights.

P1 = 0.8P, P2 = 0.2P,

P1 = 0.7P, P2 = 0.3P,
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Fig. 9.16 Cooperative communication system with DQPSK signals for different power allocation
schemes, and different channel variances.
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Fig. 9.17 Performance comparison of the optimum power allocation scheme and the equal power
allocation scheme, σ 2

s,d = σ 2
s,r = 1 and σ 2

r,d = 10.

This interesting result provides a key concept in allocating power among users.
Specifically, in order to balance the link qualities, lower power should be allocated to
the link with the largest channel variance, while higher power should be put in the link
with the smallest channel variance. As can be seen in Figure 9.17, with a power loading
of P̂1 and P̂2, there is a performance improvement of about 1.4 dB at a BER of 10−3

over the scheme with equal power allocation. �

9.3.2 Multi-node DiffAF scheme

This section considers DiffAF cooperative communications in multi-node cooperative
networks. In this scheme, the destination in the multi-node DiffAF scheme requires only
the long-term average of the received signals to efficiently combine the signals from
all communications links. The BER performance of the multi-node DiffAF scheme is
analyzed and the optimum power allocation is provided to further improve the sys-
tem performance. An exact BER formulation is provided based on optimum combining
weights for MDPSK modulation. The obtained BER formulation serves as a perfor-
mance benchmark of the multi-node DiffAF scheme. In addition, BER upper bounds
and simple BER approximations are provided. One of the tight BER approximations
allows us to optimize the power allocation through a simple single-dimensional search.

9.3.2.1 Signal model and protocol description
We consider a multi-node cooperative wireless network with a source and N relays as
shown in Figure 9.18. For the multi-node DiffAF scheme, each relay amplifies each
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Source

Relay 1 Relay 2 Relay N Phase I
Phase II

Destination

Fig. 9.18 Multi-node differential AF scheme.

received signal from the source and then forwards the amplified signal to the destina-
tion. With N cooperative relays in the network, signal transmissions for the multi-node
DiffAF scheme comprise N + 1 phases. The first phase belongs to direct transmission,
and the remaining N phases are for signal transmission for each of the N relays. The
signal models for each of the N + 1 transmission phases are as follows.

In phase 1, suppose that differential M-ary phase shift keying (DMPSK) modulation
is used, the modulated information at the source is vm = ejφm , where φm = 2πm/M for
m = 0, 1, . . . ,M−1, and M is the constellation size. The source differentially encodes
vm by xτ = vmxτ−1, where τ is the time index, and xτ is the differentially encoded
symbol to be transmitted at time τ . After that, the source transmits xτ with transmitted
power Ps to the destination. Due to the broadcasting nature of the wireless network, the
information can also be received by each of the N relays. The corresponding received
signals at the destination and the i-th relay, for i = 1, 2, . . . , N , can be expressed as

yτs,d =
√

Psh
τ
s,dxτ + ητs,d,

and

yτs,ri =
√

Psh
τ
s,ri x

τ + ητs,ri .
where hτs,d and hτs,ri represent channel coefficients from the source to the destination and
from the source to the i-th relay, respectively. In this paper, hτs,d and hτs,ri are modeled

as complex Gaussian random variables with zero mean and variances σ 2
s,d and σ 2

s,ri ,
respectively. The terms ητs,d and ητs,ri are additive white Gaussian noise at the destination
and the i-th relay, respectively. Both of these noise terms are modeled as zero-mean,
complex Gaussian random variables with the same variance of N0.

The received signal for the multi-node DiffAF scheme in phases 2 to N+1, is given by

yτri ,d =
√

Pi√
Psσ 2

s,ri +N0

hτri ,dyτs,ri + ητri ,d, (9.134)

where Pi represents the transmitted power at the i-th relay, and hτri ,d denotes the channel
coefficient at time τ at the i-th relay–destination link. We model hτri ,d as a zero-mean,

complex Gaussian random variable with variance σ 2
ri ,d

. In (9.134), Pi is normalized by

Psσ
2
s,ri + N0, and hence the i-th relay requires only the channel variance between the
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source and the i-th relay (σ 2
s,ri ) rather than its instantaneous value. In practice, σ 2

s,ri can
be obtained through long-term averaging of the received signals at the i-th relay.

Finally, the received signals from the source and all of the relays are combined at the
destination, giving

yAF = wAF
s

(
yτ−1

s,d

)∗
yτs,d +

N∑
i=1

wAF
i

(
yτ−1

ri ,d

)∗
yτri ,d, (9.135)

where

wAF
s = 1

N0
, wAF

i = Psσ
2
s,ri +N0

N0(Psσ 2
s,ri + Piσ

2
ri ,d
+N0)

are combining weights that maximize the combiner output. Here, the channel σ 2
ri ,d

and

σ 2
s,ri are assumed to be available at the destination. Note that σ 2

s,ri and σ 2
ri ,d

can be
obtained through long-term averaging of the received signals at the i-th relay and the
destination, respectively. In practice, σ 2

s,ri can be forwarded from each of the i-th relays
to the destination over a reliable channel link. Accordingly, without acquiring perfect
CSI, the combined signal (9.135) is differentially decoded using the detection rule

m̂ = arg max
m = 0,1,...,M−1

Re
{
v∗m yAF

}
.

9.3.2.2 BER analysis
The BER formulation based on arbitrary combining weights, . i.e., wAF

s and wAF
i

in (9.135), is currently not available in the literature. For mathematical tractability,
we provide an alternative BER analysis based on the following optimum combining
weights:

ŵAF
s = 1

N0
, ŵAF

i = Psσ
2
s,ri +N0

N0(Psσ 2
s,ri + Pi |hτri ,d|2 +N0)

,

which are determined to maximized the SNR of the combined signal. Note that ŵAF
i

requires instantaneous channel information which is not available in the differential
modulation; however, the BER analysis based on these optimum combining weights
serves as the BER performance benchmark of the multi-node DiffAF scheme. As will be
shown in Section 9.3.2.4, the multi-node DiffAF scheme with optimum power allocation
yields very close performance to the BER benchmark. Using the optimum combining
weights ŵAF

s and ŵAF
i , an instantaneous SNR at the combiner output can be written as

γ AF = γ AF
s +

N∑
i=1

γ AF
i , (9.136)

where

γ AF
s �

Ps |hτs,d|2
N0

, (9.137)
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and

γ AF
i �

Ps Pi |hτs,ri |2|hτri ,d|2
N0(Psσ 2

s,ri + Pi |hτri ,d|2 +N0)
. (9.138)

Accordingly, the conditional BER expression for the multi-node DiffAF scheme can be
given by

PAF
b|γ AF =

1

22Lπ

∫ π

−π
f (θ, β, L) exp [−α(θ)γ AF ]dθ, (9.139)

where α(θ) is specified in (9.118) and

f (θ, β, L) = b2

2α(θ)

L∑
l=1

(
2L − 1
L − 1

)
�(β, θ, l), (9.140)

in which

�(β, θ, l) = [(β−l+1 − βl+1) cos((l − 1)(θ + π
2
))− (β−l+2 − βl) cos(l(θ + π

2
))
]
.

Here, L = N+1, and β = a/b in which a = 10−3 and b = √2 for DBPSK modulation,

and a =
√

2−√2 and b =
√

2+√2 for DQPSK modulation [188]. The value of
β for higher constellation sizes can be found in [146]. Averaging the conditional BER
(9.139) over the Rayleigh distributed random variables by the use of the MGF functions,
we have

PAF
b = 1

22(N+1)π

∫ π

−π
f (θ, β, N + 1)Mγ AF

s
(θ)

N∏
i=1

Mγ AF
i
(θ) dθ, (9.141)

where

MγAF
μ
(θ) �

∫ +∞

−∞
e−α(θ)λ pγAF

μ
(λ)dλ,

denotes the MGF of γ AF
μ in which μ ∈ {s, 1, . . . , N }. In (9.141), MγAF

s
(θ) is obtained

by an integration over an exponential random variable
∣∣hs,d

∣∣2 such that

MγAF
s
(θ) = 1

1+ ks,d(θ)
, (9.142)

in which ks,d(θ) � α(θ)Psσ
2
s,d/N0. The MGF MγAF

i
(θ), however, is obtained through

double integration of each γ AF
i over two exponential random variables

∣∣hs,ri

∣∣2 and∣∣hri ,d
∣∣2. After some manipulation, we have

MγAF
i
(θ) = 1

σ 2
ri ,d

∫ ∞

0
�i (θ) exp

(
− u

σ 2
ri ,d

)
du, (9.143)

where

�i (θ) =
N0
(
Pi u + Psσ

2
s,ri +N0

)
N0
(
Pi u + Psσ 2

s,ri +N0
)+ α(θ)Ps Piσ 2

s,ri u
.
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Denoting ks,ri (θ) � α(θ)Psσ
2
s,ri /N0 and k̂s,ri (θ) � Pi (1 + ks,ri (θ)), we can further

simplify it as

�i (θ) = 1

1+ ks,ri (θ)
+ 1− 1/

[
1+ ks,ri (θ)

]
1+ k̂s,ri (θ)u/

(
Psσ 2

s,ri +N0
) , (9.144)

such that (9.143) can be expressed as

MγAF
i
(θ) = 1

1+ ks,ri (θ)

(
1+ ks,ri (θ)

1+ ks,ri (θ)

Psσ
2
s,ri +N0

Pi

1

σ 2
ri ,d

Zi (θ)

)
, (9.145)

where

Zi (θ) =
∫ ∞

0

exp
(
−u/σ 2

ri ,d

)
u + R̂i (θ)

du

= −eRi (θ)

[
E + ln Ri (θ)+

∫ Ri (θ)

0

exp(−t)− 1

t
dt

]
, (9.146)

in which

R̂i (θ) �
(

Psσ
2
s,ri +N0

)
/
(
Pi
[
1+ ks,ri (θ)

])
and Ri (θ) � R̂i (θ)/σ

2
ri ,d

. Note that the last expression in (9.146) is obtained by

applying results from [50] (p.358: Eq. (3.352.4) and p.934: Eq. (8.212.1)), and E �
0.577 215 664 90... represents the Euler’s constant (proof left as an exercise). Hence, by
substituting (9.142) and (9.145) into (9.141), the average BER formulation is

PAF
b = 1

22(N+1)π

∫ π

−π
f (θ, β, N + 1)

1+ ks,d(θ)

×
N∏

i=1

1

1+ ks,ri (θ)

(
1+ ks,ri (θ)Zi (θ)

1+ ks,ri (θ)

Psσ
2
s,ri +N0

Piσ
2
ri ,d

)
dθ.

(9.147)

Although PAF
b can be calculated numerically, it is difficult to get some insights because

it involves double integration. In the following we provide a single-integral BER
upper bound, a simple BER upper bound without integration, and two tight BER
approximations.

We first determine the BER upper bound and its simple expression as follows. From
(9.145)–(9.147), we can see that the BER upper bound can be obtained by lower bound-
ing R̂i (θ) in the denominator of the integrand of Zi (θ) in (9.146). By substituting
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θ = π/2 in (9.118), α(θ) is upper bounded by α(θ) ≤ (b2(1 + β)2)/2. Therefore,
R̂i (θ) is lower bounded by

R̂i (θ) ≥
Psσ

2
s,ri +N0

Pi

[
1+ Psσ

2
s,ri b

2(1+ β)2
2N0

]−1

� R̂i,min. (9.148)

Substituting Ri (θ) = R̂i,min into (9.146) results in an upper bound on Zi (θ), i.e.,
Zi (θ) ≤ Zi,max where

Zi,max = −eRi,min

[
E + ln Ri,min +

∫ Ri,min

0

exp(−t)− 1

t
dt

]
, (9.149)

in which Ri,min � R̂i,min/σ
2
ri ,d

. Note that for any given channel variances σ 2
s,ri and σ 2

ri ,d
,

and power allocation, Zi,max can be determined numerically. Therefore, the BER upper
bound can be obtained by replacing Zi (θ) in (9.147) by Zi,max, giving

PAF
b ≤ 1

22(N+1)π

∫ π

−π
f (θ, β, N + 1)

1+ ks,d(θ)

×
N∏

i=1

1

1+ ks,ri (θ)

(
1+ ks,ri (θ)Zi,max

1+ ks,ri (θ)

Psσ
2
s,ri +N0

Piσ
2
ri ,d

)
dθ. (9.150)

We further simplify the right-hand side of (9.150) to obtain a simple BER upper bound
and to get some insights into the achievable diversity order. We focus on the high
SNR region so that all 1’s in the denominator of (9.150) can be discarded. After some
manipulation, the simple BER upper bound can be expressed as

PAF
b ≤ C (β, N + 1)N N+1

0

Psσ
2
s,d

N∏
i=1

Piσ
2
ri ,d
+ (Psσ

2
s,ri +N0

)
Zi,max

Ps Piσ 2
s,riσ

2
ri ,d

, (9.151)

where

C (β, N + 1) = 1

22(N+1)π

∫ π

−π
f (θ, β, N + 1)

αN+1(θ)
dθ (9.152)

is a constant that depends on modulation size and number of relays, and α(θ) and
f (θ, β, N +1) are specified in (9.118) and (9.140), respectively. The BER upper bound
(9.151) reveals that when N relays are available in the network, the multi-node DiffAF
scheme achieves a diversity order of N + 1, as specified in the exponent of the noise
variance.

In the following derivations, we determine two BER approximations in which one of
them is an asymptotically tight simple BER approximation. We first note that α(θ) in
(9.118) can be lower bounded by α(θ) ≥ α(−π/2) = (b2(1 − β)2)/2 such that the
upper bound on Ri (θ) can be written as

R̂i (θ) ≤
Psσ

2
s,ri +N0

Pi

[
1+ Psσ

2
s,ri b

2(1− β)2
2N0

]−1

� R̂i,max. (9.153)
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By substituting R̂i (θ) = R̂i,max into (9.146), we obtain a lower bound on Zi (θ), denoted
by Zi,min:

Zi,min = −eRi,max

[
E + ln Ri,max +

∫ Ri,max

0

exp(−t)− 1

t
dt

]
, (9.154)

in which Ri,max � R̂i,max/σ
2
ri ,d

and E is the Euler’s constant. Then, replacing Zi (θ) in
(9.147) by Zi,min, we obtain a BER approximation

PAF
b � 1

22(N+1)π

∫ π

−π
f (θ, β, N + 1)

1+ ks,d(θ)

×
N∏

i=1

1

1+ ks,ri (θ)

(
1+ ks,ri (θ)Zi,min

1+ ks,ri (θ)

Psσ
2
s,ri +N0

Piσ
2
ri ,d

)
dθ. (9.155)

Furthermore, by ignoring all 1’s in the denominator of (9.155), we obtain a simple BER
approximation

PAF
b ≈ C (β, N + 1)N N+1

0

Psσ
2
s,d

N∏
i=1

Piσ
2
ri ,d
+ (Psσ

2
s,ri +N0

)
Zi,min

Ps Piσ 2
s,riσ

2
ri ,d

, (9.156)

where C (β, N + 1) and Zi,min are specified in (9.152) and (9.154), respectively. We can
see from the exponent of the noise variance in (9.156) that the achievable diversity order
is N + 1. As will be shown in the simulation results, these two BER approximations are
tight in the high SNR region.

9.3.2.3 Optimum power allocation
Next, we formulate an optimization problem to minimize the BER under a fixed total
transmitted power, P = Ps + ∑N

i=1 Pi . Based on the simple BER approximation
(9.156), the optimization problem can be formulated as

arg min
Ps ,{Pi }Ni=1

{
C (β, N + 1)N N+1

0

Psσ
2
s,d

N∏
i=1

Piσ
2
ri ,d
+ (Psσ

2
s,ri +N0)Zi,min

Ps Piσ 2
s,riσ

2
ri ,d

}
,

s.t. Ps +
N∑

i=1

Pi ≤ P, Pi ≥ 0,∀i, (9.157)

Although (9.157) can be solved numerically, it is difficult to gain insights from numeri-
cal solutions. To further simplify the problem, we consider the high SNR region where
R̂i,max in (9.153) can be approximated as

R̂i,max ≈ (2N0)/(b
2(1− β)2 Pi ).

Then we can rewrite Zi,min in (9.154) as

Zi,min ≈
∫ ∞

0

exp(−u/σ 2
ri ,d
)

u + 2N0/(b2(1− β)2 Psci )
du

= −eBci

[
E + ln Bci +

∫ Bci

0

exp(−t)− 1

t
dt

]
, (9.158)
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where ci = Pi/Ps and Bci � B̂ci /σ
2
ri ,d

in which B̂ci = 2N0/(b2(1 − β)2 Psci ). Since
the integration term in the last expression of (9.158) is small compared to E + ln Bci , it
can be neglected without significant effect on the power allocation. Hence Zi,min can be
further approximated by

Zi,min ≈ −eBci
(
E + ln Bci

)
. (9.159)

As will be shown later, the obtained optimum power allocation based on the approxi-
mated Zi,min in (9.159) yields almost the same performance as that with exact Zi,min as
specified in (9.154).

Substituting (9.159) into (9.157), the optimization problem can be simplified to

arg min
Ps ,{Pi }Ni=1

{
1

P N+1
s

N∏
i=1

Piσ
2
ri ,d
− Psσ

2
s,ri e

Bci
(
E + ln Bci

)
Pi

}
,

s.t. Ps +
N∑

i=1

Pi ≤ P, Pi ≥ 0, ∀i. (9.160)

By taking the logarithm of the Lagrangian of (9.160) and letting ci = Pi/Ps , we obtain

G = −(N + 1) ln Ps + λ(cT1− P/Ps)

−
N∑

i=1

ln ci +
N∑

i=1

ln
(
ciσ

2
ri ,d − σ 2

s,ri e
Bci
(
E + ln Bci

))
, (9.161)

in which c = [1, c1, . . . , cN ]T is an N × 1 vector, and 1 denotes an N × 1 vector with
all ones. By differentiating (9.161) with respect to ci and Ps and equating the results to
zero, we have

∂G
∂ci

= λ− 1

ci
+
σ 2

ri ,d
+ σ 2

s,ri

[
Bci eBci

ci

(
E + ln Bci

)+ eBci

ci

]
ciσ

2
ri ,d
− σ 2

s,ri e
Bci
(
E + ln Bci

) = 0, (9.162)

and

∂G
∂Ps

= − (N + 1)

Ps
+ λ P

P2
s
+

N∑
i=1

σ 2
s,ri

eBci

Ps

[
Bci
Ps

(
E + ln Bci

)+ 1
]

ciσ
2
ri ,d
− σ 2

s,ri e
Bci
(
E + ln Bci

) = 0, (9.163)

respectively. From (9.163), we can find that

λ = (N + 1)
Ps

P
− 1

P

N∑
i=1

σ 2
s,riϒeBci

(
E + ln Bci + 1

Bci

)
ci
[
ciσ

2
ri ,d
− σ 2

s,ri e
Bci
(
E + ln Bci

)] , (9.164)

in which we denote

ϒ � (2N0)/(b
2(1− β2)σ 2

ri ,d).

Observe from (9.158) that Bci can be re-expressed as

Bci = (2N0)/(b
2(1− β)2σ 2

ri ,d Pqci ),
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where q � Ps/P for q ∈ (0, 1). Then, substituting (9.164) into (9.162), we have

(N + 1)q − 1

ci
+
σ 2

ri ,d
+ σ 2

s,ri

[
ϒ

Pqc2
i
eBci

(
E + ln Bci

)+ eBci
ci

]
ciσ

2
ri ,d

− σ 2
s,ri e

Bci
(
E + ln Bci

) − Q(ci , q) = 0, (9.165)

in which

Q(ci , q) � 1

P

N∑
i=1

σ 2
s,riϒeBci

(
E + ln Bci + 1

Bci

)
ci
[
ciσ

2
ri ,d
− σ 2

s,ri e
Bci
(
E + ln Bci

)] . (9.166)

The optimum solution of (9.160) can be obtained by finding the ci that satisfies

(N + 1)q − 1

ci
+
σ 2

ri ,d
+ σ 2

s,ri

[
ϒ

Pqc2
i
eBci
(
E + ln Bci

)+ eBci

ci

]
ciσ

2
ri ,d
− σ 2

s,ri e
Bci
(
E + ln Bci

) − Q(ci , q) = 0,

(9.167)

in which Q(ci , q) is specified in (9.166).
Given a specific q � Ps/P for q ∈ (0, 1), we can find the corresponding ci , denoted

by ci (q) that satisfies (9.167). The optimum power allocation can then be obtained by
finding the q = q̂ that satisfies

1+
N∑

i=1

ci (q̂)− 1

q̂
= 0. (9.168)

The resulting optimum power allocation for the source is as = q̂. Since ci (q̂) =
Pi/Ps = ai/q̂ , then the optimum power allocation for each of the i-th relay is ai =
q̂ci (q̂) for i = 1, 2, . . . , N .

Optimum power allocation for single-relay DiffAF systems
For single-relay systems, the optimization problem (9.165) and (9.168) is reduced to
finding q such that

(N + 1)q − 1

c1
+
σ 2

r1,d
+ σ 2

s,r1ϒeBc1

[
1

Pq

(
E + ln Bc1

)+ 1
Bc1

]
c2

1[c1σ
2
r1,d
− σ 2

s,r1eBc1
(
E + ln Bc1

)]
− 1

P

σ 2
s,r1ϒeBc1

(
E + ln Bc1 + 1

Bc1

)
c1
[
c1σ

2
r1,d
− σ 2

s,r1eBc1
(
E + ln Bc1

)] = 0,

and 1+ c1(q)− 1

q
= 0, (9.169)

which can be simply solved by any single-dimensional search techniques. In this way,
the complexity of the optimization problem can be greatly reduced, while the resulting
optimum power allocation is close to that from exhaustive search in [62]. For exam-
ple, Table 9.2 compares the optimum power allocation from the exhaustive search in
[62] and that from solving the low-complexity optimization problem in (9.169). The
results in Table 9.2 are obtained at a reasonable high SNR region, e.g., 20 or 30 dB. The
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Table 9.2 DiffAF: optimum power allocation for a cooperation system with a relay based on
exhaustive search and approximate closed-form formulation (9.169).

DBPSK
[
as , a1

]
DQPSK

[
as , a1

][
σ 2

s,d, σ
2
s,ri , σ

2
ri ,d

]
Exhaustive Approximate Exhaustive Approximate

[
1, 1, 1

] [
0.66, 0.34

] [
0.66, 0.34

] [
0.70, 0.30

] [
0.69, 0.31

][
1, 10, 1

] [
0.54, 0.46

] [
0.54, 0.46

] [
0.54, 0.46

] [
0.54, 0.46

][
1, 1, 10

] [
0.80, 0.20

] [
0.79, 0.21

] [
0.80, 0.20

] [
0.78, 0.22

]

DBPSK or DQPSK modulations are used, and
[
σ 2

s,d, σ
2
s,ri , σ

2
ri ,d

]
represents a vector con-

taining channel variances of the source–destination link, the source–relay link, and the
relay–destination link, respectively. We can see from the table that the optimum power
allocation based on (9.169) is very close to that from the numerical search, for any relay
location. There is a difference of only about 1 − 2% in the obtained results between
these two methods.

Optimum power allocation for multi-relay DiffAF systems
For multi-relay systems, (9.165) and (9.168) can be used to find the optimum power
allocation. Nevertheless, the optimization based on (9.165) and (9.168) involves an
(N + 1)-dimensional search because Q(ci , q) in (9.165) contains the power allocation
of each relay inside the summation. To reduce the complexity of the search space, we
remove the summation inside Q(ci , q) such that the approximate Q(ci , q) depends only
on the ci of interest. Therefore, an optimum power allocation can be approximately
obtained by finding q such that

(N + 1)q − 1

ci
+
σ 2

ri ,d
+ σ 2

s,riϒeBci

[
1

Pq

(
E + ln Bci

)+ 1
Bci

]
c2

i [ciσ
2
ri ,d
− σ 2

s,ri e
Bci
(
E + ln Bci

)]
− 1

P

σ 2
s,riϒeBci

(
E + ln Bci + 1

Bci

)
ci
[
ciσ

2
ri ,d
− σ 2

s,ri e
Bci
(
E + ln Bci

)] = 0,

and 1+
N∑

i=1

ci (q)− 1

q
= 0,∀i, i = 1, . . . , N . (9.170)

From (9.170), the optimum power allocation that involves an (N + 1)-dimensional
search is reduced to a single-dimensional search over the parameter q, q ∈ (0, 1).
Table 9.3(a) for DBPSK signaling and Table 9.3(b) for DQPSK signaling summarize the
numerical search results from the multi-dimensional search based on (9.157) in com-
parison to those from the approximated one-dimensional search using (9.170). Based
on the optimization problem (9.170), the searching time for optimum power allocation
can be greatly reduced, while the obtained power allocation is very close to that from
solving (9.157) using the multi-dimensional search.
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Table 9.3 Multi-node DiffAF: optimum power allocation for a cooperation system with two relays based
on exhaustive search and approximate formulation (9.170) : (a) DBPSK signaling and (b) DQPSK signaling.

(a)

DBPSK
[
as , a1, a2

][
σ 2

s,d, σ
2
s,ri , σ

2
ri ,d

]
Exhaustive Approximate

[
1, 1, 1

] [
0.46, 0.33, 0.21

] [
0.49, 0.26, 0.26

][
1, 10, 1

] [
0.44, 0.28, 0.28

] [
0.47, 0.27, 0.27

][
1, 1, 10

] [
0.65, 0.21, 0.14

] [
0.65, 0.17, 0.17

]
(b)

DQPSK
[
as , a1, a2

][
σ 2

s,d, σ
2
s,ri , σ

2
ri ,d

]
Exhaustive Approximate

[
1, 1, 1

] [
0.48, 0.33, 0.19

] [
0.50, 0.25, 0.25

][
1, 10, 1

] [
0.40, 0.30, 0.30

] [
0.39, 0.31, 0.30

][
1, 1, 10

] [
0.66, 0.21, 0.13

] [
0.67, 0.16, 0.16

]
From the results in Tables 9.2 and 9.3, we can also observe that, for any channel link

qualities, more power should be allocated to the source in order to maintain link relia-
bility. This observation holds true for both DBPSK and DQPSK modulations. When the
channel link qualities between the source and the relays are good (e.g.,

[
σ 2

s,d, σ
2
s,ri , σ

2
ri ,d

]
=
[
1, 10, 1,

]
), the system replicates the multiple transmit antenna system. Therefore,

almost equal power should be allocated to the source and all the relays. However, more
power should be allocated to the source so that the transmit information can reach the
relays, and the remaining power is allocated to the relays.

The results also show that if there are two relays in the networks, almost the same
amount of power as the source should be allocated to the first relay, and the remain-
ing power should be allocated to the second relay. In the case of

[
σ 2

s,d, σ
2
s,ri , σ

2
ri ,d

]
=[

1, 1, 10
]
, which indicates that the channel qualities between the relays and the desti-

nation are good. When comparing to the case with
[
σ 2

s,d, σ
2
s,ri , σ

2
ri ,d

] = [1, 1, 1], more
power should be allocated at the source, while less power should be put at the relays.
The reason is that the channel quality at the source–destination link is lower than that
of the relay–destination links, so more power is required at the source to balance the
qualities of all possible links so that the system can provide reliable communications.

9.3.2.4 Examples for the multi-relay DiffAF scheme
Let us consider some examples for the multi-node DiffAF scheme with DBPSK and
DQPSK modulations. We consider the scenarios where two or three relays (N = 2 or 3)
are in the networks. The channel coefficients follow the Jakes’ model with Doppler



9.3 Differential modulation for AF cooperative communications 367

frequency fD = 75 Hz and normalized fading parameter fDTs = 0.0025, where Ts is
the sampling period. The noise variance is assumed to be one (N0 = 1). The average
BER curves are plotted as functions of P/N0.

Example 9.14 Let us see the performance of the multi-node DiffAF scheme with
DBPSK modulation for a network with two relays. Figure 9.19(a) is observed under
equal channel variances, i.e., σ 2

s,d = σ 2
s,ri = σ 2

ri ,d
= 1, and equal power allocation strat-

egy (Ps = P1 = P2 = P/3). We can see that the exact theoretical BER benchmark
well matches the simulated BER curve. In addition, the BER upper bound, the simple
BER upper bound, and the two simple BER approximations are tight to the simulated
curve at high SNR. The BER curve for coherent detection is also shown in the figure;
we observe a performance gap of about 4 dB between the multi-node DiffAF scheme
and its coherent counterpart at a BER of 10−3.

We also illustrate in Figure 9.19(b) the BER performance of the multi-node DiffAF
scheme with DQPSK modulation when using a different number of relays (N ). The
simulation scenario is the same as that of Figure 9.19(a), and we consider two possible
numbers of relays, namely N = 2 and N = 3. It is apparent that the multi-node DiffAF
scheme achieves higher diversity orders as N increases. Specifically, as N increases
from 2 to 3, we observe a gain of about 1.7–2 dB at a BER of 10−3. This observation
confirms our theoretical analysis in Section 9.3.2.2. Also in the figure, the exact theoret-
ical BER curves for N = 2 and N = 3 are tight to the corresponding simulated curves.
In addition, the performance curves of the multi-node DiffAF scheme are about 4 dB
away from their coherent counterparts. �

Example 9.15 This example shows the BER performance of the multi-node DiffAF
scheme with optimum power allocation in comparison to that with equal power alloca-
tion. We consider the multi-node DiffAF scheme with DQPSK modulation for a network
with two relays. The channel variances are σ 2

s,d = σ 2
ri ,d
= 1 and σ 2

s,ri = 10, and the opti-
mum power allocation is [0.39, 0.31, 0.30] (from Table 9.3). Figure 9.20(a) shows that
when all relays are close to the source, i.e., σ 2

s,ri = 10, the multi-node DiffAF scheme
with optimum power allocation yields again of about 0.6 dB a gain of over the scheme
with equal power allocation at a BER of 10−3. We observe a small performance gain
in this scenario because the signals at the relays are as good as the signal at the source.
Therefore, the scheme with equal power allocation yields almost as good a performance
under optimal power allocation, so that there is a small room for improvement. Also
in the figure, the exact theoretical BER curves are provided for both power allocation
schemes, and they closely match to their corresponding simulated curves.

Figure 9.20(b) shows the BER performance of the optimum power allocation scheme
for a DQPSK cooperation system with two relays. The channel variances are σ 2

s,d =
σ 2

s,ri = 1 and σ 2
ri ,d

= 10, which corresponds to a scenario where all relays are close
to the destination. The optimum power allocation for this scenario is [0.67, 0.16, 0.16]
(from Table 9.3). We observe that the performance with optimum power allocation is
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Fig. 9.19 Multi-node DiffAF scheme with equal power allocation strategy and σ 2
s,d = σ 2

s,ri = σ 2
ri ,d

= 1.
(a) DBPSK: two relays; (b) DQPSK: two and three relays.

about 2 dB superior to that with equal power allocation at a BER of 10−3. In this sce-
nario, we observe a larger performance gain than the case of σ 2

s,d = σ 2
ri ,d

= 1 and

σ 2
s,ri = 10 in Figure 9.20(a). The reason is that using equal power allocation in this case

leads to low quality of the received signals at the relays, and thus causes higher chance
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Fig. 9.20 Multi-Node DiffAF scheme with DQPSK: two relays, optimum power allocation strategy. (a)
σ 2

s,d = 1, σ 2
s,ri = 10, σ 2

ri ,d
= 1; (b) σ 2

s,d = σ 2
s,ri = 1, and σ 2

ri ,d
= 10.

of decoding error at the destination based on the combined signal from cooperative
links. With optimum power allocation, more power is allocated to the source, and con-
sequently the quality of the received signals at the relays is improved. This results
in more reliable combined signal at the destination, hence yielding better system
performance. �
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9.4 Chapter summary and bibliographical notes

In the first part of this chapter, differential decode-and-forward schemes (DiffDF) for
cooperative communications are presented. Both single-relay and multi-relay cooper-
ation systems are given. By allowing the relay to forward only the correctly decoded
symbols and introducing a decision threshold at the destination node, the DiffDF
scheme efficiently combines the signals from the direct and the relay links.

In case of the single-relay DiffDF scheme, BER analysis for DMPSK modulation is
categorized into six different scenarios that lead to different instantaneous SNRs at the
combiner output of the destination. A tight BER approximation is also provided. Based
on the tight BER approximation, the optimum decision threshold and power allocation
are jointly determined. Both theoretical and simulation examples reveal that the opti-
mum threshold and optimum power allocation rely on the qualities of the channel links.
When the quality of the relay–destination link is much larger than the other links, i.e.,
σ 2

s,d = σ 2
s,r = 1 and σ 2

r,d = 10, then the decision threshold is more important than the
power allocation at high SNR. For instance, in case of DQPSK signals with equal power
allocation, using the optimum threshold resulted in an improvement gain of more than
5 dB over the scheme without threshold at a BER of 10−4. By further using the optimum
power allocation, the performance improvement is about 0.5 dB at the same BER. Sim-
ulation examples also showed that the DiffDF scheme with DQPSK signals provides a
performance improvement of 11 dB at a BER of 10−3 over the differential DF scheme
where the relay always forwards the decoded symbols.

In the case of the multi-node DiffDF scheme, a multi-node scenario follows the
assumption that each of N cooperative relays forwards only correctly decoded sym-
bols to the destination. Decision thresholds are used at the destination to efficiently
combine the signals from each relay–destination link with that from the direct link. An
approximated BER analysis for DMPSK is provided, and a low-complexity BER lower
bound is derived. The BER lower bound is very close to the simulated performance
under some scenarios. While jointly optimizing power allocation and thresholds based
on the BER lower bound introduces (2N + 1)-dimensional searching, the search space
is reduced by assuming that the same power is used at each relay and the same threshold
is used at the destination. Numerical results reveal that more power should be allocated
at the source, with the rest allocated to the relays. In addition, a larger threshold should
be used when the relays are close to the destination. Simulation examples show that the
diversity gain of the multi-node DiffDF scheme increases with the number of relays. For
a DBPSK cooperation system, the multi-node DiffDF scheme with different thresholds
leads to a performance improvement of up to 6 dB at a BER of 10−4. In the case of the
DQPSK cooperation system, the multi-node DiffDF scheme with joint optimum power
allocation and optimum threshold achieves a gain of about 4–5 dB over the scheme with
equal power allocation and a unit threshold at a BER of 10−3−10−4.

The second part of the chapter presents differential modulation for the amplify-and-
forward cooperation protocol (DiffAF) for single-relay and multi-relay systems. For
the single-relay DiffAF scheme, the DiffAF scheme with DQPSK signals yielded a
performance improvement of 4 dB at a BER of 10−3 over that of the DBPSK direct
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transmission scheme. In comparison to the coherent detection without relay, the DiffAF
scheme provided a practical alternative with lower complexity and simpler implemen-
tation. In addition, simulation examples showed that the performance of the DiffAF
scheme was superior to that of direct transmission with coherent detection at SNRs
higher than 21 dB. This is due to the fact that the cooperative communications provide
more diversity gain than the direct transmission schemes. While the BER analysis of the
DiffAF scheme is not available currently, we provided the exact BER expression based
on optimum combining weights, and it is considered to be a performance benchmark for
the DiffAF scheme. By using the obtained optimum power allocation based on the pro-
vided BER expression, the DiffAF scheme is able to achieve comparable performance
to the scheme with optimum weights in any channel variances of all links. Moreover, the
performance of the scheme with optimum power strategy outperforms the equal power
scheme by about 1.4 dB at a BER of 10−3.

In the case of the multi-node DiffAF scheme, the BER expression for DMPSK modu-
lation based on optimum combining weights is given; it is considered as a performance
benchmark of the multi-node DiffAF scheme. BER upper bounds and BER approxi-
mations are provided; they are tight to the simulated performance, especially at high
SNR. The theoretical BER reveals that the diversity order of the multi-node DiffAF
scheme is N + 1, where N is the number of relays, and this is confirmed by the sim-
ulation results. There is a gain of about 1.7–2 dB at a BER of 10−3 when N increases
from 2 to 3. The BER approximation is further simplified; based on the approximate
BER, power allocation can be optimized by using a low-complexity single-dimensional
search. Simulation examples show that when all relays are close to the source, the multi-
node DiffAF scheme obtains a gain of about 0.6 dB over the scheme with equal power
allocation at a BER of 10−3. When all relays are close to the destination, the perfor-
mance with optimum power allocation achieves an improvement of about 2 dB over
that with equal power allocation.

The study of MIMO channel capacity was presented in [215] and many works on
MIMO systems assuming full CSI available at the transmitter have been given, for
example in [212, 215, 109, 5, 213, 213, 198, 3, 111, 199, 46, 135, 206]. In conventional
single-antenna systems, noncoherent modulation is useful when the knowledge of CSI is
not available. The noncoherent modulation simplifies the receiver structure by omitting
channel estimation and carrier or phase trackings. Some examples of the noncoherent
modulation techniques are noncoherent frequency shift keying (NFSK) and differen-
tial modulation [146]. Among these modulation techniques, the differential scheme
is preferred to NFSK because it provides a better performance at the same operating
SNR. Two classes of differential modulation schemes are available: differential M-ary
quadrature amplitude modulation (DMQAM) and differential M-ary phase shift keying
(DMPSK). In the DMQAM scheme, information is modulated through the amplitude
difference between two consecutive symbols. The DMPSK, however, modulates infor-
mation through the phase difference among two consecutive symbols. For a data rate of
R bits per channel use, DPMSK signal constellation contains M = 2R symbols. Each
of the symbol m ∈ 0 ≤ M − 1 is generated by the m-th root of unity: vm = ej2πm/M .

To learn more about this topic, interested readers should also refer to [66, 67].
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Exercises

9.1 Assume that the Rayleigh fading channels hτs,d, hτs,r, and hτr,d are independent of

each other. Prove the average BER P(i)BER, i = 1, 2, . . . , 6, which are specified in
(9.58), (9.61), (9.64), (9.65), and (9.67), respectively.

9.2 Prove the probabilities for different scenarios specified in (9.46)–(9.88), respec-
tively, i.e.,

Ph
r (�3) =M2

(
P2|hτr,d|2, ζ

) (
1−�(γ τs,r)

)2
×
(

1

�(P1|hτs,r|2, P2|hτr,d|2)
− 1

(1− e−ζ 2/N0)�(γ τs,r)

)
,

Ph
r (�4) = Ph

r (�5)

=
M
(

P2|hτr,d|2, ζ
)

exp(−ζ 2/N0)�(γ
τ
s,r)
(
1−�(γ τs,r)

)
�(P1|hτs,r|2, P2|hτr,d|2)

,

Ph
r (�6) =

exp(−2ζ 2/N0)�(γ
τ
s,r)

�(P1|hτs,r|2, P2|hτr,d|2)
.

9.3 Prove the probability approximations in (9.95) and (9.98) for the differential DF
cooperative scheme.

9.4 For the differential AF cooperative scheme, prove the moment generation
functions Mγ1(θ) and Mγ2(θ), specified in (9.121) and (9.123), respectively.

9.5 Prove the moment generation function MγAF
i
(θ), specified in (9.145).

9.6 (Simulation project) Consider a simplified model with a source node, a relay
node, and a destination node. The source–destination channel hs,d, the source–
relay channel hs,r, and the relay–destination channel hr,d are modeled as indepen-
dent zero-mean, complex Gaussian random variables with variances δ2

s,d, δ2
s,r, and

δ2
r,d, respectively. Assume that δ2

s,d = δ2
s,r = δ2

r,d = 1, and DQPSK modulation
is used. In this project, we compare performances of the threshold-based differ-
ential DF cooperation scheme with choices of power allocations and decision
threshold at the destination.
(a) Simulate the threshold-based differential DF scheme with an equal power

allocation scheme (P1 = P2) and a decision threshold of ζ = 1. Compares
the simulated BER performance with the BER approximation (9.69), the
BER upper bound (9.70), and the BER lower bound (9.75).

(b) With the equal power allocation (P1 = P2), simulate the differential DF
scheme without threshold at the destination and the differential DF scheme
that the relay always forwards the decoded symbols to the destination. Com-
pare their BER performances with that of the threshold-based differential
DF scheme simulated in (a).

(c) Simulate the threshold-based differential DF scheme with different thresh-
olds (for example, ζ = 0.5, 1 or 2). Compare the BER performances and
determine a best threshold.
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(d) Repeat (a), (b), and (c) for an unequal power allocation (P1/P2 = 9).
9.7 (Simulation project) We consider a differential AF cooperative scheme with a

single-relay node. The source–destination channel hs,d, the source–relay channel
hs,r, and the relay–destination channel hr,d are modeled as independent zero-
mean, complex Gaussian random variables with variances δ2

s,d, δ2
s,r, and δ2

r,d,

respectively. Assume that δ2
s,d = δ2

s,r = δ2
r,d = 1, and DQPSK modulation and an

equal power allocation scheme (P1 = P2) are used.
(a) Simulate the differential AF cooperative scheme, the direct differential

scheme, and their coherent counterparts, respectively. Compare their per-
formances and explain.

(b) Simulate the differential AF scheme with an equal weight combining,
the weight combining proposed in (9.111), and the ideal maximum ratio
combining (9.112), respectively, and compare their performances.

(c) Repeat (a) and (b) for an unequal power allocation (P1/P2 = 4).



10 Energy efficiency in cooperative
sensor networks

In the previous chapters, the gains of cooperative diversity were established under
the ideal model of negligible listening and computing power. In sensor networks, and
depending on the type of motes used, the power consumed in receiving and processing
may constitute a significant portion of the total consumed power. Cooperative diversity
can provide gains in terms of savings in the required transmit power in order to achieve
a certain performance requirement because of the spatial diversity it adds to the system.
However, if one takes into account the extra processing and receiving power consump-
tion at the relay and destination nodes required for cooperation, then there is obviously
a tradeoff between the gains in the transmit power and the losses due to the receive and
processing powers when applying cooperation. Hence, there is a tradeoff between the
gains promised by cooperation, and this extra overhead in terms of the energy efficiency
of the system should be taken into consideration in the design of the network.

In this chapter the gains of cooperation under this extra overhead are studied. More-
over, some practical system parameters, such as the power amplifier loss, the quality of
service (QoS) required, the relay location, and the optimal number of relays, are consid-
ered. Two communications architectures are considered, direct transmission and coop-
erative transmission. The performance metric for comparison between the two archi-
tectures is the energy efficiency of the communication scheme. More specifically, for
both architectures the optimal total power consumption to achieve certain QoS require-
ments is computed, and the cooperation gain is defined as the ratio between the power
required for direct transmission and cooperation. When this ratio is smaller than one,
this indicates that direct transmission is more energy efficient, and that the extra over-
head induced by cooperation overweighs its gains in the transmit power. Comparisons
between optimal power allocation at the source and relay nodes and equal power alloca-
tion are demonstrated. The results reveal that, under some scenarios, equal power allo-
cation is almost equivalent to optimal power allocation. The effect of relay location on
the performance is investigated to provide guidelines for relay assignment algorithms.

10.1 System model

Consider a single source–destination pair separated by a distance rs,d. The number of
potential relays available to help the source is N . This is illustrated in Figure 10.1, where
the distances between source and relay i , and relay i and destination are rs,i and ri,d,
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Fig. 10.1 System model

respectively, and i ∈ {1, 2, . . . , N }. First we analyze the performance of the single relay
scenario, and later we extend the results for arbitrary finite N .

We compare the performance of two communication scenarios. In the first scenario
only direct transmission between the source and destination nodes is allowed, and this
accounts for conventional direct transmission. In direct transmission, if the channel link
between the source and destination encounters a deep fade or strong shadowing for
example, then the communication between these two nodes fails. Moreover, if the chan-
nel is slowly varying, which is the case in sensor networks due to the stationarity or
limited mobility of the nodes, then the channel might remain in the deep fade state for
long time (strong time correlation), hence conventional automatic repeat request (ARQ)
might not help in this case.

In the second communication scenario, we consider a two phase cooperation pro-
tocol. In the first phase, the source transmits a signal to the destination, and due to
the broadcast nature of the wireless medium the relay can overhear this signal. If the
destination receives the packet from this phase correctly, then it sends back an acknowl-
edgement (ACK) and the relay just idles. On the other hand, if the destination can not
decode the received packet correctly, then it sends back a negative acknowledgement
(NACK). In this case, if the relay was able to receive the packet correctly in the first
phase, then it forwards it to the destination. So the idea behind this cooperation protocol
is to introduce a new ARQ in another domain, which is the spatial domain, as the links
between different pairs of nodes in the network fade independently. The assumptions
of high temporal correlation and independence in the spatial domain will be verified
through experiments as discussed in Section 10.4.

Next the wireless channel and system models are described. We consider a sensor net-
work in which the link between any two nodes in the network is subject to narrowband
Rayleigh fading, propagation path-loss, and additive white Gaussian noise (AWGN).
The channel fades for different links are assumed to be statistically mutually indepen-
dent. This is a reasonable assumption as the nodes are usually spatially well separated.
For medium access, the nodes are assumed to transmit over orthogonal channels, thus
no mutual interference is considered in the signal model. All nodes in the network are
assumed to be equipped with single-element antennas, and transmission at all nodes
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is constrained to the half-duplex mode, i.e., any terminal cannot transmit and receive
simultaneously.

The power consumed in a transmitting or receiving stage is described as follows. If
a node transmits with power P , only P(1− α) is actually utilized for RF transmission,
where (1 − α) accounts for the efficiency of the RF power amplifier which generally
has a non-linear gain function. The processing power consumed by a transmitting node
is denoted by Pc. Any receiving node consumes Pr power units to receive the data. The
values of the parameters α, Pr, Pc are assumed the same for all nodes in the network and
are specified by the manufacturer. Following, we describe the received signal model for
both direct and cooperative transmissions.

First, we describe the received signal model for the direct transmission mode. In the
direct transmission scheme, which is employed in current wireless networks, each user
transmits their signal directly to the next node in the route which we denote as the
destination d here. The signal received at the destination d from source user s, can be
modeled as

ys,d =
√

PD
s (1− α)r−γs,d hs,dx + ns,d, (10.1)

where PD
s is the transmission power from the source in the direct communication sce-

nario, x is the transmitted data with unit power, hs,d is the channel fading gain between
the two terminals s and d. The channel fade of any link is modeled as a zero mean cir-
cularly symmetric complex Gaussian random variable with unit variance. In (10.1), γ
is the path loss exponent, and rs,d is the distance between the two terminals. The term
ns,d in (10.1) denotes additive noise; the noise components throughout the paper are
modeled as white Gaussian noise (AWGN) with variance N0.

Second, we describe the signal model for cooperative transmission. The cooperative
transmission scenario comprises two phases as illustrated before. The signals received
from the source at the destination d and relay 1 in the first stage can be modeled
respectively as,

ys,d =
√

PC
s (1− α)r−γs,d hs,dx + ns,d, (10.2)

ys1 =
√

PC
s (1− α)r−γs,1 hs,1x + ns,1, (10.3)

where PC
s is the transmission power from the source in the cooperative scenario. The

channel gains hs,d and hs,1 between the source–destination and source–relay are mod-
eled as zero-mean circular symmetric complex Gaussian random variables with zero
mean. If the SNR of the signal received at the destination from the source falls below
the threshold β, the destination broadcasts a NACK. In this case, if the relay was able
to receive the packet from the source correctly in the first phase, it forwards the packet
to the destination with power P1

y1,d =
√

P1(1− α)r−γ1,d h1,dx + n1,d. (10.4)

Cooperation results in additional spatial diversity by introducing this artificial mul-
tipath through the relay link. This can enhance the transmission reliability against
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wireless channel impairmens as fading, but will also result in extra receiving and
processing power. In the next section, we discuss this in more detail.

10.2 Performance analysis and optimum power allocation

We characterize the system performance in terms of outage probability. Outage is
defined as the event that the received SNR falls below a certain threshold β, hence,
the probability of outage PO is defined as

PO = P(SNR ≤ β). (10.5)

If the received SNR is higher than the threshold β, the receiver is assumed to be able to
decode the received message with negligible probability of error. If an outage occurs,
the packet is considered lost. The SNR threshold β is determined according to the appli-
cation and the transmitter/receiver structure. For example, larger values of β is required
for applications with higher QoS requirements. Also increasing the complexity of trans-
mitter and/or receiver structure, for example applying strong error coding schemes, can
reduce the value of β for the same QoS requirements.

Based on the derived outage probability expressions, we can formulate a constrained
optimization problem to minimize the total consumed power subject to a given outage
performance. We then compare the total consumed power for the direct and coopera-
tive scenarios to quantify the energy savings, if any, gained by applying cooperative
transmission.

10.2.1 Direct transmission

As discussed before, the outage is defined as the event that the received SNR falls below
a predefined threshold which we denoted by β. From the received signal model in (10.1),
the received SNR from a user at a distance rs,d from the destination is given by

SNR(rs,d) =
| hs,d |2 r−γs,d PD

s (1− α)
N0

, (10.6)

where | hs,d |2 is the magnitude square of the channel fade and follows an exponential
distribution with unit mean; this follows because of the Gaussian zero mean distribution
of hs,d. Hence, the outage probability for the direct transmission mode POD can be
calculated as

POD = P
(
SNR(rs,d) ≤ β

) = 1− exp

(
− N0γ rγs,d
(1− α)PD

s

)
. (10.7)

The total transmitted power PD
tot for the direct transmission mode is given by

PD
tot = PD

s + Pc + Pr, (10.8)

where PD
s is the power consumed at the RF stage of the source node, Pc is the pro-

cessing power at the source node, and Pr is the receiving power at the destination. The
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requirement is to minimize this total transmitted power subject to the constraint that we
meet a certain QoS requirement that the outage probability is less than a given outage
requirement, which we denote by P∗out. Since both the processing and receiving powers
are fixed, the only variable of interest is the transmitting power PD

s .
The optimization problem can be formulated as follows:

min
PD

s

PD
tot, (10.9)

s.t. POD ≤ P∗out. (10.10)

The outage probability POD is a decreasing function in the power PD
s . Substituting P∗out

in the outage expression in (10.7), we get after some simple arithmetics that the optimal
transmitting power is given by

PD∗
s = − βN0rγs,d

(1− α) ln(1− P∗out)
. (10.11)

The minimum total power required for direct transmission in order to achieve the
required QoS requirement is therefore given by

P∗tot = Pc + Pr −
βN0rγs,d

(1− α) ln(1− P∗out)
. (10.12)

In the next subsection we formulate the optimal power allocation problem for the
cooperative communication scenario.

10.2.2 Cooperative transmission

For the optimal power allocation problem in cooperative transmission, we consider two
possible scenarios.

• In the first scenario, the relay is allowed to transmit with different power than the
source and hence the optimization space is two-dimensional: source and relay power
allocations. The solution for this setting provides the minimum possible total con-
sumed power. However, the drawback of this setting is that the solution for the
optimization problem is complex and might not be feasible to implement in sensor
nodes.

• The second setting that we consider is constraining the source and relay nodes to trans-
mit with equal power. This is much easier to implement as the optimization space is
one dimensional in this case, moreover, a relaxed version of the optimization problem
can render a closed form solution.

Clearly the solution of the equal power allocation problem provides a suboptimal solu-
tion to the general case in which we allow different power allocations at the source and
the relay. It is interesting then to investigate the conditions under which these two power
allocation strategies have close performance.

First, we characterize the optimal power allocations at the source and relay nodes.
Consider a source–destination pair that are rs,d units distance. Let us compute the con-
ditional outage probability for given locations of the source and the helping relay. As
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discussed before, cooperative transmission encompasses two phases. Using (10.2), the
SNR received at the destination d and relay 1 from the source s in the first phase are
given by

SNRs,d =
| hs,d |2 r−γs,d PC

s (1− α)
N0

, (10.13)

SNRs,1 =
| hs,1 |2 r−γs,1 PC

s (1− α)
N0

. (10.14)

While from (10.4), the SNR received at the destination from the relay in the second
phase is given by

SNR1,d =
| h1,d |2 r−γ1,d P1(1− α)

N0
. (10.15)

Note that the second phase of transmission is only initiated if the packet received at
the destination from the first transmission phase is not correctly received. The terms
| hs,d |2, | hs,1 |2, and | h1,d |2 are mutually independent exponential random variables
with unit mean.

The outage probability of the cooperative transmission POC can be calculated as
follows

POC = P
((

SNRs,d ≤ β
) ∩ (SNRs,l ≤ β

))
+ P

((
SNRs,d ≤ β

) ∩ (SNRl,d ≤ β
) ∩ (SNRs,l > β

))
=
(
1− f (rs,d, PC

s )
) (

1− f (rs,l, PC
s )
)

+
(
1− f (rs,d, PC

s )
) (

1− f (rl,d, Pl)
)

f (rs,l, PC
s ), (10.16)

where

(x, y) = exp

(
− N0βxγ

y(1− α)
)
. (10.17)

The first term in the above expression corresponds to the event that both the source–
destination and the source–relay channels are in outage, and the second term cor-
responds to the event that both the the source–destination and the relay–destination
channels are in outage while the source–relay channel is not. The above expression can
be simplified as follows

POC =
(
1− f (rs,d, PC

s )
) (

1− f (rl,d, Pl) f (rs,l, PC
s )
)
. (10.18)

The total average consumed power for cooperative transmission to transmit a packet
is given by

E[PC
tot] = (PC

s + Pc + 2Pr)P(SNRs,d ≥ β)
+ (PC

s + Pc + 2Pr)P(SNRs,d < β)P(SNRs,1 < β)

+ (PC
s + P1 + 2Pc + 3Pr)P(SNRs,d < β)P(SNRs,1 > β),
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where the first term in the right-hand side corresponds to the event that the direct link
in the first phase is not in outage, therefore, the total consumed power is only given by
that of the source node, and the 2 in front of the received power term Pr is to account for
the relay receiving power. The second term in the summation corresponds to the event
that both the direct and the source–relay links are in outage, hence the total consumed
power is still given as in the first term. The last term in the total summation accounts for
the event that the source–destination link is in outage while the source–relay link is not,
and hence we need to account for the relay transmitting and processing powers, and the
extra receiving power at the destination. Using the Rayleigh fading channel model, the
average total consumed power can be given as follows

PC
tot = (PC

s + Pc + 2Pr) f (rs,d, PC
s )

+ (PC
s + Pc + 2Pr)

(
1− f (rs,d, PC

s )
) (

1− f (rs,l, PC
s )
)

+ (PC
s + P1 + 2Pc + 3Pr)

(
1− f (rs,d, PC

s )
)
× f (rs,l, PC

s ).

(10.19)

We can formulate the power minimization problem in a similar way to (10.10) with
the difference that there are two optimization variables in the cooperative transmission
mode, namely, the transmit powers PC

s and P1 at the source and relay nodes respectively.
The optimization problem can be stated as follows

min
PC

s ,P1

PC
tot(P

C
s , P1), (10.20)

s.t. POC(P
C
s , P1) ≤ P∗out. (10.21)

This optimization problem is nonlinear and does not admit a closed form solution.
Therefore we resort to numerical optimization techniques in order to solve for this
power allocation problem at the relay and source nodes, and the results are shown in
the simulations section.

In the above formulation we considered optimal power allocation at the source
and relay node in order to meet the outage probability requirement. The performance
attained by such an optimization problem provides a benchmark for the cooperative
transmission scheme. However, in a practical setting, it might be difficult to implement
such a complex optimization problem at the sensor nodes. A more practical scenario
would be that all the nodes in the network utilize the same power for transmission.
Denote the equal transmission power in this case by PCE; the optimization problem can
then be formulated as

min
PCE

PC
tot(PCE),

s.t. POC(PCE) ≤ P∗out.

Beside being a one-dimensional optimization problem that can be easily solved, the
problem can be relaxed to render a closed form solution. Note that at enough high SNR
the following approximation holds exp(−x) � (1 − x); where x here is proportional
to 1/SN R.
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Using the above approximation in (10.19), and after some mathematical manipula-
tion, the total consumed power can be approximated as follows

PC
tot � PCE + Pc + 2Pr + (PCE + Pc + Pr)

k1

PCE
− (PCE + Pc + Pr)

k1k2

P2
CE

.

Similarly, the outage probability can be written as follows

POC � k1k2

P2
CE

+ k1k3

P2
CE

− k1k2k3

P3
CE

, (10.22)

where k1 = βN0rγs,d/(1 − α), k2 = βN0rγs,l/(1 − α), and k3 = βN0rγl,d/(1 − α). This
is a constrained optimization problem in one variable and its Lagrangian is given by

∂PC
tot

∂PCE
+ λ∂POC

∂PCE
= 0, (10.23)

where the derivatives of the total power consumption PC
tot and the outage probability

POC with respect to the transmit power PCE are given by

∂PC
tot

∂PCE
= 1+ k1k2 − (Pc + Pr)k1

P2
CE

+ 2k1k2(Pc + Pr)

P3
CE

; (10.24)

∂POC

∂PCE
= −2(k1k2 + k1k3)

P3
CE

+ 3k1k2k3

P4
CE

, (10.25)

respectively. Substituting the derivatives in (10.25) into the Lagrangian in (10.23), and
doing simple change of variables 1/PCE = x , the Lagrangian can be written in the
following simple polynomial form

1+ (k1k2 − (Pc + Pr)k1)x
2 + 2(k1k2(Pc + Pr)

− λ(k1k2 + k1k3))x
3 + 3λk1k2k3x4 = 0,

under the outage constraint

(k1k2 + k1k3) x2 − k1k2k3x3 = P∗out. (10.26)

The constraint equation above is only a polynomial of order three, so it can be easily
solved and we can find the root that minimizes the cost function.

10.3 Multi-relay scenario

In this section, we extend the study to the case when there is more than one potential
relay. Let N be the number of relays assigned to help a given source. The cooperation
protocol then works as an N -stage ARQ protocol as follows. The source node transmits
its packets to the destination and the relays try to decode this packet. If the destination
does not decode the packet correctly, it sends a NACK that can be heard by the relays.
If the first relay is able to decode the packet correctly, it forwards the packet with power
P1 to the destination. If the destination does not receive correctly again, then it sends a
NACK and the second candidate relay, if it received the packet correctly, forwards the
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source’s packet to the destination with power P2. This is repeated until the destination
gets the packet correctly or the N trials corresponding to the N relays are exhausted.

We model the status of any relay by 1 or 0, corresponding to whether the relay
received the source’s packet correctly or not, respectively. Writing the status of all the
relays in a column vector results in a N×1 vector whose entries are either 0 or 1. Hence,
the decimal number representing this N × 1 vector can take any integer value between
0 and 2N − 1. Denote this vector by Sk , where k ∈ {0, 1, 2, . . . , 2N − 1}.

For a given status of the N relays, an outage occurs if and only if the links between
the relays that decoded correctly and the destination are all in outage. Denote the set of
the relays that received correctly by χ(Sk) = {i : Sk(i) = 1, 1 ≤ i ≤ N }, and χC(Sk)

as the set of relays that have not received correctly, i.e., χC(Sk) = {i : Sk(i) = 0, 1 ≤
i ≤ N }. The conditional probability of outage given the relays status Sk is thus given by

POC|Sk = P

⎛⎝SNRs,d ≤ β
N⋂

j∈χ(Sk)

(
SNR jd ≤ β

)⎞⎠ , (10.27)

The total outage probability is thus given by

POC =
2N−1∑
k=0

P(Sk)POC|Sk . (10.28)

We then need to calculate the probability of the set Sk , which can then be written as

P(Sk) = P

⎛⎝ ⋂
i∈χ(Sk )

(SNRsi ≥ β)
⋂

j∈χc(Sk )

(
SNRs j ≤ β

)⎞⎠ . (10.29)

The average outage probability expression can thus be given by

POC =
2N−1∑
k=0

(
1− f (rs,d, PC

s )
)∏

j∈χ(Sk )

(
1− f (r jd , Pj )

)
f (rs j , PC

s ) (10.30)

·
∏

j∈χC(Sk )

(
1− f (rs j , PC

s )
)
. (10.31)

where Pj , j ∈ {1, 2, . . . , N }, is the power allocated to the j-th relay.
Next we compute the average total consumed power for the N -relays scenario. First,

we condition on some relays’ status vector χ(Sk):

E
[

PC
tot

]
= E

[
E
[

PC
tot|χ (Sk)

]]
=

2N−1∑
k=0

P (χ(Sk))E
[

PC
tot|χ(Sk)

]
. (10.32)

For a given χ (Sk), we can further condition on whether the source get the packet
through from the first trial or not. This event happens with probability f (rs,d, PC

s ),
and the consumed power in this case is given by

PC,1
tot = PC

s + (N + 1)Pr + Pc; (10.33)
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The complementary event that the source failed to transmit its packet from the direct
transmission phase happens with probability 1− f (rs,d, PC

s ), and this event can be fur-
ther divided into two mutually exclusive events. The first is when the first | χ(Sk) | −1
relays from the set χ(Sk) fails to forward the packet and this happens with probability∏|χ(Sk)|−1

i=1

(
1− f (ri,d, Pi )

)
and the corresponding consumed power is given by

PC,2
tot = PC

s + (N + 1+ | χ(Sk) |) Pr + (| χ(Sk) | +1) Pc +
|χ(Sk)|∑

n=1

Pχ(Sk )(n); (10.34)

The second is when one of the intermediate relays in the set χ(Sk) successfully forwards
the packet and this happens with probability

∏ j−1
m=1

(
1− f (rm,d , Pm)

)
f (r j,d , Pj ) if this

intermediate relay was relay number j , and the corresponding power is given by

PC,3, j
tot = PC

s + (N + 1+ j)Pr + (1+ j)Pc +
j∑

i=1

Pχ(Sk )(i). (10.35)

From (10.32), (10.33), (10.34), and (10.35), the average total consumed power can be
given by

E
[

PC
tot

]
=

2N−1∑
k=0

P (χ(Sk))
{

f (rs,d, PC
s )P

C,1
tot

+
(
1− f (rs,d, PC

s )
)⎡⎣|χ(Sk)|−1∏

i=1

(
1− f (ri,d,Pi )

)
PC,2

tot

+
|χ(Sk )|−1∑

j=1

j−1∏
m=1

(
1− f (rm,d, Pm)

)
f (r j,d, Pj )P

C,3, j
tot

⎤⎦⎫⎬⎭ .
The optimization problem can then be written as

min
P

PC
tot(P),

s.t. POC(P) ≤ P∗out.

where P = [PC
s , P1, P2, . . . , PN

]T
.

10.4 Experimental results

In the system model, it is assumed that the channel independence between the following
links: the source–relay link, the source–destination link, and the relay–destination link.
Moreover, a strong motivation for applying cooperative transmission instead of ARQ in
the time domain, is the assumption of high temporal correlation which results in delay
and requires performing interleaving at the transmitter side. In this section, we show the
results for a set of experiments to justify these two fundamental assumptions.

The experiments are set up as follows. We have three wireless nodes in the experi-
ments, one of them acts as the sender and the other two act as receivers. Each wireless
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node is a computer equipped with a IEEE 802.11g wireless card, specifically, we utilized
three LINKSYS wireless-G USB network adaptors. The sender’s role is to broadcast
data packets with a constant rate, while the two receivers’ role is to decode the packets
and record which packet is erroneous. The traffic rate is 100 packets per second, and
the size of each packet is 554 bytes (including packet headers). The two receivers are
placed together, with the distance between them being 20 cm. The distance between
the transmitter and the receiver is around 5 m. The experiments have been mainly
conducted in office environments. The experiments results, which are illustrated next,
have revealed two important observations: the channels exhibit strong time correla-
tion for each receiver, while there is negligible dependence between the two receivers.
Figure 10.2 illustrates one instantiation of the experiments. The first figure illustrates
the results obtained at the first receiver and the second figure is for the second receiver.

For each figure, the horizontal axis denotes the sequence number of the first 100 000
packets, and the vertical axis denotes whether a packet is erroneous or not. First, from
these results we can see that packet errors exhibit strong correlation in time. For exam-
ple, for the first receiver, most erroneous packets cluster at around 22nd second and
around 83rd second. Similar observations also hold for the second receiver. If we take a
further look at the results we can see that in this set of experiments the duration for the
cluster is around 2 s. To help better understand the time correlation of erroneous pack-
ets, we have also used a two-state Markov chain to model the channel, as illustrated in
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Fig. 10.2 Sequence of packet errors at the two utilized wireless cards.



10.4 Experimental results 385

P0|1

P1|0

P0|0P1|1

1 0

Fig. 10.3 Modelling the channel by a two (on–off) state Markov chain to study the time correlation.

Figure 10.3. In this model “1” denotes that the packet is correct, and “0” denotes that the
packet is erroneous. Pi | j denotes the transition probability from state i to state j , that
is, the probability to reach state j given the previous state is i . The following transition
probabilities have been obtained after using the experimental results to train the model:
P1|0 = 0.03, P1|1 = 0.999, P0|0 = 0.97, P0|1 = 0.001. These results also indicate
strong time correlation. For example, given the current received packet is erroneous, the
probability that the next packet is also erroneous is around P0|0 = 0.97.

Now we take a comparative look at the results obtained at the two receivers. From
these results we can see that although there exists slight correlation in packet errors
between the two receivers, it is almost negligible. To provide more concrete evidence
of independence, we have estimated the correlation between the two receivers using the
obtained experiment results. Specifically, we have measured the correlation coefficient
between the received sequences at the two receivers and we found that the correlation
coefficient is almost 0 which indicates a strong spatial independence between the two
receivers.

10.4.1 Numerical examples

As discussed in the previous sections, there are different system parameters that can
control whether we can gain from cooperation or not. Among which are the received
power consumption, the processing power, the SNR threshold, the power amplifier loss,
and the relative distances between the source, relay, and destination.

In order to understand the effect of each of these parameters, we are going to study the
performance of cooperative and direct transmission when varying one of these param-
eters and fixing the rest. This is described in more details in the following. In all of
the numerical examples, the aforementioned parameters take the following values when
considered fixed: α = 0.3, β = 10, N0 = 10−3, Pc = 10−4 W, Pr = 5 × 10−5,
QoS = P∗out = 10−4. We define the cooperation gain as the ratio between the total
power required for direct transmission to achieve a certain QoS, and the total power
required by cooperation to achieve the same QoS.

Example 10.1 We study the effect of varying the receive power Pr as depicted in
Figure 10.4. We plot the cooperation gain versus the distance between the source and
the destination for different values of receive power Pr = 10−4, 5 × 10−5, 10−5 W.
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Fig. 10.4 Cooperation gain versus the source–destination distance for different values of received power
consumption.

At source–destination distances below 20 m, the results reveal that direct transmission
is more energy efficient than cooperation, i.e., the overhead in receive and process-
ing power due to cooperation outweighs its gains in saving the transmit power. For
rs,d > 20 m, the cooperation gain starts increasing as the transmit power starts con-
stituting a significant portion of the total consumed power. This ratio increases until
the transmit power is the dominant part of the total consumed power and hence the
cooperation gain starts to saturate.

In the plotted curves, the solid lines denote the cooperation gain when utilizing opti-
mal power allocation at the source and the relay, while the dotted curves denote the gain
for equal power allocation. For rs,d ≤ 100 m, both optimal power allocation and equal
power allocation almost yield the same cooperation gain. For larger distances, however,
a gap starts to appear between optimal and equal power allocation. The rationale behind
these observations is that at small distances the transmit power is a small percentage of
the total consumed power and hence optimal and equal power allocation almost have
the same behavior, while at larger distances, transmit power plays a more important role
and hence a gap starts to appear. �

Example 10.2 In this example, we study the effect of changing the SNR threshold β
as depicted in Figure 10.5. The distance between source and destination rs,d is fixed to
100 m. It is clear that the cooperation gain increases with increasing β, and that for the
considered values of the system parameters, equal power allocation provides almost the
same gains as optimal power allocation. In Figure 10.6 we study the effect of the power
amplifier loss α.
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Fig. 10.5 Cooperation gain versus the SNR threshold β.
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Fig. 10.6 Optimal power consumption for both cooperation and direct transmission scenarios for different
values of power amplifier loss α.

In this case, we plot the total consumed power for cooperation and direct transmis-
sion versus distance for different values of α. Again below 20m separation between the
source and the destination, direct transmission provides better performance over coop-
eration. It can also be seen from the plotted curves that the required power for direct
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Fig. 10.7 Cooperation gain versus the source–destination distance for different values of QoS.

transmission is more sensitive to variations in α than the power required for cooper-
ation. The reason is that the transmit power constitutes a larger portion in the total
consumed power in direct transmission than in cooperation, and hence the effect of α
is more significant. The QoS, measured by the required outage probability, has similar
behavior and the results are depicted in Figure (10.7). �

Example 10.3 In this example, we study the effect of varying the relay location. We
consider three different positions for the relay, close to the source, in the middle between
the source and the destination, and close to the destination. In particular, the relay posi-
tion is taken equal to (rs,l = 0.2rs,d, rl,d = 0.8rs,d), (rs,l = 0.5rs,d, rl,d = 0.5rs,d), and
(rs,l = 0.8rs,d, rl,d = 0.2rs,d).

Figures 10.8 and 10.9 depict the power required for cooperation and direct transmis-
sion versus rs,d for equal power and optimal power allocation, respectively. In the equal
power allocation scenario, the relay in the middle gives the best results, and the other
two scenarios, relay close to source and relay close to destination provide the same
performance.

This can be expected because for the equal power allocation scenario the problem
becomes symmetric in the source–relay and relay–destination distances. For the optimal
power allocation scenario depicted in Figure 10.9, the problem is no more symmet-
ric because different power allocation is allowed at the source and relay. In this case,
numerical results show that the closer the relay to the source the better the performance.
The intuition behind this is that when the relay is closer to the source, the source–relay
channel is very good and almost error-free.
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From both figures, it is also clear that for small source–destination separation rs,d,
equal and optimal power allocation almost provide the same cooperation gain while
for larger rs,d optimal power allocation provides more gain. Another important obser-
vation is that at small distances below 100 m, the location of the relay does not affect
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Fig. 10.10 Optimal Consumed Power versus number of relays for different values of required outage
probability.

the performance much. This makes the algorithms required to select a relay in cooper-
ative communications simpler to implement for source–destination separations in this
range. Finally, the threshold behavior below 20 m still appears where direct transmission
becomes more energy efficient. �

Example 10.4 Figure 10.10 depicts the multiple relays scenario for different values
of outage probability P∗out. The results are depicted for a source–destination distance
of 100 m, and for N = 0, 1, 2, 3 relays, where N = 0 refers to direct transmission. As
shown in Figure 10.10, for small values of required outage probability, one relay is more
energy efficient than two or three relays. As we increase the required QoS, reflected
by P∗out, the optimal number of relays increases. Hence, our analytical framework can
also provide guidelines to determining the optimal number of relays under any given
scenario. �

10.5 Chapter summary and bibliographical notes

In this chapter, the energy efficiency of cooperation in wireless networks is studied
under a practical setting where the extra overhead of cooperation is taken into account.
The approach taken was to formulate a constrained optimization problem to minimize
the total consumed power under a given QoS requirement. The numerical results reveal
that for short distance separations between the source and the destination, e.g., below
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a threshold of 20 m, the overhead of cooperation outweighs its gains and direct trans-
mission is more efficient. Above that threshold, cooperation gains can be achieved. It
was also shown that simple equal power allocation at the source and the relay achieves
almost the same gains as optimal power allocation at these two nodes for distances
below 100 m, for the specific parameters used.

Furthermore, choosing the optimal relay location for cooperation plays an important
role when the source–destination separation exceeds 100 m, and the best relay location
depends on the power allocation scheme, whether optimal or equal. The results can
also be used to provide guidelines in determining the optimal number of relays for any
given communication setup; increasing the number of relays is not always beneficial. In
summary, caution must be taken before applying cooperative communications to sen-
sor networks, in particular whether we should apply cooperation or not, whether equal
power allocation is good enough, how to choose a partner or a relay for cooperation,
and how many relays should be assigned to help the source. Further discussion on these
topics can be found in [161] and [154]

Exercises

10.1 Derive from scratch the average outage probability expression in (10.18).
(a) First, find an expression for the unconditional outage probability given the

channel state information;
(b) second, find the average outage expression by averaging over the channel

statistics.
Assume that different channel pairs fade independently.

10.2 In this chapter, incremental-relaying with decode-and-forward was utilized at
the relay. Solve the optimization problem for the equal power allocation scenario
when amplify-and-forward is used instead with incremental-relaying.
(a) What is the impact of using amplify-and-forward at the relay on the system

performance?
(b) Compare the cooperation gain when using amplify-and-forward versus

that of decode-and-forward for a fixed source–destination separation and
different relay location on the line joining the source and the destination.

(c) Now fix the relay location to be always at the middle between the source and
the destination, and vary the source–destination separation.

10.3 Formulate a relaxed version of the power allocation optimization problem in
(10.21). Find the corresponding Lagrangian at high signal-to-noise ratio.

10.4 Write down closed form expressions for the outage probability and total power
consumption for the two-relay scenario. Consider arbitrary relay locations and
independent channel fading among all the links.

10.5 Given two binary sequences that represent the packet errors at two receivers.
(a) Write a Matlab code that estimates the transition probabilities for the two-

state Markov model that describes the binary sequences.
(b) Write a Matlab code to estimate the cross-correlation between the two

sequences.



392 Energy efficiency in cooperative sensor networks

10.6 As shown in the results in this chapter, direct transmission might be more energy
efficient than cooperation depending on the relay location and source–destination
separation. Let us define the cooperation region to be the set of relay locations
that results in cooperation being more energy efficient than direct transmission.
(a) For a source–destination separation of 100 m. Write Matlab code to specify

the cooperation region and draw it. Consider optimal power allocation in
your calculation.

(b) Find the cooperation region for the above scenario for a source–destination
separation of 500 m and 1000 m.

(c) Repeat the above assuming equal power allocation at the source and the
relay.

10.7 A cooperative communication system is a generalization of a MIMO system
when the antennas are distributed in a geographic area. Compare the performance
of a 2×1 MIMO system that utilizes an Alamouti scheme and a single-relay
cooperative communication system considering the overhead of cooperation.
Can cooperation be more energy efficient than a MIMO system? If yes, determine
under what conditions. In your calculations consider a propagation path-loss
exponent of 2.5, 3, 3.5, and 4. What is the effect of increasing the propagation
path-loss on the performance of the two systems?

10.8 Repeat the previous problem for a 1×2 MIMO system that utilizes a maximal
ratio combiner at the receiver. Is there a difference, and why?



Part III

Cooperative networking





11 Cognitive multiple access via
cooperation

Despite the promised gains of cooperative communication demonstrated in many pre-
vious works, the impact of cooperation at higher network levels is not yet completely
understood. In the previous chapters, it was assumed that the user always has a packet to
transmit, which is not generally true in a wireless network. For example, in a network,
most of the sources are bursty in nature, which leads to periods of silence in which the
users may have no data to transmit. Such a phenomenon may affect important system
parameters that are relevant to higher network layers, for example, buffer stability and
packet delivery delay. We focus on the multiple access layer in this chapter. One can
ask many important questions now. Can we design cooperation protocols that take these
higher layer network features into account? Can the gains promised by cooperation at
the physical layer be applied to the multiple access layer? More specifically, what is the
impact of cooperation on important multiple access performance metrics such as stable
throughput region and packet delivery delay?

In this chapter, we try to address all of these important questions to demonstrate
the possible gains of cooperation at the multiple access layer. A slotted time division
multiple access (TDMA) framework in which each time slot is assigned only to one ter-
minal, i.e., orthogonal multiple access is considered. If a user does not have a packet to
transmit in his time slot, then this time slot is not utilized. These unutilized time slots are
wasted channel resources that could be used to enhance the system performance. In fact,
the concept of cognitive radio has been introduced recently to allow the utilization of
unused channel resources by enabling the operation of a secondary system overlapping
with the original system.

This chapter presents a cognitive multiple access strategy with the concept of coop-
eration. The relay is cognitive in that it tries to “smartly” utilize the periods of source
silence to cooperate with other terminals in the network, i.e., to increase the reliability of
communications against random channel fades. In particular, when the relay senses the
channel for empty time slots, the slots are then used to help other users in the network by
forwarding any of their packets that were lost in previous transmissions. Thus the pro-
tocol has cooperative cognitive aspects in the sense that the unused channel resources
are being utilized by the relay to cooperate with other users in the network. It should be
pointed out that the cooperative protocol does not result in any bandwidth loss because
there are no channel resources reserved for the relay to cooperate. We demonstrate later
that this important feature of the protocol can lead to significant gains, particularly in
high spectral efficiency regimes.
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Two protocols to implement this new cooperative cognitive multiple access (CCMA)
strategy are developed. The first protocol is CCMA within a single frame (CCMA-S),
where the relay keeps a lost packet for no more than one time frame and then drops the
packet if unable to deliver it successfully to the destination. The dropped packet then has
to be retransmitted by the originating user. It turns out that in this protocol the relay’s
queue is always bounded, and that the terminals queues are interacting. To analyze
the stability of the system’s queues we resort to a stochastic dominance approach. The
interaction between the queues arise due to the role of the relay in enabling cooperation.
To analyze the stability of CCMA-S, we present a dominant system to resolve this
interaction.

The second protocol, named CCMA-multiple-enhanced (CCMA-Me), differs in the
way the relay handles the lost packets. In CCMA-Me, if a packet is captured by the
relay and not by the destination, then this packet is removed from the corresponding
user’s queue and it becomes the relay’s responsibility to deliver it to the destination.
The term enhanced refers to the design of the protocol, as the relay only helps the users
with inferior channel gains, which are reflected in the distances from the terminals to the
destination. Unlike CCMA-S, the size of the relay’s queue can possibly be unbounded
and so its stability must be taken into consideration.

In addition to characterizing the stable throughput region, an analysis for the queu-
ing delay performance is presented. Delay is an important performance measure and
network parameter that may affect the tradeoff between the rate and reliability of com-
munication. We consider a symmetric two-user scenario when analyzing the delay
performance of the protocols.

11.1 System model

Let us consider the uplink of a TDMA system. The network consists of a finite number
M < ∞ of source terminals numbered 1, 2, . . . ,M , a relay node l,1 and a destination
node d, see Figure 11.1. Let T = {M, l} denote the set of transmitting nodes, where
M = {1, 2, . . . ,M} is the set of source terminals, and D = {l, d} denotes the set of
receiving nodes or possible destinations. For simplicity of presentation, in the following
we use terminal to refer to a source terminal.

First, we describe the queuing model for the multiple access channel. Each of the M
terminals and the relay l have an infinite buffer for storing fixed length packets. The
channel is slotted, and a slot duration is equal to a packet duration. The arrival process
at any terminal’s queue is independent identically distributed (i.i.d.) from one slot to
another, and the arrival processes are independent from one terminal to another. The
arrival process at the i-th queue (i ∈ {1, 2, . . . ,M}) is assumed stationary with mean λi .
Terminals access the channel by dividing the channel resources, time in this case, among
them, hence, each terminal is allocated a fraction of the time. Let� = [ω1, ω2, . . . , ωM ]

1 We use l here to denote the relay in order not to confuse with r , which denotes distance.
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Fig. 11.1 Network and channel model.

denote a resource-sharing vector, where ωi ≥ 0 is the fraction of the time allocated to
terminal i ∈M, or it can represent the probability that terminal i is allocated the whole
time slot. The later notation is used as it allows to consider fixed duration time slots
with continuous values of the resource-sharing vector. A time frame is defined as M
consecutive time slots. The set of all feasible resource-sharing vectors is specified as
follows:

� �
{
� = [ω1, ω2, . . . , ωM ] ∈ �M+ :

∑
i∈M

ωi ≤ 1

}
. (11.1)

A fundamental performance measure of a communication network is the stability of
its queues. Stability can be loosely defined as having a certain quantity of interest kept
bounded. In our case, we are interested in the queue size and the packet delivery delay
to be bounded. More rigorously, stability can be defined as follows. Denote the queue
sizes of the transmitting nodes at any time t by the vector Qt = [Qt

i , i ∈ T ]. Let us
adopt the following definition of stability:

D E F I N I T I O N 11.1.1 Queue i ∈ T of the system is stable, if

lim
t→∞Pr

[
Qt

i < x
] = F(x) and lim

x→∞F(x) = 1. (11.2)

If

lim
x→∞ lim

t→∞ inf Pr
[
Qt

i < x
] = 1, (11.3)

the queue is called substable [209].
From the definition, if a queue is stable then it is also substable. If a queue is not sub-
stable, then it is unstable. An arrival rate vector [λ1, λ2, . . . , λM ] is said to be stable if
there exists a resource-sharing vector� ∈ � such that all the queues in T = {M, l} are
stable. The multi-dimensional stochastic process Qt can be easily shown to be an irre-
ducible and aperiodic discrete-time Markov process with a countable number of states
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and state space ∈ ZM+1+ . For such a Markov chain, the process is stable if and only if a
positive probability exists for every queue being empty [127], i.e.,

lim
t→∞Pr [Qi (t) = 0] > 0, i ∈ T . (11.4)

If the arrival and service processes of a queuing system are strictly stationary, then
one can apply Loynes’ theorem to check for stability conditions [124]. This theorem
states that if the arrival process and the service process of a queuing system are strictly
stationary, and the average arrival rate is less than the average service rate, then the
queue is stable; if the average arrival rate is greater than the average service rate then
the queue is unstable.

Next, we describe the physical channel model. The wireless channel between any
two nodes in the network is modeled as a Rayleigh narrowband flat-fading channel with
additive Gaussian noise. The transmitted signal also suffers from propagation path loss
that causes the signal power to attenuate with distance. The signal received at a receiving
node j ∈ D from a transmitting node i ∈ T at time t can be modeled as

yt
i, j =

√
Gr−γi, j ht

i, j x
t
i + nt

i, j , i ∈ T , j ∈ D, i �= j, (11.5)

where G is the transmitting power, assumed to be the same for all transmitting terminals,
ri, j denotes the distance between the two nodes i, j , γ is the path loss exponent, and ht

i, j
captures the channel fading coefficient at time t and is modeled as an i.i.d. zero-mean,
circularly symmetric complex Gaussian random process with unit variance. The term
xt

i denotes the transmitted packet with average unit power at time t , and nt
i, j denotes

i.i.d. additive white Gaussian noise with zero mean and variance N0. Since the arrival,
channel gains, and additive noise processes are assumed to be stationary, we can drop
the index t without loss of generality. We consider the scenario in which the fading
coefficients are known to the appropriate receivers, but are not known at the transmitters.

In this chapter, we characterize the success and failure of packet reception by outage
events and outage probability, which is defined as follows. For a target signal-to-noise
(SNR) ratio β, if the received SNR as a function of the fading realization h is given by
SNR(h), then the outage event O is the event that SNR(h) < β, and Pr [SNR(h) < β]
denotes the outage probability,also defined in previous chapters. The SNR threshold β
is a function of different parameters in the communication system; it is a function of
the application, data rate, signal-processing applied at the encoder/decoder sides, error-
correction codes, and other factors. For example, varying the data rate and fixing all
other parameters, the required SNR threshold β to achieve certain system performance
is a monotonically increasing function of the data rate. Also, increasing the signal-
processing and encode/decoder complexity in the physical layer reduces the required
SNR threshold β for a required system performance.

For the channel model in (11.5), the received SNR of a signal transmitted between
two terminals i and j can be specified as follows:

SNRi, j =
| hi, j |2 r−γi, j G

N0
, (11.6)
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where | hi, j |2 is the magnitude channel gain square and has an exponential distribution
with unit mean. The outage event for a SNR threshold β is equivalent to

Oi, j = {hi, j : SNRi, j < β} =
{

hi, j :| hi, j |2<
βN0rγi, j

G

}
(11.7)

Accordingly, the probability of outage is given by

Pr
[
Oi, j

] = Pr

[
| hi, j |2<

βN0rγi, j
G

]
= 1− exp

(
−βN0rγi, j

G

)
, (11.8)

where the above follows from the exponential distribution of the received SNR. Since
we will use the above expression frequently in our subsequent analysis, and for com-
pactness of representation, we will use the following notation to denote the success
probability (no outage) at SNR threshold β:

fi, j = exp

(
−βN0rγi, j

G

)
. (11.9)

11.2 Cooperative cognitive multiple access (CCMA) protocols

In a TDMA system without relays, if a terminal does not have a packet to transmit,
its time slot remains idle, i.e., the slot becomes a wasted channel resource. We con-
sider the possibility of utilizing these wasted channel resources by employing a relay.
In this section, we introduce the cognitive multiple access strategy based on employing
relays in the wireless network. Furthermore, we develop two protocols to implement
this new approach. We assume that the relay can sense the communication channel
to detect empty time slots and we assume that the errors and delay in the packet
acknowledgement feedback are negligible.

First, let us describe the multiple access strategy:
• Due to the broadcast nature of the wireless medium, the relay can listen to the

packets transmitted by the terminals to the destination.
• If the packet is not received correctly by the destination, the relay stores this packet

in its queue, given that it was able to decode this packet correctly. Thus, the relay’s
queue contains packets that have not been transmitted successfully by the terminals.

• At the beginning of each time slot, the relay listens to the channel to check whether
the time slot is empty (not utilized for packet transmission) or not.

• If the time slot is empty the relay will retransmit the packet at the head of its queue,
hence utilizing a channel resource that was previously wasted in a TDMA system
without a relay.

Moreover, this introduces spatial diversity in the network as the channel fades between
different nodes in the network are independent. In the following we present two different
protocols to implement the proposed cognitive multiple access approach. The protocols
are cognitive in the sense that the system introduces a relay in the network that tries to
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detect unused channel resources and uses them to help other terminals by forwarding
packets lost in previous transmissions.

11.2.1 CCMA-single frame

The first protocol that wepresent is cooperative cognitive multiple access within a single
frame duration or (CCMA-S). The characteristic feature of CCMA-S is that any terminal
keeps its lost packet in its queue until it is captured successfully at the destination.
CCMA-S operates according to the following rules:
• Each terminal transmits the packet at the head of its queue in its assigned slot, if

the terminal’s queue is empty the slot is free.
• If destination receives a packet successfully, it sends an ACK which can be heard

by both the terminal and the relay. If the destination does not succeed in receiving
the packet correctly but the relay does, then the relay stores this packet at the end
of its queue. The corresponding terminal still keeps the lost packet at the head of
its queue

• The relay senses the channel, and at each empty time slot the relay transmits the
packet at the head of its queue, if its queue is nonempty. If the transmitted packet
is received correctly by the destination it sends an ACK and the corresponding
terminal removes this packet from its queue.

• If the relay does not succeed in delivering a packet to the destination during a time
frame starting from the time it received this packet, then the relay drops the packet
from its queue. In this case the corresponding terminal becomes responsible for
delivering the packet to the destination.

Following are some important remarks on the above protocol. According to the above
description of CCMA-S, the relay’s queue has always a finite number of packets (at most
it has M backlogged packets). This follows because, according to the protocol, the relay
can have at most one packet from each terminal. Thus the stability of the system is only
determined by the stability of the terminals’ queues. Secondly, successful service of a
packet in a frame depends on whether the other terminals have idle time slots or not.
Therefore individual terminals’ queues are interacting.

11.2.2 CCMA-multiple frames

In this section, we describe the implementation of protocol CCMA-M. The main
difference between protocols CCMA-S and CCMA-M is in the role of the relay
and the behavior of the terminals’ regarding their backlogged packets. More specif-
ically, a terminal removes a packet from its queue if it is received successfully by
either the destination or the relay. CCMA-M operates according to the following
rules:
• Each terminal transmits the packet at the head of its queue in its assigned time slot.

If the queue is empty the time slot is free.
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• If a packet is received successfully by either the destination or the relay, the packet
is removed from the terminal’s queue (the relay needs to send an ACK if one is not
heard by the destination in this case).

• If a packet is not received successfully by both the relay and the destination, the
corresponding terminal retransmits this packet in its next assigned time slot.

• At each sensed empty time slot, the relay retransmits the packet at the head of its
queue.

One can now point out the differences between the queues in CCMA-S and CCMA-M:

• The size of the relay’s queue can possibly grow in CCMA-M as it can have more
than one packet from each terminal; however, it can not exceed size M in CCMA-S.

• The terminal’s queues in CCMA-M are not interacting as in CCMA-S. This is
because the terminal removes the packets which were received correctly by the
relay or the destination. In other words, servicing the queue of any terminal depends
only on the channel conditions from that terminal to the destination and relay, and
does not depend on the status of the other terminals’ queues.

• The stable throughput region of CCMA-M requires studying the stability of both
the terminals’ and the relay’s queues.

11.3 Stability analysis

The aim of this section is to characterize the stable throughput region of the presented
cooperation protocols. Furthermore, we show comparison for the stable through-
put regions of TDMA without relaying, ALOHA, selection decode-and-forward, and
incremental decode-and-forward.

11.3.1 Stability analysis of CCMA-S

11.3.1.1 The two-terminals case
In CCMA-S, we observed in the previous section that the relay’s queue size is always
finite, hence it is always stable. For the two-terminals case, the queues evolve as a two-
dimensional Markov-chain in the first quadrant. From the protocol description in the
previous section, one can observe that the queues in CCMA-S are interacting. In other
words, the transition probabilities differ according to whether the size of the queues
are empty or not. For example, if one of the two terminals’ queues was empty for a
long time, then the relay serves the lost packets from the other terminal more often.
On the other hand, if one of the two terminals queues never empties, then the other
terminal will never get served by the relay. Studying stability conditions for interacting
queues is a difficult problem that has been addressed for ALOHA systems [149, 127].
The concept of dominant systems can be adopted to help finding bounds on the stability
region.

To analyze the stability of CCMA-S, we develop a dominant system to decouple
the interaction of the originating terminals from the role of the relay in cooperation.
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Using our developed dominant system we are able to characterize the stability region
of CCMA-S for a fixed resource-sharing vector, and hence the whole stability region.
The following lemma states the stability region of CCMA-S for a fixed resource sharing
vector [ω1, ω2].
Lemma 11.3.1 The stability region of CCMA-S for a fixed resource-sharing vector
[ω1, ω2] is given by R(S1)

⋃
R(S2) where

R(S1) =
{
[λ1, λ2] ∈ R2+ : λ2 < h(λ1;w1, w2, f1,d , f2,d , f2,l , fl,d), for λ1 < ω1 f1,d .

}
(11.10)

and

R(S2) =
{
[λ1, λ2] ∈ R2+ : λ1 < h(λ2;w2, w1, f2,d , f1,d , f1,l , fl,d), for λ2 < ω2 f2,d .

}
(11.11)

where

h(x;α1, α2, α3, α4, α5, α6) = α2α4 + α1α2

(
1− x

α1α3

)
(1− α3)α5α6. (11.12)

Proof The proof of Lemma 11.3.1 depends on constructing a dominant system that
decouples the interaction between the queues and thus renders the analysis tractable. By
dominance, we mean that the queues in the dominant system stochastically dominate the
queues in the original CCMA-S system, i.e., with the same initial conditions for queue
sizes in both the original and dominant systems, the queue sizes in the dominant system
are not smaller than those in the original system.
We define the dominant system for CCMA-S as follows. For j ∈ {1, 2}, define S j as
follows:

• arrivals at queue i ∈M in S j are the same as in CCMA-S;
• the channel realizations hk,l , where k ∈ T and l ∈ D, are identical for both S j and

CCMA-S;
• time slots assigned to user i ∈M are identical for both S j and CCMA-S;
• the noise generated at the receiving ends of both systems is identical;
• the packets successfully transmitted by the relay for user j are not removed from user j’s

queue in S j .

The above definition of the dominant system implies that queue j evolves exactly as in
a TDMA system without a relay. If both the dominant system and the original CCMA-S
started with the same initial queue sizes, then the queues in system S j are always not
shorter than those in CCMA-S. This follows because a packet successfully transmitted
for queue j in S j is always successfully transmitted from the corresponding queue in
CCMA-S. However, the relay can succeed in forwarding some packets from queue j
in CCMA-S in the empty time slots of the other terminal. This implies that queue j
empties more frequently in CCMA-S and therefore the other terminal is better served in
CCMA-S compared to S j . Consequently, stability conditions for the dominant system
S j ( j ∈ {1, 2}) are sufficient for the stability of the original CCMA-S system. In the
following, we first derive the sufficient conditions for stability of CCMA-S.
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Consider system S1 in which the relay only helps terminal 2, and terminal 1 acts exactly
as in a TDMA system. In order to apply Loynes’ theorem, we require the arrival and
service processes for each queue to be stationary. The queue size for terminal i ∈ {1, 2}
in system S1 at time t , denoted by Qt

i (S1), evolves as follows:

Qt+1
i (S1) =

(
Qt

i (S1)− Y t
i (S1)

)+ + Xt
i (S1), (11.13)

where Xt
i (S1) represents the number of arrivals in slot t and is a stationary process by

assumption with finite mean E
[
Xt

i (S1)
] = λi . The function ()+ is defined as (x)+ =

max(x, 0). Y t
i (S1) denotes the possible (virtual) departures from queue i at time t ; by

virtual we mean that Y t
i (S1) can be equal to 1 even if Qt

i (S1 = 0). We assume that
departures occur before arrivals, and the queue size is measured at the beginning of the
slot. For terminal i = 1, the service process can be modeled as

Y t
1(S1) = 1

[
At

1 ∩ Ot
1,d

]
, (11.14)

where 1[·] is the indicator function, At
1 denotes the event that slot t is assigned to ter-

minal 1, and Ot
1,d denotes the complement of the outage event between terminal 1 and

the destination d at time t .2 Due to the stationarity assumption of the channel gain pro-
cess {ht

i,d}, and using the outage expression in (11.8), the probability of this event is

given by Pr
[
Ot

1,d

]
= f1,d . From the above, it is clear that the service process Y t

1(S1) is

stationary and has a finite mean given by

E
[
Y t

1(S1)
] = ω1 f1,d , (11.15)

where E[·] denotes statistical expectation. According to Loynes theorem, stability of
queue 1 in the dominant system S1 is achieved if the following condition holds:

λ1 < ω1 f1,d . (11.16)

Consider now queue 2 in system S1. The difference between the evolution of this queue
and queue 1 is in the definition of the service process Y t

2(S1). A packet from queue 2
can be served in a time slot in either one of the two following events:

• if the time slot belongs to queue 2 and the associated channel ht
2,d is not in outage; or

• the time slot belongs to queue 1, queue 1 is empty, in the previous time slot there was
a successful “maybe virtual” reception of a packet at the relay from terminal 2, and the
relay–destination channel is not in outage.

This can be modeled as

Y t
2(S1) = 1

[
At

2

⋂
Ot

2,d

]
+ 1

[
At

1

⋂
{Qt

1(S1)} = 0}⋂
At−1

2

⋂
Ot−1

2,l

⋂
Ot−1

2,d

⋂
Ot

l,d

]
(11.17)

2 (·) denotes the complement of the event.
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where {Qt
1(S1) = 0} denotes the event that terminal’s 1 queue is empty in time slot

t . The two indicator functions in the right-hand side of equation (11.17) are mutually
exclusive, hence, the average rate of the service process is given by

E
[
Y t

2(S
1
1)
]

= ω2 f2,d + ω1Pr
[
{Qt

1(S
1
1) = 0}

]
ω2 (1− Pr[O2l ])Pr[O2,d ]

(
1− Pr[Ol,d]

)
,

(11.18)

where Pr[Oi, j ] is the probability of outage between nodes i and j .
Using (11.16) and the fact that, at steady state, the fraction of time a queue is occupied
equals the ratio of the arrival rate and service rate, the probability that queue 1 is empty
is given by

Pr
[
{Qt

1(S
1
1) = 0}

]
= 1− λ1

ω1 f1,d
. (11.19)

Using the expression of the outage probability in (11.8) and Loynes conditions for
stability [124], the stability condition for queue 2 in the dominant system S1 is
given by

λ2 < ω2 f2,d + ω1ω2

(
1− λ1

ω1 f1,d

) (
1− f2,d

)
f2,l fl,d. (11.20)

Both conditions (11.16) and (11.20) represent the stability region for system S1 for a
specific resource-sharing vector (ω1, ω2) pair. Call this region R(S1). Using parallel
arguments for the dominant system S2, we can characterize the stability region R(S2)

for this system by the following pair of inequalities:

λ2 < ω2 f2,d ,

λ1 < ω1 f1,d + ω2ω1

(
1− λ2

ω2 f2,d

) (
1− f1,d

)
f1,l fl,d. (11.21)

Since the stability conditions for a dominant system are sufficient for the stability of
CCMA-S, any point inside the regions R(S1) and R(S2) can be achieved by the original
system CCMA-S, hence R(S1)

⋃
R(S2) is a subset from the stability region of CCMA-

S for a fixed resource sharing pair (ω1, ω2). This region is depicted in Figure 11.2.
Up to this point have we only proved the sufficient conditions for the stability of
CCMA-S in Lemma 11.3.1. To prove the necessary conditions, we have to prove the
indistinguishability of the dominant and original systems at saturation. The argument
is as follows. Consider the dominant system S1 whose stability region is charac-
terized by the pair of inequalities (11.16), (11.20). Note that if queue 2 does not
empty, packets of user 1 are always dropped by the relay in both S1 and CCMA-
S, and both systems become identical. In S1, for λ1 < ω1 f1,d , if λ2 > ω2 f2,d +
ω1ω2

(
1− λ1/ω1 f1,d

) (
1− f2,d

)
f2,l fl,d then using same argument as before Qt

1 is
stable and Qt

2 is unstable by Loynes, i.e., lim
t→∞Qt

2 → ∞ almost surely. If Qt
2 tends

to infinity almost surely, i.e., does not empty, then S1 and CCMA-S are identical, and
if both systems are started from the same initial conditions, then on a set of sample
paths of positive probability Qt

2 in CCMA-S never returns to zero for t ≥ 0. Hence Qt
2
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 ω1f1,d + ω2ω1(1 – f1,d)f1,lf1,d

ω2f2,d + ω2ω1(1 – f2,d)f2,lfl,d

ω2f2,d

λ1

λ2

�(S1)

�(S2)

ω1f1,d

Fig. 11.2 Stable throughput region for system CCMA-S for a fixed resource-sharing vector (ω1, ω2) given
by R(S1)

⋃
R(S2).

in CCMA-S tends to infinity with positive probability, i.e., CCMA-S is also unstable.
This means that the boundary for the stability region of the dominant system is also a
boundary for the stability region of the original CCMA-S system. Thus, conditions for
stability of the dominant system is sufficient and necessary for stability of the original
system. This completes the proof of Lemma 11.3.1. �
The whole stability region for system CCMA-S can be determined by taking the union
over all feasible resource-sharing vectors as follows:

R(CCMA-S) =
⋃
�∈�

{
R1(S

1)
⋃

R2(S
1)
}
. (11.22)

We give a complete characterization of the stability region of CCMA-S in the
following theorem.

T H E O R E M 11.3.1 The stability region for a two-user CCMA-S system is given by

R(CCMA-S) =
{
[λ1, λ2] ∈ R2+ : λ2 < max [g1(λ1), g2(λ1)]

}
(11.23)

where the functions g1(·) and g2(·) are defined as follows:

g1(λ1) =
⎧⎨⎩ K2

(
λ1+ f1,d

2 f1,d
− f2,d

2K2

)2 − K2λ1
f1,d

+ f2,d , 0 ≤ λ1 ≤ f1,d − f1,d f2,d
K2

,

f2,d − f2,d
f1,d
λ1, f1,d − f1,d f2,d

K2
< λ1 ≤ f1,d .

(11.24)
And the function g2(·) is specified as

g2(λ1) =
⎧⎨⎩ f2,d − f2,d

f1,d
λ1, 0 ≤ λ1 <

f 2
1,d

(1− f1,d ) f1,l fl,d
,

f1,d f2,d
K1

+ f2,d − 2 f2,d
√
λ1
K1
,

f 2
1,d

(1− f1,d ) f1,l fl,d
≤ λ1 ≤ λ∗1.

(11.25)
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where

λ∗1 =
{

f1,d , (1− f1,d) f1,l fl,d < f1,d ,
1

4K1
( f1,d + K1)

2, f1,d ≤ (1− f1,d) f1,l fl,d.
(11.26)

and Ki = (1− fi,d) fi,l fl,d, i ∈ {1, 2}.

Proof The stable throughput region of CCMA-S for a fixed resource-sharing vector
(ω1, ω2) is specified in Lemma 11.3.1. In order to find the whole stability region of
the protocol, we need to take the union over all possible values of (ω1, ω2) in �. One
method to characterize this union is to solve a constrained optimization problem to
find the maximum feasible λ2 corresponding to each feasible λ1. For a fixed λ1, the
maximum stable arrival rate for queue 2 is given by solving the following optimization
problem:

max
w1,w2

λ2 = w2 f2,d + w1w2K2 − λ1w2 K2
f1,d

, (11.27)

s.t. w1 + w2 ≤ 1, λ1 ≤ w1 f1,d , (11.28)

where Ki = (1 − f2,d) f2,l fl,d, and i ∈ {1, 2}. To put this problem in a standard
form, we can equivalently write it as the minimization of −λ2. The Lagrangian of this
optimization problem is given by[

−w2K2

−w1K2 + λ1 K2
f1,d

− f2,d

]
+ u1

[
1
1

]
+ u2

[ − f1,d
0

]
= 0, (11.29)

where u1, u2 are the complementary slackness variables that are nonnegative. Solving
for the complementary slacknessvariables we get the following relation between u1

and u2:

u1 = w2K2 + u2 f1,d . (11.30)

This shows that u1 > 0, i.e., the first constraint (w1 + w2 = 1) in (11.28) is met with
equality.
Substituting w2 = 1− w1 in the cost function in (11.28), we get

λ2 = (1− w1) f2,d + w1(1− w1)K2 − (1− w1)
λ1K2

f1,d
. (11.31)

Taking the first derivative of the above equation with respect to w1, we get

∂λ2

∂w1
= − f2,d + K2 − 2w1K2 + λ1K2

f1,d
. (11.32)

Since K2 is non-negative, the second derivative is negative, hence, the cost function in
(11.31) is concave in w1 and the necessary conditions for optimality KKT [15] are also
sufficient. Equating the first derivative in (11.32) to zero, the solution w∗1 is given by

w∗1 =
1

2K2

(
K2 − f2,d + λ1K2

f1,d

)
. (11.33)

From the first constraint in (11.28), the minimum value for w1 that guarantees the sta-
bility of queue 1 in system S1 is given by w1,min = λ1/ f1,d . Hence, if w∗1 > w1,min,
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and given concavity of the cost function, the optimal solution is just w∗1 , otherwise it
is given by w1,min. Characterizing this in terms of the channel parameters, the optimal
solution for the optimization problem in (11.28) is given by

w∗1 =
⎧⎨⎩

1
2K2

(
K2 − f2,d + λ1 K2

f1,d

)
, λ1 ≤ f1,d − f1,d f2,d

K2

λ1
f1,d
, f1,d − f1,d f2,d

K2
< λ1 < f1,d .

(11.34)

If λ1 > f1,d , then the first queue can never be stable by construction of S1.
Now we solve for the other branch in the stability region given by the dominant system
S2. The equations for this branch are given by (11.20). Similar to the first stability
region branch, solving for the Lagrangian of this branch gives the necessary condition
w1 + w2 = 1. First, we find the maximum achievable stable rate for the first queue,
which is achieved when λ2 = 0. Substituting in (11.20), the arrival rate λ1 can be
written as

λ1 = w1 f1,d + w1(1− w1)K1. (11.35)

The above equation is obviously concave. Taking the first derivative and equating to
zero we get

w∗1 |λ2=0 = 1

2K1
( f1,d + K1). (11.36)

Since w1 ≤ 1, then if w∗1 |λ2=0 > 1, i.e., f1,d > K1, and given the concavity of the cost
function, we letw∗1 |λ2=0 = 1. Substitutingw∗1 |λ2=0 in (11.35), the maximum achievable
rate λ1 can be given by

λ∗1 =
{

f1,d , f1,d > K1,

1
4K1
( f1,d + K1)

2, 0 ≤ f1,d ≤ K1.
(11.37)

Next for a fixed λ1, we solve for the optimal λ2 that can be achieved from the second
branch. We can write (11.20) in terms of λ2 as follows:

λ2 = f1,d f2,d
K1

+ (1− w1) f2,d − λ1
f2,d
w1K1

. (11.38)

Taking the first derivative with respect to w1 we get

∂λ2

∂w1
= − f2,d + λ1

f2,d
K1w

2
1

. (11.39)

The second derivative is negative, which renders the whole function concave. Equating
the first derivative to zero we get

w∗1 =
√

λ1

(1− f1,d) f1,l fl,d
. (11.40)

From (11.20), we have the following constraint for the stability of the second queue,
λ2 ≤ w2 f2,d , which can be written in terms of w1 as follows:

w1 ≤ 1− λ2

f2,d
. (11.41)
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Substituting λ2 from (11.41) into (11.38), we find that the maximum value for w1 in
terms of λ1 is given by w1 ≤ λ1/ f1,d . Therefore, the optimal value for w1 can be
written as

w∗1 = min

(√
λ1

(1− f1,d) f1,l fl,d
,
λ1

f1,d

)
. (11.42)

The value of the expression in (11.42) can be shown to never exceed 1 by substituting the
maximum value of λ1 given by (11.37) in the above equation. After some manipulations,
the optimum w∗1 in (11.42) can be further simplified as follows:

w1∗ =
⎧⎨⎩

λ1
f1,d
, if λ1 ≤ f 2

1,d
(1− f1,d ) f1,l fl,d

,√
λ1

(1− f1,d ) f1,l fl,d
, otherwise.

(11.43)

We summarize equations (11.31), (11.34), (11.38), and (11.43) describing the envelopes
of the first and second branches as follows. For the first branch given by equations
(11.31) and (11.34), substituting (11.34) in (11.31) we get

g1(λ1) =
⎧⎨⎩ K2

(
λ1

2 f1,d
+ 0.5− f2,d

2K2

)2 − K2λ1
f1,d

+ f2,d , 0 ≤ λ1 ≤ f1,d − f1,d f2,d
K2

,

f2,d − f2,d
f1,d
λ1, f1,d − f1,d f2,d

K2
< λ1 ≤ f1,d .

(11.44)
Similarly, by substituting (11.43) in (11.38), we get for the second branch

g2(λ1) =
⎧⎨⎩ f2,d − f2,d

f1,d
, λ1 <

f 2
1,d

(1− f1,d ) f1,l fl,d
,

f1,d f2,d
K1

+ f2,d − 2 f2,d
√
λ1
K1
,

f 2
1,d

(1− f1,d ) f1,l fl,d
≤ λ1 ≤ λ∗1.

(11.45)

The value for λ∗1 is given by (11.37). Since g1(λ1) and g2(λ2) are achieved by the
dominant systems S1 and S2 respectively, then they are both achieved by CCMA-S.
This proves the theorem. �
An interesting observation that we make from the above theorem is that both functions
g1(λ1) and g2(λ1) are linear over some part of their domain and strictly convex over the
other part. It is not obvious, however, whether both functions are strictly convex over
their domain of definition, and hence, whether the boundary of the stability region of
CCMA-S given by max{g1, g2} is convex or not. In the following lemma, we prove this
property.

Lemma 11.3.2 The boundary of the stability region of system CCMA-S given by
max{g1, g2} is convex.

Proof We prove the convexity of the envelope of region R(CCMA-S). First we con-
sider the envelope g1(λ1) for the first branch. As shown in Figure 11.3, g1(λ1) is
defined over two regions: for λ1 ∈ [0, f1,d − f1,d f2,d/K2], g1(λ1) � g11(λ1) =
K2
(
λ1/2 f1,d + 0.5− f2,d/2K2

)2 − K2λ1/ f1,d + f2,d ; while for λ1 ∈ ( f1,d −
f1,d f2,d/K2, f1,d ], g1(λ1) � g12(λ1) is a straight line given by f2,d − f2,d/ f1,d . It can
be readily seen that g1(λ1) is convex over both regions because its second derivative
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f1,d – f1,d 
f2,d 

/K2

(a) First branch (b) Second branch

f1,d 
2

 
/K1λ1 λ1

g1(λ1) g2(λ1)

Fig. 11.3 Envelopes for the stability region of CCMA-S.

is non-negative. Thus, to prove that g1(λ1) is convex over the whole region, we check
the continuity and the first derivative at the intersection point f1,d − f1,d f2,d/K2. It
is simple to show that g1(λ1) is continuous at this point. Now, it remains to check the
slope of the tangent at the intersection point. Taking the first derivative of g11 and g12,
we can show that

∂g11(λ1)

∂λ1
= ∂g12(λ1)

∂λ1
|
λ1= f1,d− f1,d f2,d

K2
. (11.46)

Therefore, g1(λ1) is also differentiable, which proves that g1(λ1) is convex over its
domain of definition. Similar arguments apply for g2(λ1) depicted in Figure 11.3 to
prove its convexity.

The envelope of the stability region of R(CCMA-S) is given by max [g1(λ1), g2(λ2)].
The maximum of two convex functions can be shown to be convex as follows. Let
0 < a < 1, and λ11, λ12 belong to the feasible region of λ1, then we have

max [g1(aλ11 + (1− a)λ12), g2(aλ11 + (1− a)λ12)]

≤ max [ag1(λ11)+ (1− a)g1(λ12), ag2(λ11)+ (1− a)g2(λ12)] , (1)

≤ max [ag1(λ11), ag2(λ11)]+max [(1− a)g1(λ12), (1− a)g2(λ12)] (2)

(11.47)

where (1) follows by the convexity of g1(·) and g2(·), and (2) follows by the properties
of the max function. This proves that the envelope of the stability region for system
CCMA-S is convex. �
The above Lemma will prove useful in characterizing the relation among the stability
regions of the different multiple access protocols considered in this paper. The first
relation that we state is that between the stability regions of TDMA and CCMA-S.

Lemma 11.3.3 The stability region of TDMA is contained inside that of CCMA-S. In
other words

R(TDMA) ⊆ R(CCMA− S). (11.48)
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The two regions are identical if the following two conditions are satisfied
simultaneously

(1− f2,d) f2,l fl,d < f2,d , (11.49)

(1− f1,d) f1,l fl,d < f1,d . (11.50)

Proof We use Theorem 11.3.1 and Lemma 11.3.2 in the proof of the this lemma.
The stability region of TDMA is determined according to the following parametric
inequalities:

λ1 ≤ ω1 f1,d , λ2 ≤ ω2 f2,d (11.51)

or, equivalently,

λ1

f1,d
+ λ2

f2,d
≤ 1. (11.52)

From Lemma 11.3.2, both functions g1 and g2 that determine the boundary of the sta-
bility region of CCMA-S are convex. From the proof of the convexity, we note that the
straight line λ2 = f2,d − f2,d/ f1,dλ1 is a tangent for both functions, hence, it lies below
both functions. Since this straight line is itself the boundary for the TDMA stability
region, then the stability region of TDMA is a subset of that of CCMA-S. To prove the
second part of the Lemma we use the definitions of the functions g1, g2 in Theorem
11.3.1. From (11.37), observe that if (1− f1,d) f1,l fl,d < f1,d then the maximum λ1 is
determined by f1,d . If simultaneously (1 − f2,d) f2,l f2,d < f2,d , then by substituting
both conditions in the domain definitions of the functions g1, g2, it can be seen that both
functions reduce to

g1(λ1) = g2(λ1) = f2,d − f2,d
f1,d

λ1, 0 ≤ λ1 ≤ f1,d , (11.53)

which is the boundary for the stability region of TDMA. Hence if both conditions in
(11.50) are satisfied, CCMA-S and TDMA have the same stable throughput regions.
This completes the proof of the lemma. �

11.3.1.2 The symmetric M-terminals case
Stability analysis for the general M-terminals case is very complicated. For the ALOHA
case, only bounds on the stability region have been derived before. In this section, we
only focus on the symmetric scenario. We define the dominant system for M-terminals
CCMA-S as follows. For 1 ≤ j ≤ N , define SM

j as follows:

• arrivals at queue i in SM
j are the same as in CCMA;

• the channel realizations hkl , where k ∈ T and l ∈ R, are identical for both SM
j and

CCMA;
• user i ∈M is assigned the same time slots in both systems;
• the noise generated at the receiving ends of both systems is identical;
• the packets served by the relay for the first j terminals are not removed from these

terminals’ queues.
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The last rule implies that the first j queues act as in a TDMA system without a relay.
The relay, however, can help the other users j + 1 ≤ k ≤ N in the empty slots of the
TDMA frame.

Now consider system SM
M in which the relay does not help any of the users. It is

clear that the queue sizes in this system are never smaller than those in the original
system CCMA-S. For SM

M , the success probability of transmitting a packet is equal for
all terminals and is given by

Ps(S
M
M ) = Pr [SNR ≥ β] = f1,d . (11.54)

The service rate per terminal is thus given by μ(SM
M ) = f1,d/M , due to the symmetry

of the problem. Since system SM
M acts as a TDMA system without a relay, the queues

are decoupled and hence the arrival process and departure process of each of them is
strictly stationary. Applying Loynes’ theorem, the stability condition for SM

M is given by

λ < f1,d , (11.55)

where λ is the aggregate arrival rate for the M terminals.
Next, let us consider the stability of symmetric CCMA-S. Since SM

M as described
before dominates CCMA-S, if SM

M is stable then CCMA-S is also stable. Therefore,
for λ < f1,d , system CCMA-S is stable. On the other hand, if all the queues in
SM

M are unstable, then none of these queues ever empty, hence, the relay loses its
role and both systems CCMA-S and SM

M are indistinguishable if both started with
the same initial conditions. Therefore, if we have λ > f1,d then all the queues in
SM

M are unstable and accordingly system CCMA-S is unstable as well. Therefore, the
maximum stable throughput for system CCMA-S can be summarized in the following
theorem.

T H E O R E M 11.3.2 The maximum stable throughput λMST(CCMA− S) for system
CCMA-S is equal to that of a TDMA system without a relay and is given by

λMST(CCMA-S) = f1,d . (11.56)

However, we conjecture that for the general asymmetric M-terminals scenario, the
whole stability region of TDMA will be contained inside that of CCMA-S. Another
important issue to point out is that although CCMA-S and TDMA have the same maxi-
mum stable throughput for the symmetrical case, the two systems do not have the same
delay performance as will be discussed later.

11.3.2 Stability analysis of CCMA-M

In CCMA-M the relay’s queue can possibly grow and hence should be taken into
account when studying the system stability. This means that for stability we require
both the M terminals’ queues and the relay’s queue to be stable. The stability region of
the whole system is the intersection of the stability regions of the M terminals and that
of the relay. First, we consider the M = 2-terminals case. According to the operation
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of system CCMA-M, a terminal succeeds in transmitting a packet if either the destina-
tion or the relay receives this packet correctly. The success probability of terminal i in
CCMA-M can thus be calculated as

Pr[Success of terminal i] = Pr
[
Oi,l ∪ Oi,d

]
, (11.57)

where Oi,l denotes the event that the relay received the packet successfully, and Oi,d

denotes the event that the destination received the packet successfully. The success
probability of terminal i ∈ {1, 2} in CCMA-M can thus be specified as follows

Pi = fi,d + fi,l − fi,d fi,l . (11.58)

We first consider the stability region for the system determined just by the terminals’
queues. Since for each queue i ∈M, the queue behaves exactly as in a TDMA system
with the success probability determined by (11.58), the stability region RM(CCMA-M)
for the set of queues in M is given by

RM(CCMA-M) =
{
[λ1, λ2, . . . , λM ] ∈ RM+ : λi < ωi Pi ,∀i ∈M,

and [ω1, ω2, . . . , ωM ] ∈ �} .
(11.59)

Next we study the stability of the relay’s queue l. The evolution of the relay’s queue can
be modeled as

Qt
l =

(
Qt

l − Y t
l

)+ + Xt
l , (11.60)

where Xt
l denotes the number of arrivals at time slot t and Y t

l denotes the possibility of
serving a packet at this time slot from the relay’s queue (Y t

l (G) takes values in {0, 1}).
Now we establish the stationarity of the arrival and service processes of the relay. If
the terminals’ queues are stable, then by definition the departure processes from both
terminals are stationary. A packet departing from a terminal queue is stored in the relay’s
queue (i.e., counted as an arrival) if simultaneously the following two events happen:
the terminal–destination channel is in outage and the terminal–relay channel is not in
outage. Hence, the arrival process to the queue can be modeled as follows:

Xt
l =

∑
i∈M

1
[

At
i

⋂
{Qt

i �= 0}
⋂

Ot
i,d

⋂
Ot

i,l

]
. (11.61)

In (11.61), {Qt
i �= 0} denotes the event that terminal i’s queue is not empty, i.e., the

terminal has a packet to transmit, and according to Little’s theorem it has probabil-
ity λi/(ωi Pi ), where Pi is terminal i’s success probability and is defined in (11.58).
The random processes involved in the above expressions are all stationary, hence the
arrival process to the relay is stationary. The expected value of the arrival process can
be computed as follows:

λl =
∑
i∈M

λi
(1− fi,d) fi,l

Pi
. (11.62)

Similarly, we establish the stationarity of the service process from the relay’s queue.
The service process of the relay’s queue depends by definition on the empty slots avail-
able from the terminals, and on the channel from the relay to the destination not being
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in outage. By assuming the terminals’ queues to be stable, they offer stationary empty
slots (stationary service process) to the relay. Also the channel statistics is stationary,
hence, the relay’s service process is stationary. The service process of the relay’s queue
can be modeled as

Y t
l =

∑
i∈M

1
[

At
i

⋂
{Qt

i = 0}
⋂

Ot
l,d

]
, (11.63)

and the average service rate of the relay can be determined from the following equation:

E[Y t
l ] =

∑
i∈M

ωi

(
1− λi

ωi Pi

)
fl,d. (11.64)

Using Loynes’ theorem and (11.62) and (11.64), the stability region for
the relay Rl(CCMA-M) is determined by the condition E[Xt

l ]<E[Y t
l ]. The

total stability region for system CCMA-M is given by the intersection of two
regions RM(CCMA-M)

⋂
Rl(CCMA-M) which is easily shown to be equal to

Rl(CCMA-M). The stability region for CCMA-M with two terminals is thus character-
ized as follows:

R(S2)

=
{
[λ1, λ2] ∈ R+2 : λ1

P1

(
(1− f1,d) f1,l + fl,d

)+ λ2

P2

(
(1− f2,d) f2,l + fl,d

)
< fl,d

}
(11.65)

For M = 2, this reveals that the stability region of CCMA-M is bounded by a straight
line. Since the stability region for TDMA is also determined by a straight line, when
comparing both stability regions it is enough to compare the intersection of these lines
with the axes. These intersections for CCMA-M are equal to

λ∗1(CCMA-M) = fl,d P1
fl,d+(1− f1,d ) f1,l

,

λ∗2(CCMA-M) = fl,d P2
fl,d+(1− f2,d ) f2,l

, (11.66)

while the corresponding values for TDMA are given by

λ∗1(TDMA) = f1,d ,

λ∗2(TDMA) = f2,d . (11.67)

It is clear that the stability region for TDMA is completely contained inside the sta-
bility region of CCMA-M if λ∗1(CCMA-M) > λ∗1(TDMA) and λ∗2(CCMA-M) >
λ∗2(TDMA). Using (11.66) and (11.67), these two conditions are equivalent to

fl,d > f1,d , fl,d > f2,d . (11.68)

These conditions have the following intuitive explanation. If the channel between the
relay and destination has higher success probability than the channel between the ter-
minal and destination, then it is better to have the relay help the terminal transmit its
packets. Note that (11.68) implies that TDMA can offer better performance for the ter-
minal whose success probability does not satisfy (11.68). This possible degradation in
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the performance does not appear in CCMA-S because the design of CCMA-S does not
allow the relay to store the packets it received for ever. Hence, the performance of pro-
tocol CCMA-S can not be less than that of TDMA. In protocol CCMA-M, however, the
relay becomes responsible for all of the packets it receives, and if the relay–destination
channel has a higher probability of outage than the terminal–destination channel then
the system encounters a loss in the performance. This calls for the development of an
enhanced version of protocol CCMA-M to take this into account.

11.3.2.1 Enhanced protocol CCMA-Me
The previous discussion motivates the design of an enhanced version of CCMA-M,
which we refer to as CCMA-Me. In this enhanced strategy, the relay only helps the
terminals that are in a worse channel condition than the relay itself. In other words, the
relay helps the terminal whose outage probability to the destination satisfies fl,d > fi,d
for i ∈M. Other terminals that do not satisfy this inequality operate as in TDMA, i.e.,
the relay does not help them.

Next let us calculate the stability region for the enhanced system and consider M = 2
terminals for illustration. Assume that the relay only helps terminal 1. Similar to our
calculations for the arrival and service processes for the relay in CCMA-M, we can
show that the average arrival rate to the relay in CCMA-Me is given by

E [Xt
l (CCMA-Me)] = λ1

P1
(1− f1,d) f1,l , (11.69)

and the average service rate to the relay is given by

E [Y t
l (CCMA-Me)] =

(
ω1

(
1− λ1

ω1 P1

)
+ ω2

(
1− λ2

ω2 f2,d

))
fl,d. (11.70)

Using Loynes’ theorem [124] and (11.69) and (11.70), the stability region
R(CCMA-Me) is given by

R(CCMA-Me) =
{
[λ1, λ2] ∈ R2+ :

λ1

P1

(
(1− f1,d) f1,l + fl,d)

)+ λ2
fl,d
f2,d

< fl,d

}
.

(11.71)
The stability region for the enhanced protocol CCMA-Me is no less than the sta-
bility region of TDMA R(TDMA) ⊆ R2,e, and the proof simply follows from the
construction of the enhanced protocol CCMA-Me.

For a general M-terminal case, the analysis is the same and the stability region for
CCMA-Me can be fully characterized as follows.

T H E O R E M 11.3.3 The stability region for M-terminals CCMA-Me is specified as

R(CCMA−Me) =
⎧⎨⎩[λ1, λ2, . . . , λM ] ∈ RM+ :

∑
i∈M1

λi

Pi

(
(1− fi,d) fi,l + fl,d)

)

+
∑

j∈M2

λ j
fl,d
f jd

< fl,d

⎫⎬⎭ .
(11.72)
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where M1 =
{
i ∈M : fl,d > fi,d

}
, or the set of terminals that the relay helps, and

M2 =
{
i ∈M : fl,d < fi,d

}
is the complement set.

We observe that the stability region of CCMA-Me is still bounded by a straight line. This
follows because the stability of the system of queues in CCMA-Me is determined by the
stability of a single queue, which is the relay’s queue. It remains to specify the relation
between the stability regions of CCMA-S and CCMA-Me, which is characterized in the
following theorem.

T H E O R E M 11.3.4 The stability region of CCMA-Me contains that of CCMA-S. In
other words,

R(TDMA) ⊆ R(CCMA− S) ⊆ R(CCMA−Me). (11.73)

Proof We now prove that the stability region of CCMA-S is a subset of that of CCMA-
Me. In the proof of this theorem, we use two facts: the envelope of R(CCMA-S) is
convex as proved in Lemma 11.3.2, and the envelope of R(CCMA-Me) is a straight
line. Hence, to prove Theorem 11.3.4, it suffices to show that the intersections of the
envelope of region R(CCMA-S) with the λ axes are not greater than those for region
R(CCMA-Me). We consider the scenario when both CCMA-S and CCMA-Me have
larger stability regions that TDMA, or equivalently fl,d fi,l(1 − fi,d) ≥ fi,d , i = 1, 2,
because if this condition is not satisfied the stability region of CCMA-S becomes identi-
cal to that of TDMA, and CCMA-Me was shown to outperform TDMA, and hence our
theorem is true.

We will consider only the intersections with the λ1 axis; similar arguments follow for
the λ2 axis. The intersection of R(CCMA-S) with the λ1 axis, or the maximum stable
arrival rate for the first queue, is given by (11.37), while that for R(CCMA-Me) is given
by (11.66). Denote the difference between these two quantities by δ, given as follows:

δ = fl,d( f1,d + f1,l − f1,d f1,l)

fl,d + (1− f1,d) f1,l
−
[

f1,d + (1− f1,d) f1,l fl,d
]2

4(1− f1,d) f1,l fl,d
. (11.74)

If we prove that δ is nonnegative, then we are done. For an arbitrary fixed value for the
pair ( f1,d , fl,d), we consider the range of f1,l that satisfies the constraint fl,d f1,l(1 −
f1,d) ≥ f1,d . The first derivative of δ with respect to f1,l is given by

∂δ

∂ f1,l
= fl,d(1− f1,d)( fl,d − f1,d)

( fl,d + (1− f1,d) f1,l)2
− 1

4
(1− f1,d) fl,d+

f 2
1,d

4(1− f1,d) f 2
1,l fl,d

, (11.75)

Since fl,d > f1,d , the second derivative of the above function is easily seen to be
negative, hence δ is concave in f1,l in the region of interest.

f1,l takes values in the range
[

f1,d
(1− f1,d ) fl,d

, 1
]
. The function δ evaluated at the

minimum value of f1,l is

δ| f1,l,min =
fl,d f1,d + f1,d

fl,d + (1− f1,d) f1,l
− f1,d (11.76)

= f1,d − f1,d(1− f1,d) f1,l
fl,d + (1− f1,d) f1,l

> 0. (11.77)
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Fig. 11.4 Numerical evaluation of δ for f1,l = 1 .

Hence, δ is positive at the leftmost boundary of the feasible region of f1,l . For the
maximum feasible value of f1,l , which is equal to 1, the function δ is given by

δ = fl,d
1− f1,d + fl,d

− ( f1,d + (1− f1,d) fl,d)2

4(1− f1,d) fl,d
. (11.78)

Figure 11.4 depicts δ for f1,l = 1 over the feasible region of the pair ( f1,d , fl,d). As
shown in the figure, the value of δ is always positive.

Hence, for an arbitrary feasible value of the pair ( f1,d , fl,d), δ is concave in f1,l and
positive at the extreme end points of the feasible region of f1,l ; therefore, δ is positive
for the whole range of f1,l for an arbitrary value of the pair ( f1,d , fl,d). This proves that
δ is always positive over the feasible region of success probabilities, and, therefore, that
R(CCMA-S) is a subset of R(CCMA-Me). This proves Theorem 11.3.3.3 �

11.3.3 Existing cooperation protocols: stability analysis

In this section we discuss stability results for some existing decode-and-forward coop-
eration protocols. In particular, we consider the family of adaptive relaying discussed in
previous chapters of the book, which comprises selection and incremental relaying. In
the following, we discuss stability results for these two protocols and compare them to
our proposed CCMA protocol.

3 The above theorem has another proof that does not need numerical evaluation; however, it is complicated
and will not add new insights to the results.
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11.3.3.1 Stability region for selection decode-and-forward
In this subsection, we characterize the stability region of selection decode-and-forward
(SDF) described before in the single relay chapter. For this chapter to be self-contained,
we describe the protocol again here. The cooperation is done in two phases. In the
first phase, the source transmits and both the relay and the destination listen. In the
second phase, if the relay is able to decode the signal correctly, then it is going to for-
ward the received packet to the destination, otherwise the source retransmits the packet.
Accordingly, there is always a specified channel resource dedicated for the relay to help
the source, which is different from the opportunistic nature of cooperation in our pro-
posed algorithms. Note that we do not allow the destination to store analog signals in
order to do maximum ratio combining (MRC). This is to enable a fair comparison with
the other protocols presented in this chapter that do not utilize MRC. Note that all of
the results described here can be extended to the scenario where the destination saves
copies of received signals and applies MRC; however, it would not add new insights to
the results. For the sake of the analysis of SDF, we also assume that the channel fade
changes independently from one time slot to another. Note also that this assumption is
in favor of SDF, and in general if the channel is correlated from one time slot to another,
the performance of SDF will degrade because of diversity loss.

In the following we analyze the outage probability for SDF under the following two
scenarios:
• In the first scenario, the structure of the packets arrivals at the terminal is not

allowed to be altered. Thus, each packet is transmitted in two consecutive time
slots with the original spectral efficiency (for example using the same modu-
lation scheme). This, however, results in SDF having half the bandwidth effi-
ciency of TDMA and CCMA because each packet requires two time slots for
transmission.

• In the second scenario, the bandwidth efficiency is preserved among all protocols.
This can be done by allowing the terminal and the relay to change the structure
of the incoming packets so that each of them transmit at twice the incoming rate
(twice the spectral efficiency). Hence each packet is now transmitted in one time
slot again, and the average spectral efficiency for SDF under this scenario is equal
to that of TDMA and CCMA.

For the first scenario, an outage occurs if both the source–destination link and the
source–relay–destination link are in outage. This can be specified as follows:

PrSDF(O) = Pr
[(
{SNRi,d < 2β}

⋂
{SNRi,l < 2β}

⋂)
⋃(

{SNRi,d < 2β}
⋂
{SNRi,l > 2β}

⋂
{SNRl,d < 2β}

)]
,

(11.79)

for i ∈ M. The factor 2 in front of the SNR threshold β is to account for the fact
that the transmitted power is divided by 2 in the first scenario to have the same energy
per bit. (Note that the bandwidth efficiency of SDF in the first scenario is half of that
of CCMA, hence we need to reduce the transmit power by half.) The first term in the
right-hand side of (11.79) corresponds to the event that both the source–destination and
the source–relay links were in outage in the first time slot, and the source–destination
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link remained in outage in the second time slot. The second term in (11.79) corresponds
to the event that the source–destination link was in outage and the source–relay link was
not in outage in the first time slot, but the relay–destination link was in outage in the
second time slot. The probability in (11.79) can be expressed as

Pri,SDF(O) =
(
1− f 2

i,d

)2 (
1− f 2

i,l

)
+
(
1− f 2

i,d

)
f 2
i,l

(
1− f 2

l,d

)
, (11.80)

where fi, j is defined in (11.9). Since a single packet is transmitted in two time slots,
one can think of this protocol as a modified TDMA system with the cooperation time
slot having twice the length of the time slot in TDMA. The average arrival rate per
cooperation time slot is 2λi for i ∈M. Loynes’ condition for stability is given by

λ1

1− Pr1,SDF(O)
+ λ2

1− Pr2,SDF(O)
<

1

2
, (11.81)

where 1− Pri,SDF(O) is the success probability for terminal i .
For the second scenario, we need to calculate the SNR threshold corresponding to

transmitting at twice the rate; denote this threshold by β ′. The resulting SNR threshold
β ′ should generally be larger than β required for transmission at the original rate. It
is in general very difficult to find an explicit relation between the SNR threshold β
and the transmission rate, and thus we turn to a special case to capture the insights
of this scenario. Let the outage be defined as the event that the mutual information I
between two terminals is less than some specific rate R [141]. If the transmitted signals
are Gaussian, then according to our channel model, the mutual information between
terminal i ∈ T and terminal j ∈ D is given by I = log(1+ SNRi, j ). The outage event
for this case is defined as

OI �
{
hi, j : I < R

}
. (11.82)

The above equation implies that if the outage is defined in terms of the mutual informa-
tion and the transmitted signals are Gaussian, then the SNR threshold β and the spectral
efficiency R are related as β = 2R − 1, i.e., they exhibit an exponential relation. Hence,
for protocol SDF when transmitting at twice the rate, the corresponding SNR thresh-
old β ′ is given by β ′ = 22R − 1, and given β one can find β ′ through the previous
equation. Note that we do not reduce the power in this second scenario because both
SDF and CCMA have the same spectral efficiency. Intuitively, under a fixed modulation
scheme and fixed average power constraint, one can think of the SNR threshold as being
proportional to the minimum distance between the constellation points, which in turn
depends on the number of constellation points for fixed average power, and the later has
an exponential relation to the number of bits per symbol, which determines the spectral
efficiency.

11.3.3.2 Stability region for incremental decode-and-forward
In such a strategy, feedback from the destination in the form of ACK or NACK is uti-
lized at the relay node to decide whether to transmit or not. In amplify-and-forward
incremental relaying (discussed in the relay chapter), the source transmits in the first
phase, and if the destination is not able to receive correctly it sends a NACK that can
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be received by the relay. The relay then amplifies and forwards the signal it received
from the source in the first phase. It can be readily seen that such a strategy is more
bandwidth efficient than SDF because the relay only transmits if necessary.

We consider a modified version of the incremental relaying strategy. In particular, we
consider a decode-and-forward incremental relaying scheme with selection capability at
the relay (SIDF). In SIDF, the first phase is exactly as amplify-and-forward incremental
relaying. In the second phase, if the destination does not receive correctly then the relay,
if it was able to decode the source signal correctly, forwards the re-encoded signal to
the destination, otherwise the source retransmits again. One can think of this protocol
as combining the benefits of selection and incremental relaying.

Next we analyze the outage probability of SIDF. As we did when studying SDF, we
are also going to consider two scenarios for SIDF, namely, when the packet structure
is not allowed to be changed and the scenario of equal spectral efficiency. First we
consider the first scenario where the packet structure is not allowed to be changed.
The spectral efficiency of SIDF in this case is less than TDMA or CCMA because the
relay is occasionally allocated some channel resources for transmission with positive
probability. Since both SDF and SIDF have the same mechanism for the outage event, it
is readily seen that the outage event for SIDF is also given by (11.79) with the difference
that we only use β in this case without the term 2 because SIDF will use the same
transmit power.4 The outage event is thus given by

PrSIDF(O) =
(
1− fi,d

)2 (1− fi,l
)+ (1− fi,d

)
fi,l
(
1− fl,d

)
. (11.83)

The above expression represents the success probability of transmitting a packet in one
or two consecutive time slots. Terminal i uses one time slot with probability fi,d and
two time slots with probability 1 − fi,d . The average number of time slots used by
terminal i during a frame in SIDF is thus given by 2 − fi,d . The set of queues are not
interacting in this case and the stability region is simply given by∑

i∈M

λi
(
2− fi,d

)
1− PrSIDF(O)

< 1. (11.84)

Next, we consider the second scenario of SIDF where the spectral efficiency is pre-
served for SIDF as for TDMA or CCMA. In this scenario, both the terminals and the
relay will be transmitting at a higher rate R̃ such that the average spectral efficiency is
equal to the spectral efficiency R of TDMA or CCMA. The average spectral efficiency
R(SIDF) of SIDF when transmitting at a spectral efficiency R̃ is given by

R(SIDF) = R̃ ˜fi,d + R̃

2

(
1− ˜fi,d

)
� v(R̃), (11.85)

where ˜fi,d is the success probability for the link between terminal i and the destination
when operating at spectral efficiency R̃, and we denote the whole function in the above
expression by v(·). For the sake of comparison R(SIDF) = v(R̃) should be equal to R.

4 This is in favor of SIDF because the transmit power should be reduced to account for the reduction in the
average spectral efficiency.
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Thus for a given R one should solve for R̃ = v−1(R). This function can lead to many
solutions for R̃, and we are going to choose the minimum R̃. The stability region is thus
given by ∑

i∈M

λi

1− PrSIDF(Õ)
< 1. (11.86)

where PrSIDF(Õ) has the same form as PrSIDF(O) but evaluated at spectral efficiency R̃.

11.3.4 Numerical examples

In the following examples, we compare the stability regions of M = 2-users TDMA,
CCMA-S, CCMA-Me, the two forms of adaptive relaying (selection and incremental
relaying), and ALOHA as an example of random access. In ALOHA, a terminal trans-
mits a packet with some positive probability p if it has a packet to transmit. This means
that there can be collisions among different terminals due to simultaneous transmissions
in a time slot. The stability region for a general multipacket reception (MPR) ALOHA
system was characterized in [NMT05].

Example 11.5 (Stability region) In Figures 11.5 and 11.6 we plot the stability regions
for TDMA, CCMA-S, CCMA-Me, selection decode-and-forward (SDF), incremental
decode-and-forward (SIDF), and ALOHA for a SNR threshold of β = 35, and β = 64,
respectively. For SDF and SIDF we use the first scenario in which the packet structure
is not changed. The parameters used to depict these results are as follows. The distances
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Fig. 11.5 Stability regions for the different considered protocols at a SNR threshold of β = 35. For this
value of β CCMA-S is equivalent to TDMA as depicted. CCMA-Me has the largest throughput
region.
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Fig. 11.6 Stability regions for the different considered protocols at a SNR threshold of β = 64. TDMA is
contained in CCMA-S, and the gap between SIDF and CCMA-Me increases in this case.

in meters between different terminals are given by r1,d = 120, r2,d = 110, rl,d = 40,
r1,l = 85, r2,l = 80. The propagation path loss is given by γ = 3.6, the transmit power
G = 0.01 W, and N0 = 10−11. In both Figures 11.5 and 11.6, CCMA-Me has the largest
stable throughput region. In Figure 11.5, CCMA-S and TDMA have identical stable
throughput regions, and it can be checked that the conditions in (11.50) are satisfied
for β = 35. In Figure 11.6, TDMA is contained inside CCMA-S. Both CCMA-S and
CCMA-Me provide a larger stable throughput region over SDF and ALOHA. This is
because of the lost bandwidth efficiency in SDF and the interference in ALOHA due
to collisions. SIDF is very close to CCMA-Me for smaller values of β, and the gap
between them increases with increasing β as depicted in Figure 11.6. This is because the
bandwidth efficiency of SIDF reduces with increasing β, which increases the probability
of using a second time slot by the relay. �

Example 11.2 Next, we demonstrate the tradeoff between the maximum stable
throughput (MST) versus the SNR threshold β and the transmission rate R. For SDF and
SIDF, we consider the two scenarios described in Section 11.3.3.1, where in the first sce-
nario the incoming packet structure is not changed and hence the two protocols have less
bandwidth efficiency compared to TDMA and CCMA. While in the second strategy, the
packet structure is changed to preserve the bandwidth efficiency. The maximum stable
throughput results for the two scenarios are depicted in Figures 11.7 and 11.8, respec-
tively. In both figures, the relative distance between terminals are, r1,d = r2,d = 130,
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Fig. 11.7 Aggregate maximum stable throughput versus SNR threshold β in dB. The propagation path
loss is set to γ = 3.5. First scenario is used for SDF and SIDF. CCMA-Me has the best tradeoff
curve among all the other protocols.
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Fig. 11.8 Aggregate maximum stable throughput versus spectral efficiency R in bits/s/Hz. The
propagation path loss is set to γ = 3.5. Second scenario is used for SDF and SIDF. SIDF has the
best performance for low spectral efficiency but it suffers from a catastrophic degradation with
increasing spectral efficiency R. CCMA-Me has a graceful degradation due to its bandwidth
efficiency, and it has the best tradeoff for medium to high spectral efficiency.
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rl,d = 50, and r1,l = r2,l = 80. In Figure 11.7, the MST is plotted against the SNR
threshold β and the propagation path loss is set to γ = 3.5. For SDF and SIDF, we
use the first scenario. CCMA-Me has the best tradeoff for the whole range. TDMA
and CCMA-S have identical performance as proven before for the symmetric case. The
maximum attained MST for SDF is 0.5 as expected because of the time slot repetition.
ALOHA has better performance over SDF for a low SNR threshold, but for medium
and high values of β, SDF has better performance. SIDF has a close performance to
CCMA-Me for low values of β, and CCMA-Me outperforms it for the rest of the SNR
threshold range.

In Figure 11.8 the MST is plotted against the transmission rate R, and we use the
second scenario for SDF and SIDF. For this case the MST of SDF starts from 1 for low
rates R but decays exponentially after that. SIDF and SDF have the best performance
for low spectral efficiency regimes where sacrificing the bandwidth by transmitting at
higher rate is less significant than the gains achieved by diversity. SIDF performs better
than SDF because it is more bandwidth efficient. For higher spectral efficiency regimes,
the proposed CCMA-Me provides significantly higher stable throughput compared to
SDF or SIDF. An important point to observe from Figure 11.8 is the graceful degrada-
tion in the performance of CCMA-Me, but the sudden catastrophic performance loss in
SDF and SIDF. The rationale here is that the cognitive feature of the proposed CCMA-
Me results in no bandwidth loss because cooperation occurs in the idle time slots, while
both SDF and SIDF suffer from a bandwidth loss that increases for SIDF with increas-
ing R. Our results show that utilizing empty time slots to increase system reliability via
cooperation is a very promising technique in designing cooperative relaying strategies
for wireless networks. �

11.4 Throughput region

In the characterization of the stable throughput region in the previous section, the
source burstiness is taken into consideration. Consider now the scenario under which
the queues of all terminals are saturated, i.e., each terminal has an infinite number of
packets waiting transmission. The maximum throughput supported by any terminal can
be defined under such a scenario by the average maximum number of packets that can
be transmitted successfully by that terminal. The set of all such saturated throughput for
different resource-sharing vectors defines the throughput region.

Since the relay role in both CCMA-S and CCMA-Me depends on having empty time
slots to enable cooperation, there is no surprise that under the saturated queues scenario
the relay loses its role and CCMA-S and CCMA-Me reduce to TDMA without relaying.
We state this in the following corollary.

Corollary 11.4.1 The throughput regions of TMDA, CCMA-S, and CCMA-Me are
equivalent.

C (TDMA) ≡ C (CCMA− S) ≡ C (CCMA−Me) . (11.87)
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From the above corollary, we conclude that the saturated throughput region is a subset
of the stability region for both CCMA-S and CCMA-Me. This is an important observa-
tion, because for ALOHA systems it is conjectured in [129] that the maximum stable
throughput region is identical to the throughput region. It is of interest then to point
out that CCMA-S and CCMA-Me are examples of multiple access protocols where the
stable throughput region is different from the throughput region.

11.5 Delay analysis

In this section we characterize the delay performance of the cognitive cooperative
multiple access protocols, CCMA-S and CCMA-Me.

11.5.1 Delay performance for CCMA-S

In CCMA-S, a packet does not depart a terminal’s queue until it is successfully trans-
mitted to the destination. Therefore, the delay encountered by a a packet is the one
encountered in the terminal’s queue. Delay analysis for interacting queues in ALOHA
has been studied before, and it turns out to be a notoriously hard problem. Most of the
known results are only for the two-user ALOHA case. In this section we consider a
symmetric two-user CCMA-S scenario and characterize its delay performance.

Define the moment-generating function of the joint queues’ sizes processes (Qt
1, Qt

2)

as follows:

G(u, v) = lim
t→∞E

[
uQt

1vQt
2

]
. (11.88)

From the queue evolution equations in (11.13), we have

E
[
uQt+1

1 vQt+1
2

]
= E

[
uXt

1vXt
2

]
E
[
u(Q

t
1−Y t

1)
+
v(Q

t
2−Y t

2)
+]
, (11.89)

where the above equation follows from the independence assumption of the future
arrival processes from the past departure and arrival processes. Since the arrival pro-
cesses are assumed to follow a Bernoulli random process, the moment-generating
function of the joint arrival process is given by

A(u, v) � lim
t→∞E

[
uXt

1vXt
2

]
= (uλ+ 1− λ) (vλ+ 1− λ) , (11.90)

where, due to the symmetry of the two terminals, each has an arrival rate λ. From the
definition of the service process of CCMA-S (11.17), it follows that

E
[
u(Q

t
1−Y t

1)
+
v(Q

t
2−Y t

2)
+]= E

[
1(Qt

1= 0, Qt
2= 0)

]+ B(u)E
[
1(Qt

1>0, Qt
2 = 0)uQt

1

]
+ B(v)E

[
1(Qt

1 = 0, Qt
2 > 0)vQt

2

]
+ D(u, v)E

[
1(Qt

1 > 0, Qt
2 > 0)uQt

1vQt
2

]
,

where

B(z) = w f1,d+w2 f1,l fl,d(1− f1,d )
z + 1− (w f1,d + w2 f1,l fl,d(1− f1,d)

)
, (11.91)

D(u, v) = w f1,d(
1
u + 1

v
)+ 2w(1− f1,d), (11.92)
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in which we use w to denote the symmetric resource-sharing portion of each
terminal.

Substituting (11.90) and (11.91) into (11.89) and taking the limits we get

G(u, v) = A(u, v) (G(0, 0)+ B(u) [G(u, 0)− G(0, 0)]+ B(v) [G(0, v)

−G(0, 0)] +D(u, v) [G(u, v)+ G(0, 0)− G(u, 0)− G(0, v)]) .

(11.93)

We can rewrite the above equation as G(u, v) = H(u, v)/F(u, v), where

H(u, v) = G(0, 0)+ B(u) [G(u, 0)− G(0, 0)]+ B(v)× [G(0, v)− G(0, 0)]

+ D(u, v)(G(0, 0)− G(u, 0)− G(0, v)),

and F(u, v) = 1− A(u, v)D(u, v).
Define

G1(u, v) � ∂G(u, v)

∂u
. (11.94)

Due to symmetry, the average queue size is given by G1(1, 1). Hence, to find the average
queuing delay, we need to compute G1(1, 1).

First we find a relation between G(0, 0) and G(1, 0) using the following two prop-
erties which follow from the symmetry of the problem: G(1, 1) = 1 and G(1, 0) =
G(0, 1). Applying these two properties to (11.93) along with a simple application of the
L’Hopital limit theorem we get(
w2 f1,l fl,d(1− f1,d)

)
G(0, 0)+

(
w f1,d − w2 f1,l fl,d(1− f1,d)

)
G(1, 0) = w f1,d−λ.

(11.95)
Taking the derivative of (11.93) with respect to u, applying L’Hopital twice, and using
the relation in (11.95) we get

G1(1, 1) = λ(1− λ)
w f1,d − λ −

w2 f1,l fl,d(1− f1,d)

w f1,d − λ G1(1, 0). (11.96)

To find another equation relating G1(1, 1) and G1(1, 0), we compute ∂G(u, u)/∂u at
u = 1. After some tedious but straightforward calculations, we get

G(u, u)

u
|u=1 = 2λ− 1+ w f1,d − w2 f1,l fl,d(1− f1,d)

w f1,d − λ
G1(1, 0)− 4w f1,dλ− 2w f1,d − λ2

2(w f1,d − λ) . (11.97)

Due to the symmetry of the problem, we have the following property:

∂G(u, u)

∂u
|u=1 = 2G1(1, 1). (11.98)

Using the above equation, and solving (11.96) and (11.97), we get

G1(1, 1) = − (2w f1,d + w2 f1,l fl,d(1− f1,d)
)
λ2 + 2w f1,dλ

2(w f1,d + w2 f1,l fl,d(1− f1,d))(w f1,d − λ) . (11.99)
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The queueing delay for system CCMA-S can thus be determined, as in the following
theorem.

T H E O R E M 11.5.1 The average queueing delay for a symmetrical two-terminals
CCMA-S system is given by

D(CCMA− S) = G1(1, 1)

λ
= − (2w f1,d + w2 f1,l fl,d(1− f1,d)

)
λ+ 2w f1,d

2(w f1,d + w2 f1,l fl,d(1− f1,d))(w f1,d − λ) .
(11.100)

From Theorem 11.5.1, it can be observed that at λ = ω f1,d the delay of the system
becomes unbounded, i.e., the system becomes saturated. This confirms our previous
results in Corollary 11.4.1 that, for a symmetrical system, both TDMA and CCMA-S
have the same maximum stable throughput of λ = ω f1,d .

11.5.2 Delay performance of CCMA-Me

Due to the symmetrical scenario considered in analyzing the delay performance, if
the relay helps one terminal then it helps all terminals, in which case both CCMA-M
and CCMA-Me become equivalent. In CCMA-M, a packet can encounter two queuing
delays: the first in the terminal’s queue and the second in the relay’s queue. If a packet
successfully transmitted by a terminal goes directly to the destination, then this packet
is not stored in the relay’s buffer. Denote this event by ξ . The total delay encountered
by a packet in CCMA-M can thus be modeled as

T (CCMA-M) =
{

Tt , ξ,

Tt + Tl , ξ ,
(11.101)

where Tt is the queuing delay in the terminal’s queue, and Tl is the queuing delay at the
relay’s queue. We can elaborate more on (11.101) as follows. For a given packet in the
terminal’s queue, if the first successful transmission for this packet is to the destination,
then the delay encountered by this packet is only the queuing delay in the terminal’s
queue. On the other hand, if the first successful transmission for this packet is not to the
destination, then the packet will encounter a queuing delay in the terminal’s queue in
addition to the queuing delay in the relay’s queue.

First, we find the queuing delay in either the terminal’s or the relay’s queue, as both
queues have similar evolution equations, with the difference being in the average arrival
and departure rates. Using the same machinery utilized in the analysis of the queuing
delay in CCMA-S to analyze the delay performance of CCMA-M, the average queue
size can be found as

E [N ] = λ(1− λ)
μ− λ , (11.102)

where λ denotes the average arrival rate and μ denotes the average departure rate.
We now compute the average delay in (11.101). The probability that, for any packet,
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the first successful transmission from the terminal’s queue is to the destination is
given by

Pr[ξ ] = f1,d
f1,d + f1,l − f1,d f1,l

= f1,d
P1
. (11.103)

From (11.101), (11.102), and (11.103), the average delay for system CCMA-M is thus
given by

D(CCMA−M) = f1,d
P1

1− λ
wP1 − λ +

f1,l(1− f1,d)

P1

(
1− λ
wP1 − λ +

1− λl

μl − λl

)
,

(11.104)
where λl and μl are the average arrival and departure rates, respectively, for the
relay’s queue defined in (11.61) and (11.63). After simplifying the above equation,
the average queuing delay for system CCMA-M can be summarized in the following
theorem.

T H E O R E M 11.5.2 The average queuing delay for a packet in a symmetrical two-
terminal CCMA-M system is given by

D(CCMA−M) = 1− λ
wP1 − λ +

f1,l(1− f1,d)

P1

(
1− λl

μl − λl

)
. (11.105)

11.5.3 Numerical examples for delay performance

We illustrate the delay performance of the presented multiple access schemes with vary-
ing SNR threshold β through some numerical examples. As in the case for the stability
region, we include the delay performance of ALOHA, TDMA without relaying, SDF,
and SIDF in our results.

Example 11.3 To compare the delay performance of the different multiple access pro-
tocols considered in this chapter, we plotted the analytical expressions obtained for the
queueing delay. The system parameters are the same used to generate the MST plots in
Figures 11.7 and 11.8. Figures 11.9 and 11.10 depict the delay results for SNR thresh-
olds β = 15 and β = 64, respectively. From Figure 11.9, at very low arrival rates,
ALOHA has the best delay performance. Increasing the arrival rate λ, both CCMA-S
and SDF outperforms other strategies. For higher values of λ, CCMA-Me has the best
performance

The situation changes in Figure 11.10 for β = 64 as both CCMA-S and SIDF out-
perform ALOHA even for very small arrival rates. The intuition behind this is the
more stringent system requirements reflected by the higher SNR threshold β = 64,
which makes the interference in ALOHA more severe. This makes our cognitive mul-
tiple access protocol CCMA-S and CCMA-M perform better than ALOHA because
of its high bandwidth efficiency and the gains of cooperation. Another important
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Fig. 11.9 Average queuing delay per terminal versus the arrival rate for a SNR threshold of β = 15.
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Fig. 11.10 Average queuing delay per terminal versus the arrival rate for a SNR threshold of β = 64.

remark is that, although CCMA-S and TDMA have the same MST for the symmetric
case, as proven before and as clear from Figures 11.9 and 11.10 where both proto-
cols saturate at the same arrival rate, CCMA-S always has a better delay performance
than TDMA. �
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11.6 Chapter summary and bibliographical notes

In this chapter, we have studied the impact of cooperative communications at the mul-
tiple access layer. We described a cognitive multiple access protocol in the presence
of a relay in the network. The relay senses the channel for idle channel resources and
exploits them to cooperate with the terminals in forwarding their packets. Two protocols
to implement the proposed multiple access strategy, namely, CCMA-S and CCMA-
Me, were described. We characterized the maximum stable throughput region of the
proposed protocols and compared them to some existing adaptive relaying strategies:
non-cooperative TDMA and random-access ALOHA.

We studied the delay performance of the described protocols. The analysis reveals
significant performance gains of the cognitive protocols over their non-cognitive coun-
terparts. This is because the described cognitive multiple access strategies do not
result in any bandwidth loss, as cooperation is enabled only in idle “unused” channel
resources, which results in a graceful degradation of the maximum stable through-
put when increasing the communication rate. On the other hand, the maximum stable
throughput of non-cognitive relaying strategies as selection and incremental relaying
suffer from catastrophic degradation with increasing communication rate, because of
their inherent bandwidth inefficiency.

Analyzing the stability of interacting queues is a difficult problem that has been
addressed for ALOHA systems initially in [220]. Later in [149], the dominant system
approach was explicitly introduced and employed to find bounds on the stable through-
put region of ALOHA with collision channel model. Many other works followed that to
study the stability of ALOHA. In [209], necessary and sufficient conditions for the sta-
bility of a finite number of queues were provided; however, the stable throughput region
was only explicitly characterized for a three-terminals system. In [127], the authors pro-
vided tighter bounds on the stable throughput region for the ALOHA system using the
concept of stability ranks, which was also introduced in the same paper. The stabil-
ity of ALOHA systems under a multi-packet reception model (MPR) was considered
in [138, 129]. Characterizing the stable throughput region for interacting queues with
M > 3 terminals is still an open problem.

Delay analysis for interacting queues is a notoriously hard problem that has been
investigated in [136, 185] for ALOHA. Studies on the design and stability analysis of
the cognitive collaborative multiple access protocol can be found in [159, 160, 162].

Exercises

11.1 In Section 11.3.3, the stability regions for selective and incremental relaying were
derived.

(a) Derive the outage probability for both decode-and-forward relaying and
amplify-and-forward relaying and use the results to characterize the stable
throughput regions for both relaying techniques using Loynes’ theorem.

(b) Find the maximum stable throughput for these two protocols and plot the
results against the SNR threshold for a fixed spectral efficiency, and against
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the spectral efficiency when fixing the SNR. Compare the performance to
CCMA-S and CCMA-Me.

11.2 The stability results for CCMA-S and CCMA-Me were derived under the
Rayleigh flat fading channel model.

(a) Derive the stability regions for the two protocols under an AWGN channel
model including the propagation path loss.

(b) Characterize the relation between the stability regions of the proposed
protocols and TDMA under the AWGN channel.

11.3 Use the moment-generating function approach to analyze the delay performance
of decode-and-forward and amplify-and-forward relaying under a Rayleigh flat
fading channel model for a two-user system. Plot the delay performance versus
the arrival rate for a symmetric case. Find the arrival rate at which the system
saturates. Perform the previous calculations for the following three scenarios:

(a) Relay close to the source.
(b) Relay close to the destination.
(c) Relay in the middle.

Compare the delay performance results of decode-and-forward and amplify-and-
forward to the CCMA-S and CCMA-Me protocols presented in this chapter.

11.4 Find another approach to prove the results of Theorem 11.3.3 without using
numerical techniques.
[Hint: Find an auxiliary system whose stability region contains that of CCMA-S
and at the same time is a subset from the stability region of CCMA-Me.]

11.5 Characterize the maximum sum stable throughput that can be achieved by of
two-user TDMA, CCMA-S, and CCMA-Me for a general asymmetric case.
What is the impact of a scheme that maximizes the sum stable throughput on the
system fairness? In other words, do both users transmit at the same rate?

11.6 In Exercise 11.5 the goal was to maximize the system sum-stable throughput.
Consider now that the objective is to achieve an equal grade of service, i.e., all
users in the system achieve the same throughput.
Find the maximum common throughput that all users in the system can achieve.
[An equal grade of service corresponds to absolute fairness because all users get
to transmit at the same throughput.]
[Hint: An equal grade of service corresponds to the point on the stable throughput
region that intersects with a line that makes a 45◦ with the x-axis.]

11.7 Write down a Matlab code that draws the stability region of CCMA-S using
the expression in (11.22), and without resorting to the closed-form expression
in Theorem 11.3.1. Next compare your numerical results to this closed-form
expression.

11.8 In (11.42), the optimal amount of resources allocated for the first user was
specified as

w1∗ =
⎧⎨⎩

λ1
f1,d
, if λ1 ≤ f 2

1,d
(1− f1,d ) f1,l fl,d

,√
λ1

(1− f1,d ) f1,l fl,d
, otherwise.

(E11.1)

Prove that this expression never exceeds one.
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11.9 A moment-generating function approach was used to analyze the delay of
CCMA-S. The moment-generating function expression was given as (11.93)

G(u, v) = A(u, v) (G(0, 0)+ B(u) [G(u, 0)− G(0, 0)]+ B(v) [G(0, v)
(E11.2)

−G(0, 0)] +D(u, v) [G(u, v)+ G(0, 0)− G(u, 0)− G(0, v)]) .
(E11.3)

Prove this expression.
11.10 Applying the L’ Hopital theorem twice prove the expression in (11.99), i.e.,

prove

G1(1, 1) = − (2w f1,d + w2 f1,l fl,d(1− f1,d)
)
λ2 + 2w f1,dλ

2(w f1,d + w2 f1,l fl,d(1− f1,d))(w f1,d − λ) . (E11.4)



12 Content-aware cooperative multiple
access

The previous chapter studied the effects and use of cooperation on the multiple access
channel. In this chapter we look further into using the properties of the source traffic
to improve the efficiency of cooperative multiple access. Because the presentation in
this chapter is highly dependent on the characteristics of the source, we will focus on
the communication of packet speech. Nevertheless, the main underlying ideas can be
extended to other types of sources.

Speech communication has a distinctive characteristic that differentiates it from data
communication, which was the main focus of the previous chapter. Speech sources
are characterized by periods of silence in between talk spurts. The speech talk–silence
patterns could be exploited in statistical multiplexing-like schemes where silent users
release their reserved channel resources, which can then be utilized to admit more users
to the network. This comes at the cost of requiring a more sophisticated multiple access
protocol. One well-known protocol that uses this approach for performance improve-
ment is the packet reservation multiple access (PRMA) protocol [49], which can be
viewed as a combination of TDMA and slotted ALOHA protocols. In PRMA, terminals
in talk spurts contend for the channel in empty time slots. If a user contends succesfully,
then the slot used for contention is reserved for the user. Users with reservations trans-
mit their voice packets in their reserved slots. If a user fails to transmit its packet due
to channel errors, the user looses the reservation and the reserved slot becomes free for
contention again. Although the effects of this operation is practically unnoticeable in
channels where errors are very infrequent, in channels with frequent errors (such as the
wireless channel) the loss of renovation due to an error has the potential to adversely
affect the efficiency of the protocol. This is because channel errors not only force the
discarding of the damaged packets, but also increase the network traffic and access
delay, as users with lost packets have to repeat the contention process again.

This chapter will focus on a cooperative multiple access protocol that uses the prop-
erties of speech to increase the network capacity and the user cooperation efficiency. As
is the case with established multiple access protocols, the network capacity is increased
by reserving the network resources only to the users in a call spurt. Those users fin-
ishing a silence period need to contend for channel access over a shared resource. At
the same time, the use of cooperation increases the system performance by helping
users in talk spurts to reduce the probability of dropping packets and having to contend
again. Cooperation is achieved through the deployment of a relay node. This relay node
exploits the silence periods typical of speech communications in a new way, since it
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cognitively forwards speech packets for active calls using part of the free time slots
left available by users that are silent. Most importantly, because the resources allo-
cated to the relay were previously available for other users’ contention for channel
access, no new exclusive channel resources are needed for cooperation and the sys-
tem encounters no bandwidth losses. On the other hand, the use of cooperation imposes
a tradeoff between the amount of help offered to active calls and the probability of a
successful contention for channel access. This kind of tradeoff is, in some sense, simi-
lar to the diversity–multiplexing tradeoff in MIMO and other user-cooperative systems.
By judicious control of this tradeoff it is possible to achieve significant performance
improvements through cooperation.

12.1 System model

12.1.1 speech source model

Speech sources are characterized by periods of silence in between talk spurts that
account for roughly 60% of the conversation time. This key property could be exploited
to significantly improve the utilization of channel resources but with the cost of
requiring a more sophisticated multiple access protocol.

Example 12.1 Figure 12.1 shows the voice signal amplitude for a speech sequence and
illustrates the alternation of speech between talking and silence periods. In the figure,
the dashed line indicates the state of the speech sequence, “on” or “off,” over the time. In
order to make the figure sufficiently clear we have chosen arbitrarily a value of 0.3 when

0 2000 4000 6000 8000 10 000 12 000 14 000 16 000
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–0.1

–0.2

–0.3

Fig. 12.1 A typical speech segment illustrating the on/off characteristic of speech. The dashed lines take a
value of 0.3 (chosen arbitrarily so the figure is sufficiently clear) when speech is detected “on”
and a value of −0.3 when speech is detected “off”.
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speech is detected “on”(talking state) and a value of−0.3 when speech is detected “off”
(silence state). In practice, the detection of the speech state is performed in the source
encoder through an algorithm named VAD (voice activity detector). �

To model the alternations between periods of silence and talk spurts, each speech source
in a conversation is modeled as a Markov chain as shown in Figure 12.2 with two
states: talk (TLK) and silence (SIL). In the figure, γ represents the transition probability
from the talking state to the silence state and σ is the transition probability from the
silence state to the talking state. The value of these two probabilities depend, of course,
on the speech model but also on the time unit used to model state transitions in the
Markov chain. In packet speech communications scenarios, as in the one considered
in this chapter, it is convenient for the purpose of mathematical analysis, to choose the
same basic time unit for the Markov chain as the one used for channel access. As will
be discussed in the next section, the channel is divided into TDMA time frames, each
of duration T seconds. Hence, it is suitable to also choose the basic time unit for the
Markov chain to be equal to T seconds, which means that state transitions are only
allowed at the frame boundaries.

It is also customary in the Markov chain modeling of speech sources to assume that
the waiting time in any state has an exponential distribution. Then, with these assump-
tions in mind, the transition probability from the talking state to the silence state is the
probability that a talk spurt with mean duration t1 ends in a frame of duration T , which
can be calculated as

γ = 1− e−T/t1 . (12.1)

Similarly, the transition probability from the silence state to the talking state is the prob-
ability that a silence gap of mean duration t2 ends during a frame of duration T , and can
be calculated as

σ = 1− e−T/t2 . (12.2)

12.1.2 Network model

We consider a network with three types of nodes as illustrated in Figure 12.3: source
nodes, associated with each user of the network; a relay node; and a base station. We
will focus exclusively on the uplink channel and assume a packet network carrying
speech traffic. Medium access in the network is based on the packet reservation multiple

SIL1 – σ

σ

γ

1 – γTLK

Fig. 12.2 Speech source model using a Markov chain. The two talk states TLK and SIL correspond to a
speaker being in a talk spurt or a period of silence, respectively.
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Fig. 12.3 Network and channel model.
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Fig. 12.4 Flowchart of the PRMA protocol.

access (PRMA) protocol [49]. The PRMA protocol can be viewed as a combination of
the TDMA and slotted ALOHA protocols, where the channel is subdivided into time
frames and each frame is in turn subdivided into N time slots. Figure 12.4 shows a
simple diagram of how PRMA works. Those users in the process of starting a talk
spurt contend for the channel over empty time slots, independently of each other and
with a fixed access probability that we will denote as pv. If a user is successful in the
contention process, then a slot is reserved for that user; otherwise, the base station feeds
back a NULL message to make the slot available for contention in the next time frame.

Users with reserved slots keep the reservation, in principle for the duration of the
talk spurt, and use them to transmit their corresponding speech packets. Upon ending
a talk spurt, a user enters a silence state where it is not generating or transmitting any
packets. In this case, the base station feeds back a NULL message to declare that the
previously reserved time slot is free again for other users to use. Note that the PRMA
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protocol exploits the on–off nature of speech to improve the utilization of the channel by
reserving slots only for calls in a talk spurt. Nevertheless, note also that because users
contend for an empty time slot with certain probability, some slots may be left unused
even in situations of access congestion.

Note that the state of every time slot (free or reserved) in the current frame is deter-
mined by the base station feedback at the end of each time slot in the previous frame.
It is assumed that the feedback channel is error free, thus there is no uncertainty in the
state of any time slot. Moreover, it is assumed that the base station will also feed back
a NULL message in response to errors due to contention and due to wireless channel
impairments. This means that a user will loose its reservation if it faces a channel error
while holding a reserved slot and transmitting its packet. Here, we ideally assume that
the feedback message is immediate.

Because speech communication is very sensitive to delay, speech packets require
prompt delivery. In PRMA, the voice packets from calls that fail the contention to access
the channel are placed in a waiting queue. If a packet remains undelivered for a pre-
specified maximum delay of Dmax frames, the packet is dropped from the user’s queue.

12.1.3 Channel model

The received signal at the base station can be written as

yB =
√

P1r−αB hBx + ηB; (12.3)

similarly, the received signal at the relay can be written as

yR =
√

P1r−αR hRx + ηR; (12.4)

where x is the transmitted signal, P1 the transmit power, assumed to be the same for all
users, rB and rR denote the distance from any user to the base station and to the relay,
respectively, α is the path loss exponent, and hB and hR are the channel fading coeffi-
cients for the user–base station and user–relay links, respectively, which are modeled as
zero-mean, complex Gaussian random variables with unit variance. The additive noise
terms ηB and ηR are modeled as zero-mean, complex Gaussian random variables with
variance N0. We assume that the channel coefficients are constant for the transmission
duration of one packet and that the network can be considered as symmetric, i.e., all the
inter-user channels are assumed to be statistically identical (see Figure 12.3).

As in earlier chapters, the success and failure of packet reception is characterized by
outage events and outage probabilities. In this case we consider a slightly more general
definition of the outage probability, not necessarily tied to the notion of capacity, and
we define the outage probability as the probability that the signal-to-noise ratio (SNR)
at the receiver is less than a given SNR threshold β, called the outage SNR. For the
channel model in (12.3) and (12.4), the received SNR of a signal transmitted between
any user and the base station can be specified as follows:

SNRB = | hB |2 r−αB P1

N0
, (12.5)
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where | hB |2 is the random channel gain magnitude squared, which has an exponential
distribution with unit mean. Since the SNR in (12.5) is a monotone function of | hB |2,
the outage event for an outage SNR β is equivalent to

{hB : SNRB < β} =
{

hB :| hB |2< βN0rαB
P1

}
. (12.6)

Accordingly, and from the exponential distribution of the received SNR, the outage
probability is

POB = Pr

{
| hB |2< βN0rαB

P1

}
= 1− exp

(
−βN0rαB

P1

)
. (12.7)

Similar relations hold for the outage probability between any user and the relay.

12.2 Content-aware cooperative multiple access protocol

Transmission errors, which are inherent to wireless communication channels, have a
significant impact on the PRMA network performance. On one side, if a user experi-
ences an error while contending for access to a time slot, it would fail on the try and
would have to contend again in another free slot. Moreover, if a user that already holds
a reserved slot experiences an error while sending a speech packet, the user would have
to give it up and go through the contention process again because the base station would
send a NULL feedback upon receiving a packet with errors, which would also indicate
that the reserved slot is free. These effects translate into an increase in the number of
contending users and, thus, a significant increase in network traffic and in delay to gain
a slot reservation. These effects ultimately severely degrade the speech quality. In fact,
the congestion may reach a level where all users experience reduced speech quality due
to packets dropped due to excessive delay.

By enabling cooperation in the voice network, one can benefit from the spatial
diversity offered by cooperation to mitigate the wireless channel impairments. In the
cooperative multiple access protocol we will consider here, a single relay node is
deployed into the network. This node will have the task of helping users holding slot
reservations forward their packets by operating in an incremental decode-and-forward
mode. As explained in Section 4.2.2.2, in order for the relay to decide whether to for-
ward the packet or not, it utilizes limited feedback from the base station in the form
of an automatic repeat request. This means that the relay will only forward the packets
that were not successfully received by the base station. The rationale in introducing a
relay is that it would result in a more reliable end-to-end link and, hence, a reduction in
the number of users losing their reserved time slots. This leads to a further reduction in
the average number of contending users, and therefore, a much lower access delay and
packet dropping probability, which ultimately improves speech quality.

The incorporation of the relay operation into the network involves modifying the
frame structure as illustrated in Figure 12.5. The first NT slots create a variable size
(from frame to frame) compartment of slots reserved for the talking users. Of the



438 Content-aware cooperative multiple access

Reserved Contention Relay

1 Frame = N slots

NT slots NR = round(pr(N-NT))

Fig. 12.5 The organization of time slots in a frame.

remaining (N − NT) free slots, a fraction pR is assigned to the relay and the remaining
free slots are made available for contention. The ordering of slots in a frame is first
the NT slots reserved for the talking users, followed by the slots used in the contention
process and the last NR slots are those assigned to the relay. When a user gives up its
reservation or gains a new reservation, the slots are rearranged in order to maintain this
frame structure. In any specific frame, the number of slots assigned to the relay will be

NR = round(pr(N − NT)).

It is clear that the value of pr determines how much help the relay will offer to talking
users, also it determines the reduction in the number of free time slots available for con-
tention. Therefore, the introduction of cooperation poses a tradeoff between the amount
of help the relay offers to existing users and the ability of the network to admit new
users because of the reduction in the number of contention slots. Since such tradeoff
is governed by pr, the choice of the value of this parameter is crucial for the optimal
performance of the system. This issue will be addressed later in the chapter.

12.3 Dynamic state model

In this section, we develop an analytical model to study and measure the network perfor-
mance. Based on the models discussed above, a user can be in one of three states: “SIL”
when in a silence period, “CON” when contending for channel access, and “TLK” when
holding a reserved slot. The dynamics of user transitions between these three states can
be described by the Markov chain of Figure 12.6. A user in SIL state moves to CON
state when a new talk spurt begins. When there is an available slot, with probability pv,
a user in CON state will send the packet at the head of its queue. If contention succeeds,
a user in CON state transits to TLK state, where it will have the slot reserved in sub-
sequent frames. A user moves from CON state to SIL state if its talk spurt ends before
gaining access to the channel. A user in TLK state transits to SIL state when its talk
spurt ends, and transits to CON state if its packet is not received correctly by the base
station. This later transition could be avoided if the relay is able to help the user.

Again, we will consider one complete frame as the time step for the Markov chain.
Although the actions of different users are independent, the transition probabilities
between different states for a given user are in general dependent on the number of
users in CON and TLK states. These numbers will affect the probability with which a
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SIL CON

TLK

Fig. 12.6 User’s terminal model

user succeeds in contention. Moreover, the number of users in TLK state will determine
the number of slots assigned to the relay, and hence the relay’s ability to help users.

In order to take these dependencies into consideration, the whole network will be
modeled as the two-dimensional Markov chain (MC,MT), where MC and MT are ran-
dom variables denoting the number of users in CON and TLK states, respectively.
Assuming there is Mv users in the network, then the number of users in the SIL state is
MS = Mv−MC−MT. In what follows, we will analyze this Markov chain and calculate
its stationary distribution which will allow for the derivation of different performance
measures.

Let S1 = (MC1 ,MT1), and S2 = (MC2 ,MT2) be the system states at two consecutive
frames. Then,

MC2 = MC1 + mSC + mTC − mCS − mCT, (12.8)

MT2 = MT1 + mCT − mTS − mTC, (12.9)

where mi j denotes the number of users departing from state i ∈ {S,C, T } to state
j ∈ {S,C, T }, for example, mSC is the number of users departing from SIL state to
CON state. This implies that the transition probability between any two states can be
determined in terms of the distributions of mSC, mCS, mCT, mTS, and mTC. Next we will
calculate these distributions.
(i) Distribution of mSC: From Section 12.1.1, and since all users are independent, the

number of users making a transition from the SIL state to the CON state, mSC,
follows a binomial distribution with parameter σ , where σ is defined in (12.2).
Then,

Pr(mSC = i) =
(

MS

i

)
σ i (1− σ)MS−i , i = 0, . . . ,MS. (12.10)

(ii) Distribution of mCT: Upon a successful contention, a user transits from the CON to
the TLK state. This transition occurs at the end of each free slot where contention
can take place. Thus, the number of contending users will vary from slot to slot.
Suppose there is MT reserved slots and MR relay slots in a given frame, then there
is (N − MT − MR) free slots for contention. We want to calculate the distribution
of the number of users that moved from CON state to TLK state at the end of the
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last free slot. This distribution could be calculated using the following recurrence
model. Let q(M ′

C) be the probability that a user succeeds in contention when there
is M ′

C contending users, then

q(M ′
C) = M ′

C pv(1− pv)
M ′

C−1(1− POB),

which is the probability that only one user has permission to transmit and the
channel was not in outage during packet transmission.
Define Rk(M ′

C) as the probability that M ′
C terminals remain in the CON state at the

end of the k-th available slot, (k = 0, 1, 2, . . . , N − MT − MR). Conditioning on
the outcome of the (k − 1)st time slot, it follows that

Rk(M
′
C) = Rk−1(M

′
C)[1− q(M ′

C)]+
+ Rk−1(M

′
C + 1)q(M ′

C + 1), (12.11)

for M ′
C = 0, 1, . . . ,MC and where MC is the number of users in the CON state at

the beginning of the frame. The initial condition for this recursion is

R0(M
′
C) =

{
1 M ′

C = MC

0 M ′
C �= MC

(12.12)

and the boundary condition q(MC + 1) = 0, which follows from the fact that the
total number of contending users is MC. Finally, the distribution of mCT is

Pr (mCT = i) = RN −MT−MR(MC − i), i = 0, . . . ,MC.

(iii) Distribution of mTS: It follows from Section 12.1.1, and from users independence,
that the number of users making a transition from the TLK state to the SIL state,
mTS, is binomially distributed with parameter γ , where γ is defined in (12.1). Then,

Pr (mTS = i) =
(

MT

i

)
γ i (1− γ )MT−i , i = 0, . . . ,MT.

(iv) Distribution of mCS: A user makes a transition from the CON state to the SIL
state if its talk spurt ends before gaining access to the channel. Conditioning on the
number of users that successfully accessed the channel, mCT, and through the same
argument as in (iii) above, we have

Pr (mCS = i |mCT) =
(

MC − mCT

i

)
γ i (1− γ )MC−mCT−i , (12.13)

for i = 0, . . . ,MC − mCT. In what follows, we will not seek to remove the condi-
tioning on mCT from this distribution because this is the form we will be interested
in when calculating the state transition matrix later in this chapter.

(v) Distribution of mTC: A user leaves the TLK state to the CON state if its transmitted
packet fails to reach the base station successfully, and if the relay did not help that
user. Also, a user in the TLK state will leave to SIL state if its talk spurt ends in the
current frame irrespective of the reception state of its last transmitted packet. This
means that this user will not attempt to retransmit its last packet in the talk spurt
and the relay will not try to help this user.
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Given the number of users making transitions from TLK state to SIL state, mTS,
the number of transmission errors from the remaining users in the TLK state, ε,
follows a binomial distribution with parameter POB, the outage probability of the
link between any user and the base station as defined in (12.7). Therefore,

Pr (ε = i |mTS) =
(

M ′
T

i

)
POi B, (1− POB)

M ′
T−i , (12.14)

for i = 0, . . . ,M ′
T and where M ′

T = MT − mTS, the number of remaining users
in the TLK state. Assume that the relay can successfully receive εR packets of the
ε erroneous packets. Then, conditioned on ε, the number of successfully received
packets by the relay, εR, is also binomially distributed but with parameter POR, the
outage probability of the link from any user to the relay,

Pr (εR = i |ε) =
(
ε

i

)
(1− POR)

i POε−i R, i = 0, . . . , ε.

For each of the slots assigned to the relay, a packet among the εR packets in the
relay’s queue is selected at random and forwarded. It follows that the number of
successfully forwarded packets εF is binomially distributed with parameter POB,

Pr (εF = i |εR) =
(

min(MR, εR)

i

)
(1− POB)

i POB
min(MR,εR)−i ,

for i = 0, . . . ,min(MR, εR) and where MR is the number of time slots assigned
for the relay. The minimum of MR and εR is taken, since the number of forwarded
packets cannot exceed the number of slots assigned to the relay or the number of
packets in the relay’s queue. Now, the probability that i users make the transition
from TLK state to CON state is the probability that from the ε erroneous packets,
the relay successfully forwards (εF = εR− i) packets. Then the distribution of mTC

is given by

Pr (mTC = i |mTS) =
MT−mTS∑

k=0

k∑
l=0

Pr (εF = εR − i |εR = l)

× Pr (εR = l|ε = k)Pr (ε = k|mTS).

(12.15)

At this point, it is important to remark that all the distributions calculated above are state
dependent because they generally depend on MC and MT. This means that it is necessary
to calculate a different set of distributions for each possible state of the system.

12.3.1 State transition probabilities

Having derived the probability distributions for the state transitions, the next step in
mathematically characterizing a Markov chain is to write the state transition matrix P.
For the present case, this matrix is square, and it can be shown that its dimension M is
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M =
⎧⎨⎩

(N+1)(N+2)
2 if Mv ≤ N

(N + 1)(Mv − N
2 + 1) if Mv > N

An element P(S1, S2) of this matrix is the transition probability from state S1 =
(MC1 ,MT1) to state S2 = (MC2,MT2). We also have P(S1, S2) = 0 when

MT2 > min(MT1 + MC1, N ),

because the number of terminals in TLK state in the next frame cannot exceed the total
number of time slots in a frame or the number of terminals in TLK and CON states in
the current frame. From (12.8) and (12.9), and the distributions developed above, the
transition probability P(S1, S2) is given by

P(S1, S2) =
MC1∑
x=0

M ′∑
y=0

MT1∑
z=0

Pr (mCS = x |mCT = y, S1)Pr (mCT = y|S1)

× Pr(mTC = MT1 − MT2 + y − z|mTS = z, S1)

× Pr(mTS = z|S1)

× Pr(mSC = MC2 − MC1 + x + y − z|S1), (12.16)

where

M ′ = min(MC1 − x, N − MT1 − MR1).

It should be noted that

Pr (mTC = MT1 − MT2 + y − z|S1) = 0

if MT1 − MT2 + y − z > MT1 − z, because the number of users transiting from TLK
state to CON state cannot exceed the difference between the number of users initially in
the TLK state and the number of users leaving the TLK state to the SIL state. Also,

Pr (mSC = MC2 − MC1 + x + y − z|S1) = 0

if MC2 − MC1 + x + y − z > MS1 , because the number of users leaving the SIL state
cannot be larger than the number of users initially in this state.

Finally, the stationary distribution vector π (indicating the probability of each state)
can be calculated as the left eigenvector of the minimum eigenvalue of the matrix P or,
in other words, can be obtained by solving π = πP.

12.4 Performance analysis

To assess the performance of the voice network under the content-aware cooperative
MAC protocol, four measures will be considered: network throughput, multiple access
delay, packet dropping probability, and subjective speech quality.
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12.4.1 Network throughput

The throughput can be defined as the aggregate average amount of data transported
through the channel in a unit time. In the present case, the number of packets success-
fully transmitted in a given frame can be decomposed into two components linked by the
tradeoff between the use of cooperation and the reduction in the number of contention
slots. The first one comes from the contending users who succeed in gaining access to
the channel. And the second component comes from the talking users who succeed in
transmitting their packets to the base station, either by themselves or through the help
of the relay. Thus, the throughput can be expressed as

Th = E
{
E {mCT|S1} + MT − E {mTC|S1}

}
N

, (12.17)

where E{·} is the expectation operator. The outer expectation is with respect to the
stationary distribution of the system’s Markov chain. In (12.17), the first component
resulting in the number of packets successfully transmitted in a given frame is given
by the contending users who succeed in gaining access to the channel E {mCT|S1}. The
second component is given by the number of successfully transmitted packets, which is
expressed as MT − E {mTC|S1}, the number of users in TLK state minus the expected
number of users leaving the TLK state to the CON state, who are the users with failures
in their transmissions.

Example 12.2 Consider a system with N = 10 time slots in a frame and where the
speech source model has a mean talk spurt and a mean silence period duration of t1 = 1
and t2 = 1.35 s, respectively, with a maximum delay of Dmax = 2 frames. Also, assume
that the contention permission probability is pv = 0.3, the SNR threshold is β = 15 dB
and the path loss exponent is α = 3.7. The distance between any user and the base
station is 100 m, and between any user and the relay is 50 m.

Figures 12.7 shows the throughput as a function of transmit power for a fixed number
of users Mv = 25. To get insight on how the performance changes based on the tradeoff
around the amount of free resources allocated to the relay, the throughput is plotted for
different values of pr, namely for pr = 0.1, 0.3 and 0.5. In order to understand how
the introduction of the relay affects performance, the results are compared to a tradi-
tional, non-cooperative PRMA scheme. The figure shows that the cooperative protocol
outperforms the non-cooperative protocol in terms of throughput for all values of pr.
For example, at a power level of 100 mW, the non-cooperative throughput is around
0.25 while the cooperative throughput with pr = 0.3 is around 0.57, which amounts
to a 128% increase. Note that increasing the amount of resources allocated to the relay
increases the throughput gain, which is expected since with more resources the relay is
able to help more users, hence the average number of successfully transmitted packets
per frame increases. �
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Fig. 12.7 Throughput for a network with 25 users and transmission power varying from 10 mW to
250 mW.

12.4.2 Multiple access delay

The delay is the number of frames a user remains in the CON state before gaining
access to the channel. This delay is a function of the probability with which a user
succeeds in contending during a given frame. This success probability depends on the
network state at the instant the user enters the CON state, and will differ from frame to
frame according to the path the network follows in the state space. Therefore, for exact
evaluation of the multiple access delay, one should condition on the state at which our
user of interest enters the CON state for the first time. Starting from this state, the delay
is obtained from the calculation of the statistics of all possible paths the network follows
in the state space till the user succeeds in the contention process. It is possible to show
that for a network with N time slots per frame and Mv users, the total number of states
is given by (Mv − N/2+ 1)(N + 1) for Mv ≥ N . For a network with Mv = N = 10,
the number of states is 66. With such large number of states, finding an exact expression
of the multiple access delay becomes prohibitively complex.

To get an approximate expression for the delay, let us assume that when the user
enters the contention state the system state will not change until that user succeeds in
contention. Thus, the success probability will be constant throughout the whole con-
tention process, and the delay at any given state will follow a geometric distribution
with parameter ps(i), the success probability at any state i . The approximate average
delay is given by

Davg =
∑
i∈�

π(i)

ps(i)
, (12.18)
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where� is the set of states where MC �= 0, and π(i) is the i-th element of the stationary
distribution vector π .

The last step is to calculate the success probability ps(i). Given the assumption that
all users are statistically identical, the probability that a user succeeds during con-
tention in a given frame is equal to the probability that at least one user succeeds during
contention in that frame, which can be shown to be equal to

ps(i) =
[
1− MC pv(1− pv)

MC−1(1− POB)
]N−MT−MR

. (12.19)

Example 12.3 Consider the same setup as in Example 12.2 but we are now interested
in looking at the approximate average delay. As was also the case in Example 12.2, the
results are compared to a traditional, non-cooperative PRMA scheme.

The delay performance is shown in Figure 12.8. It can be seen that, as the power
increases, the delay starts to decrease and then, after some point, it increases again.
This is because at low power levels the outage probability will be high and, even if
a user succeeds in sending its packet with no collisions, its packet will be lost, with
high probability due to channel outage. The delay is reduced by increasing the power
because doing so also reduces the outage probability. It is in this region of reduced
delay that the relay has a positive effect on performance, as seen for power levels less
than 100 mW. Naturally, a relay is not necessary in any network where terminals are not
constrained in transmit power. As power continues to increase, the outage probability
will be almost negligible and the main cause of delay will be failed contentions. This
justifies the fact that for high power levels the cooperative protocol exhibits a larger
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Fig. 12.8 Approximate delay as in (12.18) for 25 users and transmission power varying from 10 mW
to 250 mW.
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delay, as the presence of the relay decreases the number of slots available for contention
and, hence, increases the probability of packet collisions. This is also why the delay
performance is better for lower values of pr. �

12.4.3 Packet dropping probability

Speech communication is delay sensitive and requires prompt delivery of speech pack-
ets. In the PRMA protocol, packets start to be dropped if they are delayed in the network
for more than a maximum allowable delay of Dmax frames. Based on the assumption
that the speech coder generates exactly one speech packet per frame, every user will
maintain a buffer of length Dmax. Whenever the buffer is full at the start of a frame, the
oldest packet is dropped until the user succeeds in reserving a time slot. After gaining
a reservation, in each frame the oldest packet in the queue will be transmitted and the
new incoming packet is added at the end of the queue. If the talk spurt ends before
getting a slot reservation, all the packets in the buffer are dropped. Because of channel
errors, a user with a reserved time slot may lose its reservation and return to the group
of contending users, thus risking further packet dropping.

First, we focus on the case when a user is trying to access the channel for the first
time. Given that the system is at state i with NC contending user and NT users hold-
ing slot reservations, consider a contending user whose talk spurt started at the current
frame. The talk spurt consists of L packets, where L is a random variable. The user
will start to contend for a time slot in the current frame and continue in subsequent
frames until it succeeds or the talk spurt ends. The user waits in the CON state for D
frames to obtain a reservation. Using the assumption developed above that delay D is
geometrically distributed, the probability that a user waits for d frames is

PD(d) = (1− ps(i))(ps(i))
d , d = 0, 1, . . . . (12.20)

We need to distinguish between two different cases relating the length of the talk
spurt L and the maximum allowable delay Dmax:
(i) L ≤ Dmax: In this case, the buffer is long enough to store the whole talk spurt. If

reservation is obtained before the talk spurt ends, no packets are lost. Otherwise, all
the talk spurt packets are discarded. As a function of the waiting time d, the number
of dropped packets is

nd(d) =
{

0, 0 ≤ d < L
L , d ≥ L

and the distribution of the number of dropped packets is given by

Pr {nd|L ≤ Dmax, i} =
{ ∑L

d=0 PD(d), nd = 0∑∞
d=L+1 PD(d), nd = L

(ii) L > Dmax: In this case, after waiting Dmax frames, one packet is dropped per frame
until being able to reserve a slot. The dropped packet is the oldest in the queue with



12.4 Performance analysis 447

an associated delay of Dmax. The number of dropped packets as a function of the
delay is given by

nd(d) =
⎧⎨⎩

0, 0 ≤ d ≤ Dmax − 1
k, d = Dmax + k − 1, k = 1, 2, . . . , (L − Dmax)

L , d ≥ L

and its distribution

Pr {nd|L > Dmax, i} =

⎧⎪⎨⎪⎩
∑Dmax−1

d=0 PD(d), nd = 0
(1− ps(i))(Ps(i))nd, nd = 1, 2, . . . , (L − Dmax)∑∞

d=L PD(d), nd = L

We note here that although all the summations mentioned above have closed-form
expressions, they tend to become complex and lengthy. Therefore, we avoid writing
them here, so as to keep the presentation compact. This will also apply to the next
section.

The expected number of dropped packets for the above two cases, namely E {nd|L ≤
Dmax, i} and E {nd|L > Dmax, i}, can be easily calculated using the corresponding
distributions and, then, combined to get the total expected number of dropped packets as

E {nd|i} =
Dmax∑
l=1

E {nd|L ≤ Dmax, i}PL(l)

+
∞∑

l=Dmax+1

E{nd|L > Dmax, i}PL(l), (12.21)

where PL(l) is the probability mass function of the length of the talk spurt. From
the speech source model of Figure 12.2, the talk spurt duration, L , is geometrically
distributed with parameter γ , i.e.,

Pr {L} = γ (1− γ )l−1, l = 1, 2, . . . . (12.22)

Finally, the packet dropping probability is the ratio between the average number of
dropped packets per talk spurt to the average number of packets generated per talk
spurt, i.e,

Pd0 =
1

γ

∑
i∈�

E{nd|i}π(i), (12.23)

where the sum is over �, the set of states with NC �= 0 (because packets are dropped
only when the user is in the CON state).

Next we consider the packet dropping probability due to the first transition from
the TLK state to the CON state caused by channel errors. First, we need to make the
following assumptions:
• Any user in a TLK state has obtained its reservation with the first packet in the talk

spurt. This means no packets were dropped in the first contention process. Further-
more, this packet is delayed by D0 = Davg frames, i.e., this packet is delayed by
the average multiple access delay calculated in the last section.
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• The first channel error occurs while transmitting the j-th packet of the talk spurt.
Since the first packet was delayed by D0 frames, the remaining maximum delay for
the subsequent packets in the talk spurt is D1 = Dmax − D0 frames.

• There are L packets in the talk spurt, and L1 packets following and including the
j-th packet which encountered a channel error.

Based on the time instant when the user left TLK state to CON state, we need to analyze
three cases:
• Case 1: Transmission instant of the j-th packet is after the end of the talk spurt.

This means, D0 + ( j − 1) ≥ L , or L1 ≤ D0. In this case all the remaining L1

packets are discarded without any contentions and

E {nd|L1 ≤ D0, i} = L1.

• Case 2: Transmission instant of the j-th packet is before the end of the talk spurt
and the remaining time till the end of the talk spurt is less than the maximum
remaining delay D1. That is, 0 < L − D0 − ( j − 1) ≤ D1, or D0 < L1 ≤ Dmax.
In this case, no packets are dropped if the user gets a reserved slot before the end
of the talk spurt. Otherwise, all L1 are discarded. The number of dropped packets
as a function of the waiting time is

nd(d) =
{

0, 0 ≤ d ≤ L1 − D0

L1, d > L1 − D0
(12.24)

The waiting time is distributed according to (12.20), and

Pr {nd|D0 < L1 ≤ Dmax, i} =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

L1−D0∑
d=0

PD(d), nd = 0

∞∑
d=L1−D0+1

PD(d), nd = L1

(12.25)

• Case 3: Here L − D0 − ( j − 1) > D1, or L1 > Dmax. In this case, the j-th packet
is dropped after waiting for D1 frames and a packet will be dropped every frame
till the user gets access to the channel. If the talk spurt ends before accessing the
channel, all the packets in the buffer are discarded. We have

nd(d) =
⎧⎨⎩

0, 0 ≤ d ≤ D1 − 1
k, d = D1 + k − 1, k = 1, 2, . . . , (L1 − Dmax)

L1, d > L − D0

(12.26)

and

Pr {nd|L1 > Dmax, i} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

D1−1∑
d=0

PD(d), nd = 0

(1− Ps(i))(Ps(i))nd , nd = 1, . . . , (L1 − Dmax)

∞∑
d=L1−D0

PD(d), nd = L1.
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Having the distributions of the number of dropped packets for each case, one can
calculate the corresponding expected number of dropped packets, E{nd|L1 ≤ D0, i},
E{nd|D0 < L1 ≤ Dmax, i}, and E{nd|L1 > Dmax, i}.

The next step is to average with respect to L1, the number of remaining packets in
the talk spurt after the first error. From the earlier assumptions, we have

Pr {L1 = l1|L = l} = u(1− u)(l−l1−1), l1 = 1, 2, . . . , l − 1,

where u is the user’s transition probability from the TLK state to the CON state. A user
leaves the TLK state to the CON state if: (i) the packet transmission failed, (ii) a relay
did not help that user, and (iii) the talk spurt did not end during current frame (had
the talk spurt ended, the transition would have been to the SIL state). Now, we need to
consider the talk spurt length L . If (L − 1) ≤ Dmax, cases one and two above would
occur, otherwise all three cases would occur. Therefore,

E {nd|L , i} = E {nd|L − 1 ≤ Dmax, i} + E {nd|L − 1 > Dmax, i},
where

E {nd|L − 1 ≤ Dmax, i} =
D0∑

L1=1

E {nd|L1 ≤ D0, i}Pr {L1|L}

+
Dmax∑

L1=D0+1

E {nd|D0 < L1 ≤ Dmax, i}Pr {L1|L},

E{nd|L − 1 > Dmax, i} =
D0∑

L1=1

E {nd|L1 ≤ D0, i}Pr {L1|L}

+
Dmax∑

L1=D0+1

E {nd|D0 < L1 ≤ Dmax, i}Pr {L1|L}

+
L−1∑

L1=Dmax+1

E {nd|L1 > Dmax, i}Pr {L1|L}.

Finally,

E {nd|i} =
Dmax+1∑

L=2

E {nd|L − 1 ≤ Dmax, i}Pr {L}

+
∞∑

L=Dmax+2

E {nd|L − 1 > Dmax, i}Pr {L},

where Pr {L} is defined in (12.22). As in (12.23), the packet dropping probability due
to the first error in the talk spurt is

Pd1 =
1

γ

∑
i∈�

E {nd|i}π(i). (12.27)
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After regaining access to the channel, a second transmission error may occur and the
user has to go through contention again and may lose some packets. This process may
be repeated several times till the end of the talk spurt. The number of such cycles is a
random variable because of the random nature of channel errors. Furthermore, calcu-
lation of the packet dropping probability due to the second error and above becomes
intractable due to the more complex scenarios to be considered. To deal with this issue,
the following approximation will be used. Let k be the average number of transitions
from TLK to CON states during a talk spurt, k = u/γ , where u is the user’s transition
probability from the TLK state to the CON state. If u is small, k ≤ 1, and Pd can be
approximated by

Pd = Pd0 + Pd1 ,

and if u is large, then k > 1 and Pd can be approximated by

Pd = Pd0 + k Pd1 .

Example 12.4 In this example, we continue working with a system with the same
setup as in Examples 12.2 and 12.3, but we are now interested in looking at the packet
dropping probability. As was also the case with the previous examples, the results are
compared to a traditional, non-cooperative PRMA scheme so as to learn how the use of
a relay affects performance.

The packet dropping probability is shown in Figure 12.9 for Dmax = 2 frames, where
it can be seen that it is a decreasing function of the power level. The effect of the relay is
also apparent, e.g., at 100 mW power level there is about 38 % decrease in packet drop-
ping probability. Note that the gain from cooperation decreases as the power increases
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Fig. 12.9 Packet dropping probability for 25 users and transmission power varying from 10 mW to
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and at some point (250 mW in Figure 12.9) the non-cooperative protocol will be as good
as the cooperative protocol and start to have lower packet dropping probability. Again,
this is because at high power, there is little need to use a relay that decreases the number
of contention slots to reduce an already low outage probability. �

12.4.4 Subjective voice quality

Since we are considering speech traffic, an important metric to study end-to-end perfor-
mance is some measure of how the speech is subjectively perceived at the receiver. For
many years, the established method to obtain such measure was by conducting a mean
opinion score (MOS) test. In this test, a group of listeners are polled to grade a number
of speech sequences. More recently, and in many ways driven by the need of voice over
IP systems for an automated subjective speed quality test, a number of algorithms have
been developed that output a result highly correlated to those obtained with MOS, but
this time without human intervention. Here, we will base the voice quality assessment
on one such algorithm that is based on a predictive model. This model uses parame-
ters from the source codec, the end-to-end delay and the packet dropping probability
to predict the value of the conversational mean opinion score (MOSc). This variant of
the MOS is a perceptual voice quality measure based on the ITU-T PESQ quality mea-
sure standard that takes values in the range from 1 (bad quality) to 5 (excellent quality).
The algorithm estimated the (MOSc) as a polynomial of two variables, packet drop-
ping probability and average delay, with coefficients tailored to the voice codec and the
source encoding rate. This polynomial is of the form

MOSc = c0 + c1 Pd + c2 D + c3 P2
d + c4 P3

d + c5 D3

+ c6 Pd D2 + c7 D2 + c8 Pd D + c9 P2
d D,

where Pd is the packet dropping probability and D is the average delay we calculated
earlier.

Example 12.5 In this example we look at the network with the same setup as in
Examples 12.2–12.4, but we compare performance for the schemes with and with-
out cooperation in terms of conversational Mean Opinion Score. To encode speech we
assume the use of the GSM AMR voice codec operating at a coding rate of 12.2 kbps.
For this case, the polynomial to estimate the (MOSc) is,

MOSc = 3.91− 0.17Pd + 1.57 · 10−3 D + 6.51 · 10−3 P2
d

− 10−4 P3
d + 2.62 · 10−8 D3 + 1.38 · 10−7 Pd D2

− 2.40 · 10−5 D2 − 7.53 · 10−6 Pd D − 5.51 · 10−8 P2
d D,

Using this relation, Figure 12.10 shows the resulting conversational mean opinion
score. Since this quality measure is a function of both the delay and packet dropping
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Fig. 12.10 Subjective speech quality, (MOSc), for 25 users and transmission power varying from
10 mW to 250 mW.

probability, it can be seen that the cooperative protocol has better performance at low
power level, while the non-cooperative one is better at high power levels. �

12.5 Access contention–cooperation tradeoff

As was discussed earlier, and illustrated in the previous examples, the content-aware
cooperative MAC protocol is efficient in that it does not use resources reserved for users
in a talk spurt. At the same time, the relay uses slots that would be otherwise available
for contention. This established a tradeoff between how many packets the relay could
potentially help to deliver and the delay in successfully contending for channel access.
This tradeoff is controlled through the parameter pr. We have observed that, at low
power levels, the performance of the network is limited by the channel outage events,
this is the case when the cooperative protocol outperforms the non-cooperative protocol
because of the spatial diversity introduced by the relay.

On the other hand, for high power levels, the performance is limited by packet
collisions. Since the relay uses part of the free time slots available for contentions,
the probability of collision increases, and the performance of the cooperative protocol
degrades in this region. One can conclude that, the more the assigned resources to the
relay the better the throughput is, because of the increased relay ability to help more
users. On the other hand, the converse is true for the delay, because the relay reduces
the number of contention slots.

This idea is confirmed in Figures 12.11 and 12.12 depicting the variation of through-
put and delay, respectively, as a function of pr compared with the non-cooperative case
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for a network with 25 users and transmission power P = 75 mW. Figures 12.11 and
12.12 show that pr can be chosen so as to obtain best overall performance by assigning
about 25% to 40% of the free resources to the relay. With this assignment, the through-
put is almost maximized while the delay is kept strictly less than the non-cooperative
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Fig. 12.14 Network performance measures as a function of pr for 100 mW transmission power level and
25 users: delay.

protocol. If the transmission power is increased to 100 mW, Figures 12.13 and 12.14
show that in order to maximizes the throughput while constraining the delay to be less
than the non-cooperative case, the optimum choice for pr is between 25% and 30%. In
these results we can see again that for higher power levels, less help from the relay is
needed.
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12.6 Chapter summary and bibliographical notes

In this chapter we have shown how user cooperation can be used to improve the
performance of multiple access protocols. In particular, we considered protocols that
take advantage of the statistical properties of the traffic, which in this chapter is real-
time speech. From the point of view of traditional approaches that do not consider
cooperation, perhaps the best known multiple access protocols that take advantage of
the traffic characteristics of packet speech is the packet reservation multiple access
(PRMA) protocol, which was studied in [49] and other derived literature [229, 95].
More specifically, the impact of channel losses on performance is studied in [95].
Indeed, much of the packet dropping probability analysis in this chapter is based on
the work in [137] and [147] for the PRMA protocol. The talk spurt–silence speech
model that is used by this protocol have been studied in different contexts but one
of the most frequently cited references for the Markov chain modeling of speech
sources and the exponential distribution model for the waiting time in any state is [16].
Also, we note here that the subjective speech quality measure used in Section 12.4.4
is based on the algorithm developed in [208], which is in turn based on the ITU-T
PESQ quality measure standard [88]. More information on the MOS test can be found
in [86].

In this chapter we showed that the use of cooperation reduces, for those users hold-
ing a time slot, the number of packets that are lost due to channel errors. Since time slot
reservations are lost by those users experiencing dropped packets, the use of cooperation
reduces the traffic load from users contending for channel access. Also, in this chapter
we have shown how cooperation can be implemented efficiently by taking advantage
of idle times in the sources and using resources that are not exclusively reserved for
active calls. The approach explained in this chapter entails the implementation of coop-
eration through the use of time slots left unused by those users that are in a period
of silence during the conversation. These free time slots can also be used for random
access contention by those users transitioning from a silence period into a talk spurt.
The dual use establishes a tradeoff between how many packets the relay could poten-
tially help to deliver and the delay in successfully contending for channel access. We
named this tradeoff the access contention–cooperation tradeoff. This tradeoff is con-
trolled through the parameter pr. By judiciously choosing this parameter, the protocol
that uses cooperation shows a clear performance advantage compared with a protocol
with no cooperation.

As we have noted at different places in this book, previously published literature
on cooperative communications has focused for a large part on the physical layer. The
study in this chapter is a clear example of the impact and implementation of cooperation
at higher network layers, for which there are, nevertheless, some previous published
works. Such is the case in [120], where the authors proposed a distributed version of the
network diversity multiple access (NDMA) protocol [218]. Also, in [167], the notion of
utilizing the spatial separation between users to assign cooperating pairs was presented.
Further study of the content-aware multiple access protocol studied in this chapter can
be found in [35, 34].
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Exercises

12.1 Consider the derivation of the dynamic state model:

(a) Derive (12.10) and discuss, also, the conditions under which the derivation is
valid.

(b) Derive (12.13) and discuss, also, the conditions under which the derivation is
valid

12.2 Consider the derivation of the multiple access delay and derive (12.19).
12.3 In packet wireless communications there are two causes for packet dropping:

packets that are dropped due to channel errors and packets that are dropped due
to excessive delay. As we have discussed in this chapter, these two causes not
only interact in the usual way, but also through the access contention–cooperation
tradeoff. Assume a system with N = 10 time slots in a frame, where the speech
source model has a mean talk spurt and a mean silence period duration of t1 = 1
and t2 = 1.35 s, respectively, with a maximum delay of Dmax = 2 frames, the
contention permission probability pv = 0.3, SNR threshold β = 15 dB, and path
loss exponent α = 3.7. Also assume that the transmit power level is 100 mW and
that distance between any user and the base station is 100 m, and between any
user and the relay is 50 m. Plot the packet dropping probability due to excessive
delay and the probability of a call transitioning to a contention state from the talk
state (the probability of a packet loss due to channel errors) assuming Mv = 25
and pr = 0.1, 0.3, and 0.5. Comment on the results observed on both curves
from the point of view of the involved tradeoffs.

12.4 (Simulation project)

(a) Build and run a Monte Carlo simulation to find the throughput and delay
performance of the content-aware cooperative multiple access protocol.
Compare the results with the analytical results presented in this chapter.

(b) In this chapter, the results were focused on a network setup where all channel
statistics for the sources were assumed identical. For a more general case,
modify your Monte Carlo simulator so this condition on the network setup
is relaxed. Within the new setup, examine the tradeoff between relaying and
contention.

(c) Note that in this chapter the focus was on evaluating performance through
the use of average magnitudes, such as average throughput or average delay.
In this problem we take a look at other statistics, which are also helpful in
studying the overall performance.

(d) Use Monte Carlo simulation to find the complete CDF curves of throughput
and delay. Use these results to calculate the tenth percentile of the throughput
(which is important to ensure fairness for users with bad channel conditions).
Also calculate the 90th percentile of the delay (which is important when
evaluating quality-of-service). Comment on the results.

(e) Study the effects of changing pr on the results.
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Routing is the process of transferring data packets from one terminal to another. Routing
aims to find the optimal path according to some criterion. Shortest-path routing is a
common scheme used for routing in data networks. It depends on assigning a length to
each link in the network. A path made up of a series of links will have a path length
equal to the sum of the lengths of the links in the route. Then, it chooses the path
between source and destination that has the shortest route. The shortest-path route can
be implemented using one of two well-known techniques, namely, the Bellman–Ford
algorithm or the Dijkstra’s algorithm [11].

In mobile ad hoc networks (MANETs), data packet transmissions between source and
destination nodes are done through relaying the data packets by intermediate nodes.
Hence, the source needs to locate the destination and set up a path to reach it. There
are two types of routing algorithms in MANETs, namely, table-based and on-demand
algorithms. In table-based routing algorithms, each node in the network stores a routing
table, which indicates the geographic locations of each node in the network. These rout-
ing tables are updated periodically, through a special HELLO message sent by every
node. Table-based routing protocols for MANETs include the destination sequence
distance vector routing protocol (DSDV), wireless routing protocol (WRP), and cluster-
head gateway switch routing (CGSR). The periodical updating of the routing tables
makes table-based routing algorithms inefficient.

On the other hand, in on-demand routing protocols, only when a terminal needs to
send data packets to a destination does it discover and maintain a route to that des-
tination. A source initiates a route discovery request which goes from one node to
another until it reaches the destination or a node which has a route to the destina-
tion. Hence, each node does not have to store information about the other nodes in the
whole network or to store a route to every node. On-demand protocols in use include
Ad-hoc on-demand distance vector routing (AODV), dynamic source routing (DSR),
and temporary ordered routing algorithm (TORA).

In Part II, the merits of cooperative communications in the physical layer
were explored; however, the impact of the cooperative communications on the
design of the higher layers was not covered. Routing algorithms, which are based
on cooperative communications, are known in the literature as cooperative rout-
ing algorithms. Designing cooperative routing algorithms can lead to significant
power savings. Cooperative routing can make use of two facts: the wireless broad-
cast advantage in the broadcast mode and the wireless cooperative advantage in
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the cooperative mode. In the broadcast mode each node sends its data to more than
one node, while in the cooperative mode many nodes send the same data to the same
destination.

A straightforward approach for cooperation-based routing algorithms is implemented
by finding a shortest-path route first and then building the cooperative route based on
the shortest-path one. But such routing algorithms do not fully exploit the merits of
cooperative communications at the physical layer, since the optimal cooperative route
might be completely different from the shortest-path route. In addition, most of these
cooperation-based routing algorithms require a central node, which has global informa-
tion about all the nodes in the network, in order to calculate the best route given a certain
source–destination pair. Having such a central node may not be possible in some wire-
less networks. Particularly, in infrastructureless networks (e.g., mobile ad hoc networks)
routes should be constructed in a distributed manner, i.e., each node is responsible for
choosing the next node towards the destination. Thus, the main goal of this chapter is to
consider a distributed cooperation-based routing algorithm that takes into consideration
the effect of the cooperative communications while constructing the minimum-power
route.

In this chapter, we consider the minimum-power routing problem with cooperation in
wireless networks. The optimum route is defined as the route that requires the minimum
transmitted power while guaranteeing a certain end-to-end throughput. First, we derive a
cooperation-based link cost formula, which represents the minimum transmitted power
over a particular link, required to guarantee the desired QoS: a cooperation-based rout-
ing algorithm, namely the minimum-power cooperative routing (MPCR) algorithm,
which can choose the minimum-power route while guaranteeing the desired QoS will
be presented in this chapter.

13.1 Network model and transmission modes

In this section, we describe the network model and formulate the minimum-power rout-
ing problem. Then, we present the direct transmission and cooperative transmission
modes.

13.1.1 Network model

We consider a graph G(N , E)with N nodes and E edges. Given any source–destination
pair (S, D), the goal is to find the route S−D that minimizes the total transmitted power,
while satisfying a specific throughput. For a given source–destination pair, denote � as
the set of all possible routes, where each route is defined as a set consisting of its hops.
For a route ω ∈ �, denote ωi as the i-th hop of this route. Thus, the problem can be
formulated as

min
ω∈�

∑
ωi∈ω

Pωi s.t. ηω ≥ ηo , (13.1)
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Fig. 13.1 Cooperative transmission (CT) and direct transmission (DT) modes as building blocks for
any route.

where Pωi denotes the transmitted power over the i-th hop, ηω is the end-to-end through-
put, and ηo represents the desired value of the end-to-end throughput. Let ηωi denote
the throughput of the i-th hop, which is defined as the number of successfully trans-
mitted bits per second per hertz (bits/s/Hz) of a given hop. Furthermore, the end-to-end
throughput of a certain route ω is defined as the minimum of the throughput values of
the hops constituting this route, i.e.,

ηω = min
ωi∈ω

ηωi . (13.2)

One can readily see that the minimum-energy cooperative path (MECP) routing
problem, i.e., find the minimum energy route using cooperative radio transmission,
is NP-complete. This is due to the fact that the optimal path could be a combination
of cooperative transmissions and broadcast transmissions. Therefore, we consider two
types of building block:

• direct transmission (DT);
• cooperative transmission (CT).

In Figure 13.1 the DT block is represented by the link (i, j), where node i is the
sender and node j is the receiver. In addition, the CT block is represented by the links
(x, y), (x, z), and (y, z), where node x is the sender, node y is a relay, and node z
is the receiver. The route can be considered as a cascade of any number of these two
building blocks, and the total power of the route is the summation of the transmit-
ted powers along the route. Thus, the minimization problem in (13.1) can be solved
by applying any distributed shortest-path routing algorithm such as the Bellman–Ford
algorithm [11].

13.1.2 Direct and cooperative transmission modes

Let hu,v, du,v , and nu,v represent the channel coefficient, length, and additive noise of
the link (u, v), respectively. For the direct transmission between node i and node j , the
received symbol can be modeled as

rD
i, j =

√
PD d−αi, j hi, j s + ni, j , (13.3)

where PD is the transmitted power in the direct transmission mode, α is the path loss
exponent, and s is the transmitted symbol.
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For the cooperative transmission, we consider a modified version of the
decode-and-forward incremental relaying cooperative scheme previously described in
Section 4.2.2.1. The transmission scheme for a sender x , a relay y, and a receiver z, can
be described as follows. The sender sends its symbol in the current time slot. Due to the
broadcast nature of the wireless medium, both the receiver and the relay receive noisy
versions of the transmitted symbol. The received symbols at the receiver and the relay
can be modeled as

rC
x,z =

√
PC d−αx,z hx,z s + nx,z (13.4)

and

rC
x,y =

√
PC d−αx,y hx,y s + nx,y , (13.5)

respectively, where PC is the source transmitted power in the cooperative transmission
mode.

Once the symbol is received, the receiver and the relay decode it. We assume that
the relay and the receiver decide that the received symbol is correctly received if the
received signal-to-noise ratio (SNR) is greater than a certain threshold, which depends
on the transmitter and the receiver structures. Such system suffers from error propaga-
tion but its effect can be neglectable. The rationale behind this is that when the relays
operate in a high SNR regime, the dominant source of error is the channel being in out-
age, i.e., deep fade, which corresponds to the SNR falling below some threshold. This
issue had been illustrated at length in Example 6.1.

If the receiver decodes the symbol correctly, then it sends an acknowledgment (ACK)
to the sender and the relay to confirm a correct reception. Otherwise, it sends a negative
acknowledgment (NACK) that allows the relay, if it received the symbol correctly, to
transmit this symbol to the receiver in the next time slot. This model represents a mod-
ified form of the automatic repeat request (ARQ), where the relay retransmits the data
instead of the sender, if necessary. The received symbol at the receiver can be written as

rC
y,z =

√
PC d−αy,z hy,z s + ny,z . (13.6)

In general, the relay can transmit with a power that is different from the sender power
PC . However, this complicates the problem of finding the minimum-power formula, as
will be derived later. For simplicity, we consider that both the sender and the relay send
their data using the same power PC .

Flat quasi-static fading channels are considered, hence, the channel coefficients are
assumed to be constant during a complete frame, and may vary from a frame to
another. We assume that all the channel terms are independent complex Gaussian ran-
dom variables with zero mean and unit variance. Finally, the noise terms are modeled as
zero-mean, complex Gaussian random variables with equal variance N0. In this section,
we have formulated the minimum-power routing problem and we have defined the two
main transmission modes. In the next section, we derive the closed-form expressions
for the transmitted power in both direct and cooperative transmission modes required to
achieve the desired throughput.
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13.2 Link analysis

Since the throughput is a continuous monotonously increasing function of the
transmission power, the optimization problem in (13.1) has the minimum when
ηω = ηo,∀ω ∈ �. Since the end-to-end throughput ηω = minωi∈ω ηωi , then the opti-
mum power allocation, which achieves a desired throughput ηo along the route ω, forces
the throughput at all the hops ηωi to be equal to the desired one, i.e.,

ηωi = ηo , ∀ ωi ∈ ω. (13.7)

This result can be explained as follows. Let P∗ω1
, P∗ω2

, . . . , P∗ωn
represent the required

powers on a route consisting of n hops, where P∗i results in ηωi = ηo for i = 1, . . . , n.
If we increase the power of the i-th block to Pωi > P∗ωi

then the resulting throughput
of the i-th block increases, i.e., ηωi > ηo, while the end-to-end throughput does not
change as minωi∈ω ηωi = ηo. Therefore, there is no need to increase the throughput of
any hop over ηo, which is indicated in (13.7).

Since the throughput of a given link ωi is defined as the number of successfully
transmitted bits per second per hertz, it can thus be calculated as

ηωi = pS
ωi
× Rωi , (13.8)

where pS
ωi

and Rωi denote the per-link probability of success and transmission rate,
respectively. We assume that the desired throughput can be factorized as

ηo = pS
o × Ro , (13.9)

where pS
o and Ro denote the desired per-link probability of success and transmission

rate, respectively. Next, we calculate the required transmitted power in order to achieve
the desired per-link probability of success and transmission rate for both the direct and
cooperative transmission modes. As previously noted (see (1.13) in Section 1.1.5), the
channel gain |hu,v|2 between any two nodes u and v, is exponentially distributed with
parameter one [146].

For the direct transmission mode in (13.3), the mutual information between sender i
and receiver j is

Ii, j = log

(
1+ PD d−αi, j |hi, j |2

N0

)
. (13.10)

Without loss of generality, we have assumed unit bandwidth in (13.10). The out-
age probability is defined as the probability that the mutual information is less than
the required transmission rate Ro. Thus, the outage probability of the link (i, j) is
calculated as

pO
i, j = Pr (Ii, j ≤ Ro) = 1− exp

(
− (2

Ro − 1) N0 dαi, j
PD

)
. (13.11)

If an outage occurs, the data is considered lost. The probability of success is calculated
as pS

i, j = 1− pO
i, j . Thus, to achieve the desired pS

o and Ro for direct transmission mode,
the required transmitted power is
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PD(di, j ) =
(2Ro − 1) N0 dαi, j
− log(pS

o )
. (13.12)

For the cooperative transmission mode, the total outage probability is given by

pO
x,y,z = Pr (Ix,z ≤ RC ) ·

(
1− Pr (Ix,y ≤ RC )

) · Pr (Iy,z ≤ RC )

+ Pr (Ix,z ≤ RC ) · Pr (Ix,y ≤ RC ) , (13.13)

where RC denotes the transmission rate for each time slot. In (13.13), the first term
corresponds to the event when both the sender–receiver and relay–receiver channels are
in outage but the sender–relay is not, and the second term corresponds to the event when
both the sender–receiver and the sender–relay channels are in outage. Consequently, the
probability of success of the cooperative transmission mode can be calculated as

ps = exp
(− g dαx,z

)+ exp
(− g (dαx,y + dαy,z)

)− exp
(− g (dαx,y + dαy,z + dαx,z)

)
,

(13.14)

where

g = (2RC − 1) N0

PC
. (13.15)

In (13.13) and (13.14), we assume that the receiver decodes the signals received from
the relay either at the first time slot or at the second time slot, instead of combining the
received signals together. In general, maximum ratio combining (MRC) at the receiver
gives a better result. However, it requires the receiver to store an analog version of the
received data from the sender, which requires huge storage capacity. The probability
that the source transmits only, denoted by Pr(φ), is calculated as

Pr(φ) = 1− Pr(Ix,z ≤ RC )+ Pr(Ix,z ≤ RC )Pr(Ix,y ≤ RC )

= 1− exp
(− g dαx,y

)+ exp
(− g (dαx,y + dαx,z)

)
,

(13.16)

where the term
(
1−Pr(Ix,z ≤ RC )

)
corresponds to the event when the sender–receiver

channel is not in outage, while the other term corresponds to the event when both the
sender–receiver and sender–relay channels are in outage. The probability that the relay
cooperates with the source is calculated as

Pr(φ) = 1− Pr(φ). (13.17)

Thus, the average transmission rate of the cooperative transmission mode can be
calculated as

R = RC · Pr(φ)+ RC

2
· Pr(φ) = RC

2

(
1+ Pr(φ)

)
, (13.18)

where RC corresponds to the transmission rate if the sender is sending alone in one
time slot and RC/2 corresponds to the transmission rate if the relay cooperates with the
sender in the consecutive time slot.

We set the probability of success in (13.14) as pS = pS
o and the average transmission

rate in (13.18) as R = Ro. By approximating the exponential functions in (13.14) as
exp(−x) ≈ 1− x + x2/2, we obtain
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g ≈
√

1− pS
o

deq
, (13.19)

where deq � dαx,z(d
α
x,y + dαy,z). Thus, RC can be obtained using (13.18) as

RC = 2 Ro

1+ Pr(φ)

≈ 2 Ro

2− exp

(
−
√

1−pS
o

deq
dαx,y

)
+ exp

(
−
√

1−pS
o

deq
(dαx,y + dαx,z)

) , (13.20)

where we substituted (13.19) in (13.16). In addition, the required power per link can be
calculated using (13.15) and (13.19) as

PC ≈ (2RC − 1) N0

√
deq

1− pS
o
. (13.21)

Finally, the total transmitted power of the cooperative transmission mode can be
calculated as

PC
tot(dx,z, dx,y, dy,z) = PC · Pr(φ)+ 2 PC · Pr(φ) = PC

(
2− Pr(φ)

)
, (13.22)

where Pr(φ) and PC are given in (13.16) and (13.21), respectively.

13.3 Cooperation-based routing algorithms

In this section, we present two cooperation-based routing algorithms, which require
polynomial complexity to find the minimum-power route. Then, we discuss the impact
of cooperation on the routing in specific regular wireless networks, which are the regular
linear and grid networks. We assume that each node periodically broadcasts a HELLO
packet to its neighbors to update the topology information. In addition, we consider a
simple medium access control (MAC) protocol, which is the conventional time division
multiple access (TDMA) scheme with equal time slots.

First, let us describe a cooperation-based routing algorithm, namely, the minimum-
power cooperative routing (MPCR) algorithm. The MPCR algorithm takes into consid-
eration the cooperative communications while constructing the minimum-power route.
The derived power formulas for direct transmission and cooperative transmission are
utilized to construct the minimum-power route. It can be distributively implemented
by the Bellman–Ford shortest path algorithm [11]. In the conventional Bellman–Ford
shortest path algorithm, each node i ∈ {1, . . . , N } executes the iteration

Di = min
j∈N (i)

(dαi, j + D j ) , (13.23)

where N (i) denotes the set of neighboring nodes of node i , dαi, j denotes the effective
distance between node i and j , and D j represents the latest estimate of the shortest path
from node j to the destination that is included in the HELLO packet.
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The MPCR algorithm is implemented as follows:

• First, each node calculates the costs (required powers) of its outgoing links, and then
applies the shortest-path Bellman–Ford algorithm using these newly calculated costs.
The required transmission power between two nodes is the minimum power obtained
by searching over all the possible nodes in the neighborhood to act as a relay. If there
is no available relay in the neighborhood, a direct transmission mode is considered.

• Second, the distributed Bellman–Ford shortest-path routing algorithm is implemented
at each node. Each node updates its cost toward the destination as

Pi = min
j∈N (i)

(Pi, j + Pj ), (13.24)

where Pi denotes the required transmitted from node i to the destination and Pi, j

denotes the minimum transmission power between node i and node j . Pi, j is equal to
either PD in (13.12) if direct transmission is considered or PC

tot in (13.22) if coopera-
tive transmission is considered employing one of the nodes in the neighborhood as a
relay.

Table 13.1 describes the MPCR algorithm in details. The worst-case computational
complexity of calculating the costs at each node is O(N 2) since it requires two nested
loops, and each has the maximum length of N to calculate all the possible cooperative
transmission blocks.

Now, let us present a cooperation-based routing algorithm, namely, the cooperation
along the shortest non-cooperative path (CASNCP) algorithm. The CASNCP algorithm
is a heuristic algorithm that applies cooperative communications upon the shortest-path
route. However, it is implemented in a different way using the proposed cooperation-
based link cost formula. First, it chooses the shortest-path route then it applies the
cooperative transmission mode upon each three consecutive nodes in the chosen route;
first node as the sender, second node as the relay, and third node as the receiver.
Table 13.2 describes the CASNCP algorithm.

Table 13.1 MPCR algorithm.

Step 1: Each node x ∈ {1, . . . , N } behaving as a sender calculates the cost of the its outgoing
link (x, z), where z ∈ N (x) is the receiver as follows. For each other node y ∈ N (x), y �= z,
node x calculates the cost of the cooperative transmission in (13.22) employing node y as a
relay.

Step 2: The cost of the (x, z)-th link is the minimum cost among all the costs obtained in
Step 1.

Step 3: If the minimum cost corresponds to a certain relay y∗, node x employs this relay to help
the transmission over that hop. Otherwise, it uses the direct transmission over this hop.

Step 4: Distributed Bellman–Ford shortest-path algorithm is applied using the calculated
cooperation-based link costs. Each node i ∈ {1, . . . , N } executes the iteration
Pi = min j∈N (i) (Pi, j + Pj ), where N (i) denotes the set of neighboring nodes of node i and
Pj represents the latest estimate of the shortest path from node j to the destination.
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Table 13.2 CASNCP algorithm.

Step 1: Implement the shortest non-cooperative path (SNCP) algorithm using the distributed
Bellman–Ford algorithm to choose the conventional shortest-path route ωS as follows. Each
node i ∈ {1, . . . , N } executes the iteration Di = min j∈N (i) (d

α
i, j + D j ), where N (i) denotes

the set of neighboring nodes of node i and D j represents the latest estimate of the shortest
path from node j to the destination.

Step 2: For each three consecutive nodes on ωS , the first, second, and third nodes behave as the
sender, relay, and receiver, respectively, i.e., the first node sends its data using to the third
node with the help of the second node as discussed in the cooperative transmission mode.

13.3.1 Performance analysis: regular linear networks

The regular linear network, shown in Figure 13.2, is a one-dimensional chain of nodes
placed at equal intervals d0. Without taking into consideration the interference effect,
nodes are placed at equal intervals to achieve the best performance in terms of the
throughput and the energy consumption.

We explain the route chosen by each algorithm when the source is node 0 and the des-
tination is node N − 1. The SNCP routing algorithm, described in Step 1 of Table 13.2,
constructs the shortest route as a sequence of all the nodes between the source and des-
tination, i.e., wSNCP = {(0, 1), (1, 2), . . . , (N − 2, N − 1)}, where (i, j) denotes the
direct transmission building block between sender i and receiver j . The CASNCP rout-
ing algorithm applies cooperative transmission mode on each three consecutive nodes
in the SNCP route, i.e., wCASNCP = {(0, 1, 2), (2, 3, 4), . . . , (N − 3, N − 2, N − 1)},
where (x, y, z) denotes a cooperative transmission building block with x , y, and z
denoting the sender, relay, and receiver, respectively. We note that the direct trans-
mission mode can be used in case there is no available relay. Finally, the MPCR
routing algorithm, applied on this linear network, chooses a different route, which is
wMPCR = {(0, 1), (1, 0, 2), (2, 1, 3), . . . , (N − 2, N − 3, N − 1)}. In other words, each
node sends its data to the adjacent node towards the destination utilizing its other adja-
cent node towards the source as a relay. In the following, we calculate the average
required transmitted power by each algorithm in a linear network.

For any routing scheme, the average end-to-end transmitted power can be calcu-
lated as

P(route) =
N−1∑
l=1

P(route|l)× Pr(l) , (13.25)

0 N – 1

CT

d0

zyx
1

Fig. 13.2 Linear wireless network, d0 denotes the distance between two adjacent nodes.
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where P(route|l) is the end-to-end transmitted power when the destination is l hops
away from the source and Pr(l) denotes the probability mass function (PMF) of having
l hops between any source–destination pair. The PMF Pr(l) can be calculated as

Pr(l) =
{

1
N , l = 0
2 (N−l)

N2 , l = 1, 2, . . . , N − 1
. (13.26)

Next, we illustrate how (13.26) is derived. The probability of choosing a certain node is
1/N . Thus, the probability of having the source and destination at certain locations is
given by 1/N × 1/N = 1/N 2. At l = 0 hops there is N possible combinations of this
event, where the source and destination are the same. Therefore, Pr(0) = N/N 2 = 1/N .
Considering one direction only (e.g., from left to right in Figure 13.2), at l = 1 there
is N − 1 distinct source–destination pairs: the first is the 0-to-1 pair and the last is the
(N − 1)-to-N pair. By considering the other direction, the number of different source–
destination pairs is 2×(N−1). Therefore, the probability of having a source–destination
pair with l = 1 hop in between is Pr(1) = 2(N − 1)/N 2. In general, there is 2(N − l)
different source–destination pairs with l hops in between, hence, the PMF of having
source–destination pairs with l hops in between is given by (13.26).

For a route of l hops, the MPCR end-to-end transmitted power can be calculated as

PMPCR(route|l) = PD(d0)+ PC
tot(d0, d0, 2 d0)× (l − 1) , (13.27)

where the term PD(d0) accounts for the first transmission from the source to its adjacent
node towards the destination and PC

tot(d0, d0, 2 d0) is the required cooperative transmis-
sion power over one hop, which is given in (13.22) with dx,z = d0, dx,y = d0, and
dy,z = 2d0. The CASNCP end-to-end transmitted power can be given as

PCASNCP (route|l) =
{

PC
tot(2 d0, d0, d0)× l

2 l is even

PC
tot(2 d0, d0, d0)× l−1

2 + PD(d0) l is odd.
(13.28)

If l is even, there exist l/2 cooperative transmission blocks and each block requires a
total power of PC

tot(2 d0, d0, d0). If l is odd, then a direct transmission mode is done over
the last hop. Finally, the SNCP end-to-end transmitted power is calculated as

PSNCP (route|l) = PD(d0)× l . (13.29)

The average end-to-end transmitted power for any routing scheme can be calculated by
substituting the corresponding power formulas, which are (13.27), (13.28), and (13.29)
for the MPCR, CASNCP, and SNCP, respectively in (13.25).

13.3.2 Performance analysis: regular grid networks

Figure 13.3 shows a regular 4 × 4 grid topology and d0 denotes the distance between
each two nodes in the vertical or horizontal directions. To illustrate the routes selected
by different routing schemes, we assume that the source is node 0 and the destina-
tion is node 11. The SNCP routing algorithm chooses one of the possible shortest
routes. For instance, the chosen shortest-route is wSNCP = {(0, 1), (1, 5), (5, 6),
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Fig. 13.3 Grid wireless network; d0 denotes the distance between two adjacent nodes.

(6, 10), (10, 11)}. The CASNCP routing algorithm applies cooperation among each
three consecutive nodes on the shortest-route, and the resulting route is wCASNCP =
{(0, 1, 5), (5, 6, 10), (10, 11)}. By applying the MPCR algorithm on this exam-
ple, we find that MPCR chooses the route given by wMPCR = {(0, 1, 5),
(5, 6, 10), (10, 15, 11)}. Therefore, the MPCR algorithm shares part of the route with
the CASNCP routing algorithm, when MPCR is routing the data across the diagonal
walk. If the MPCR is routing the data in the horizontal (vertical) direction only, MPCR
considers the receiver to be the sender’s nearest node towards the destination and the
relay to be the node nearest to the receiver along the vertical (horizontal) direction.

The average required transmitted power by each algorithm can be calculated as

P(route) =
N−1∑
i=1

i∑
j=0

P(route|
√

i2 + j2)× Pr(
√

i2 + j2) , (13.30)

where i and j denote the number of hops between the source and destination in the hor-
izontal and vertical directions, respectively. In addition,

√
i2 + j2 denotes the distance

between the source and the destination. The PMF Pr(
√

i2 + j2), which depends on the
number of hops between the source and destination as well as their relative locations, is
given by

Pr(
√

i2 + j2) =

⎧⎪⎪⎨⎪⎪⎩
1

N2 , i = j = 0;
4 (N−i) (N− j)

N4 , i = j or j = 0;
8 (N−i) (N− j)

N4 , otherwise

for j ≤ i and 0 ≤ i ≤ (N−1).

(13.31)
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We explain (13.31) in a similar way to (13.26) as follows. The probability of choosing
a certain node to be the source or the destination is 1/N 2. Thus, the probability of
choosing any source–destination pair is given by (1/N 2) × (1/N 2) = 1/N 4. There
are N 2 possible combinations, in which the source and the destination are the same.
Hence at i = j = 0, Pr(0) = N 2/N 4 = 1/N 2. In the following, we consider only the
lower triangular part, i.e., j ≤ i . At j = 0, the grid network reduces to the linear case
with N − i possible source–destination pairs. For source–destination pair separated by
i = j hops in the horizontal and vertical directions, the number of possible source–
destination pairs in one direction (e.g. left to right) is (N − i) × (N − j). This result
is very similar to the one in (13.26) with considering the nodes on two dimensions
instead of one dimension only in the linear case. At i = j or j = 0, and considering
the upper triangular part (×2) and reversing the source–destination pairs (×2), then the
probability of having such source–destination pairs is 4(N − i) (N − j)/N 4. For the
third component in (13.31) i.e., at j < i , we additionally multiply this number by 2 to
compensate the other combinations when i and j can be interchanged while giving the
same distance of

√
i2 + j2, which results in a total of 8.

The MPCR end-to-end transmitted power can be calculated as

PMPCR(route|
√

i2 + j2) = PC
tot(
√

2 d0, d0, d0)× j + PC
tot(d0,

√
2 d0, d0)× |i − j | ,

(13.32)

where the first term represents the diagonal walk for j steps and the second term rep-
resents the horizontal |i − j | steps. The CASNCP end-to-end transmitted power is
calculated by

PCASNCP(route|
√

i2 + j2)

=

⎧⎪⎨⎪⎩
PC

tot(
√

2 d0, d0, d0)× j + PC
tot(2 d0, d0, d0)× |i− j |

2 (|i − j |) is even;

PC
tot(
√

2 d0, d0, d0)× j + PC
tot(2 d0, d0, d0)× |i− j−1|

2 (|i − j |) is odd.

(13.33)

Finally, the SNCP end-to-end transmitted power is given by

PSNCP(route|
√

i2 + j2) = PD(d0)× (i + j), (13.34)

which represents a direct transmission over i + j hops, each of length d0. The average
end-to-end transmitted power for any routing scheme can be calculated by substituting
the power formulas for the MPCR, CASNCP, and SNCP (given by (13.32), (13.33), and
(13.34), respectively) in (13.30).
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13.4 Simulation examples

Example 13.1 In this example we take a look at transmitted power required by the
MPCR, CASNCP and SNCP algorithms for different number of nodes when consider-
ing both linear and grid network topologies. Figure 13.4 depicts the end-to-end trans-
mitted power for throughput ηo = 1.96 bits/s/Hz, transmission rate Ro = 2 bits/s/Hz,
noise variance N0 = −70 dBm, and path loss α = 4. The Figure also highlights the cor-
respondence between the number of nodes and the distance d0 as defined in Figure 13.2
for the linear network and Figure 13.3 for the grid network.

The figure shows a monotone behavior in that the MPCR algorithm requires the min-
imum end-to-end transmitted power compared to both CASNCP and SNCP routing
algorithms for both the linear and grid networks. �

Example 13.2 For this example, let us define the power saving ratio of scheme 2 with
respect to scheme 1 as

Power saving = PScheme1 − PScheme2

PScheme1
. (13.35)

For the linear network, Figure 13.5 depicts the power saving versus the network size
for the network setup defined above. It is shown that at N = 100 nodes, the power
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Fig. 13.4 Required transmitted power per route versus the network size for N0 = −70 dBm, α = 4,
ηo = 1.96 bits/s/Hz, and Ro = 2 bits/s/Hz in regular linear and grid networks.
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Fig. 13.5 Power saving due to cooperation versus the network size for N0 = −70 dBm, α = 4,
η0 = 1.96 bits/s/Hz, and R0 = 2 in regular linear networks.
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Fig. 13.6 Power saving due to cooperation versus the network size for N0 = −70 dBm, α = 4,
η0 = 1.96 bits/s/Hz, and R0 = 2 in regular grid networks.

savings of the MPCR with respect to SNCP and CASNCP algorithms are 73.91% and
65.61%, respectively. On the other hand, applying cooperation over the shortest-path
route results in a power saving of only 24.57%, as illustrated in the the CASNCP with
respect to the SNCP curve. Similarly, Figure 13.6 depicts the power savings for the grid
network. At N = 100 nodes, the power savings of the MPCR with respect to SNCP and
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CASNCP algorithms are 65.63% and 29.8%, respectively. Applying cooperation over
the shortest-path route results in a power saving of 51.04%. �

Example 13.3 In this example we look at the effect of varying the desired through-
put on the required transmitted power per route. We now consider a network located
within a 200 m × 200 m square area, where N nodes are uniformly distributed. The
additive white Gaussian noise has variance N0 = −70 dBm and the path loss exponent
is α = 4. Given a certain network topology, we randomly choose a source–destination
pair and apply the various routing algorithms discussed in Section 13.3 to choose the
corresponding route. For each algorithm, we calculate the total transmitted power per
route. Finally, these quantities are averaged over 1000 different network topologies.

Figure 13.7 depicts the transmitted power per route, as required by the different rout-
ing algorithms. It is shown that the SNCP algorithm, which applies the Bellman–Ford
shortest-path algorithm, requires the most transmitted power per route. Applying the
cooperative communication mode to each of three consecutive nodes in the SNCP route
results in a reduction in the required transmitted power as shown in the CASNCP rout-
ing algorithm’s curve. Moreover, the MPCR algorithm requires the least transmitted
power among the other routing algorithms. One of the major observations is that the
MPCR algorithm requires less transmitted power than the CASNCP algorithm. Intu-
itively, this result is because the MPCR applies the cooperation-based link cost formula
to construct the minimum-power route. On the other hand, the CASNCP algorithm first
constructs the shortest-path route then applies the cooperative communication protocol
to the established route. Therefore, the CASNCP algorithm is limited to applying the

1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95
12

14

16

18

20

22

24

26

28

Desired throughput, η0

R
o

u
te

 t
ra

n
sm

it
te

d
 p

o
w

er
, P

T
 [

d
B

m
]

SNCP
CASNCP
MPCR

Fig. 13.7 Required transmitted power per route versus the desired throughput for N = 20 nodes, α = 4,
N0 = −70 dBm, and R0 = 2 bits/s/Hz in a 200 m × 200 m square.
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cooperative-communication protocol to a certain number of nodes, while the MPCR
algorithm can consider any node in the network to be in the CT blocks which constitute
the route. Thus, the MPCR algorithm reduces the required transmitted power more than
the CASNCP algorithm. �

Example 13.4 In this example we consider the effect of varying the number of nodes
on the required transmitted power per route. We consider the same network setup as in
Example 13.3, i.e, the network is located within a 200 m × 200 m square area, with the
N nodes uniformly distributed in space, additive white Gaussian noise with variance
N0 = −70 dBm, and path loss exponent α = 4. As in Example 13.3, given a certain
network topology, we randomly choose a source–destination pair and apply the various
routing algorithms to choose the corresponding route. For each algorithm, we calculate
the total transmitted power per route. Finally, these quantities are averaged over 1000
different network topologies.

Figure 13.8 depicts the required transmitted power per route by the different routing
algorithms for different numbers of nodes at pS

o = 0.95 and ηo = 1.9 bits/s/Hz. As
shown, the required transmitted power by any routing algorithm decreases with the
number of nodes. Intuitively, the higher the number of nodes in a fixed area, the closer
the nodes are to each other, and the lower the required transmitted power between these
nodes, which results in a lower required end-to-end transmitted power. We also calculate
the power saving ratio, introduced in Example 13.2, as a measure of the improvement of
the MPCR algorithm. At N = 100 nodes, pS

o = 0.95, and ηo = 1.9 bits/s/Hz, the power
savings of the MPCR algorithm with respect to the SNCP and CASNCP algorithms
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Fig. 13.8 Required transmitted power per route versus the number of nodes for ηo = 1.9 bits/s/Hz and
α = 4 in a 200 m × 200 m square.
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are 57.36% and 37.64%, respectively. In addition, the power saving of the CASNCP
algorithm with respect to the SNCP algorithm is 31.62%. �

Example 13.5 We now consider the effect of the routing algorithms on the average
number of hops per route considering the same network setup as in Examples 13.3
and 13.4.

In Figure 13.9 the average number of hops in each route, constructed by the differ-
ent routing algorithms, is shown versus the number of nodes in the network. For the
cooperative transmission mode, the average number of hops is defined as

hC = 1 · Pr(φ)+ 2 · Pr(φ) = 2− Pr(φ) , (13.36)

and the average number of hops for the direct transmission mode is one. As shown,
the routes constructed by either the CASNCP or the MPCR algorithms consist of a
number of hops that is less than the routes constructed by the SNCP algorithm. More-
over, the average number of hops increases with N as there are more available nodes
in the network, which can be employed to reduce the transmitted power. Although the
MPCR scheme requires less power than the CASNCP routing algorithm, it also requires
a longer delay. Intuitively, this is because the minimum-power routes may involve more
nodes. This shows the tradeoff between the required power and the delay in the routes
chosen by the MPCR and CASNCP routing schemes. �
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Fig. 13.9 Average number of hops per route versus the number of nodes for ηo = 1.9 bits/s/Hz and α = 4
in a 200 m × 200 m square.



474 Distributed cooperative routing

13.5 Chapter summary and bibliographical notes

In this chapter, we have considered the impact of cooperative communication on the
minimum-power routing problem in wireless networks. For a given source–destination
pair, the optimum route requires the minimum end-to-end transmitted power while
guaranteeing certain throughput. This chapter first focused on the MPCR algorithm,
which applies the cooperative communication while constructing the route. The MPCR
algorithm constructs the minimum-power route using any number of the proposed
cooperation-based building blocks, which require the least possible transmitted power.
This chapter also presented the CASNCP algorithm, which is similar to most of the
existing cooperative routing algorithms. The CASNCP algorithm first constructs the
conventional shortest-path route then applies a cooperative-communication protocol to
the established route. As we have seen, for random networks of N = 100 nodes, the
power savings of the MPCR algorithm with respect to the conventional shortest-path and
CASNCP routing algorithms are 57.36% and 37.64%, respectively. In addition to ran-
dom networks, we have considered regular linear and grid networks, and have derived
the analytical results for the power savings due to cooperation in these cases. In the case
of a regular linear network with N = 100 nodes, the power savings of the MPCR algo-
rithm with respect to the shortest-path and CASNCP routing algorithms are 73.91% and
65.61%, respectively. Similarly, the power savings of the MPCR algorithm with respect
to the shortest-path and CASNCP routing algorithms in a grid network of 100 nodes are
65.63% and 29.8%, respectively.

The topic of routing in MANETs has resulted in a number of publications address-
ing different problems. A useful reference to learn about different routing protocols
is [119]. One of the main concerns when designing routing algorithms for different
wireless networks, such as mobile ad hoc networks, is to ensure that the result pro-
vides energy savings to extend the device’s battery life. The goal of energy savings is
one of the main objectives in [234] (for sensor networks). Also, it was shown in [38]
that in some wireless networks, such as ad hoc networks, nodes spend most of their
power in communication, either sending their own data or relaying other nodes’ data.
An analysis of the complexity associated with finding the solution of the minimum-
energy cooperative path routing problem can be found in [115], where it was shown
that finding the minimum-energy route using cooperative radio transmission requires
solving a NP-complete problem. In addition to saving more energy, the routes selected
by the routing protocol may be required to guarantee a certain quality of Service (qoS),
as it is of great importance for some wireless applications (e.g., multimedia applica-
tions) [236]. The use of cross-layer techniques in routing protocols, such as providing
the physical information about the wireless medium to upper layers, is a relative new
approach aimed at achieving efficient scheduling, routing, resource allocation, and flow
control algorithms. One work following this approach is [55], where it was shown that
for high end-to-end delivery probabilities and given a certain delay constraint, long-
hop schemes save more energy than that of the traditional nearest-neighbor routing
algorithm.
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As in other areas of cooperative communications, the cooperative routing problem
has received recent attention from the research community, resulting in some notewor-
thy published research. In [96], two centralized heuristic algorithms (cooperation along
the minimum energy non-cooperative path (CAN-L) and progressive cooperation (PC-
L)) are proposed. In these algorithms, the optimum route is found through a dynamic
programming mechanism which is N P hard. Also, [115] proposed the cooperative
shortest path (CSP) algorithm, which chooses the next node in the route that minimizes
the power transmitted by the last L nodes added to the route, while [186] presented an
information-theoretic viewpoint of the cooperative routing in linear wireless network for
both the power-limited and bandwidth-limited regimes. In addition, this paper presents
an analysis of the transmission power required to achieve a desired end-to-end rate. For
the case of a wireless sensor network, [143] studied the impact of cooperative com-
munication on maximizing the lifetime of the network. Finally, [128] considered three
cooperative routing algorithms, namely, relay-by-flooding, relay-assisted routing, and
relay-enhanced routing. In the relay-by-flooding, the message is propagated by flood-
ing and multiple hops. The relay-assisted routing uses cooperative nodes of an existing
route and the relay-enhanced routing adds cooperative nodes to an existing route. Both
of these routing schemes start with a route determined without cooperation. The authors
also assume that more than one relay can send the data in the same time period, while not
considering the synchronization problem. More discussion on the topic of distributed
energy-efficient cooperative routing can be found in [81] and [85].

Exercises

13.1 In this exercise, we consider minimum-power cooperative routing problems with
QoS, which are determined by the end-to-end probability of success and band-
width efficiency. We aim at designing centralized cooperation-based routing
algorithms. For a route ω ∈ �, denote ωi as the i-th block of this route. Thus,
the problem can be formulated as

min
ω∈�

∑
ωi∈ω

Pωi s.t. pS ≥ pS
d and R ≥ Rd ,

where Pωi denotes the transmitted power over the i-th block and pS and R are the
end-to-end probability of success and bandwidth efficiency, respectively. Sim-
ilarly, pS

d and Rd represent the minimum desired values of the probability of
success and the bandwidth efficiency, respectively.

(a) Given that the bandwidth efficiency R = minωi∈ω Rωi , what is the desired
bandwidth efficiency at all the hops Rωi that require minimum transmitted
power and achieve the desired bandwidth efficiency?

(b) The pS of the route ω can be calculated as

pS =
∏
ωi∈ω

pS
ωi
, R = min

ωi∈ω
Rωi ,
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where pS
ωi

and Rωi denote the probability of success and the bandwidth effi-
ciency of the i-th block, respectively. In order to get the per-link probability of
success, consider a solution for a route of n hops that assumes that the proba-
bilities of success over all the links constituting this route are equal to the n-th
root of the desired probability of success. i.e.,

pS
ωi
= pS

h = n
√

pS
d , for i = 1, . . . , n,

where pS
h is the probability of success per hop. Compare the results obtained

by this solution with the optimal results obtained numerically for a two-stage
route. The central node approximates the number of hops in a given route as
the one given by the shortest-path routing algorithm.

(c) Based on the obtained probability of success and bandwidth efficiency per
link, calculate the link costs for both the direct transmission and cooperative
transmission building blocks.

(d) Implement the centralized MPCR and CASNCP routing algorithms based on
the obtained link-level QoS.

(e) (Computer simulations) Consider a 200 m × 200 m grid, where N nodes
are uniformly distributed. The additive white Gaussian noise has variance
N0 = −70 dBm.

(i) Assume that the desired bandwidth efficiency is Rd = 2 bits/s/Hz.
Show the transmitted power per route, required by the different routing
algorithms for α = 2 and α = 4.

(ii) Show the resulting probability of success for the three routing algorithms
at N = 20, Rd = 2 bits/s/Hz, and α = 4.

(iii) Show the average number of hops per route versus the number of nodes
for pS

d = 0.95, Rd = 2 bits/s/Hz, and α = 4.
(iv) Plot the transmitted power per route versus the desired transmission rate

for pS
d = 0.95 bits/s/Hz and α = 4.

(v) Finally, plot the transmitted power per route and the power saving versus
the number of nodes for pS

d = 0.95, Rd = 2 bits/s/Hz, and α = 4.

13.2 Consider the three consecutive nodes x , y, and z in Figure 13.2, where node x
needs to transmit its data to node z. Illustrate the route chosen by each of the
routing algorithms in this case.

(a) The SNCP routing algorithm transmits the data directly from node x to node
y then from node y to node z. Calculate the required power for the SNCP
routing algorithm.

(b) The CASNCP routing algorithm applies cooperative communication trans-
mission to the shortest-path route. Calculate the transmitted power for the
CASNCP routing algorithm.

(c) By applying the MPCR algorithm, we find that the route is chosen in two
consecutive phases as follows. First, node x transmits its data directly to
node y utilizing direct transmission mode. Second, node y transmits its data
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to node z in a cooperative transmission mode utilizing node x as a relay. In
other words, if node z does not receive the data correctly from node y, then
node x will retransmit the data to node z. Calculate the transmitted power
required by the MPCR algorithm.

(d) Plot the required transmitted power per block (x, y, z) as a function of
the distance d0 at throughput η0 = 1.96 bits/s/Hz, transmission rate R0 =
2 bits/s/Hz, noise variance N0 = −70 dBm, and path loss exponent α = 4.

13.3 In a 5 m× 5 m grid network, consider the lower left corner node to be the source
and the upper right corner to be the destination. Apply the MPCR and CASNCP
routing algorithms and show the route chosen by each algorithm. Calculate the
energy saving due to cooperation in this case?

13.4 (Computer simulations) Verify by numerical results that the probability density
function (PDF) of the distance between any two nodes in linear or grid networks,
are given by (13.26) and (13.31), respectively.

13.5 Consider a linear network of N = 5 nodes. Let the source be the first node 0 and
the destination be node 9. Apply the MPCR and CASNCP routing algorithms
and show the route chosen by each algorithm. Calculate the energy saving due to
cooperation in this case.



14 Source–channel coding
with cooperation

The design of wireless devices and networks present unique design challenges due to
the combined effects of physical constraints, such as bandwidth and power, and com-
munication errors introduced through channel fading and noise. The limited bandwidth
has to be addressed through a compression operation that removes redundant informa-
tion from the source. Unfortunately, the removal of redundancy makes the transmitted
data not only more important but also more sensitive to channel errors. Therefore, it is
necessary to complement the source compression operation with the application of an
error control code to do channel coding. The goal of the channel coding operation is
to add redundancy back to the source coded data that has been designed to efficiently
detect and correct errors introduced in the channel. In this chapter we will study the
use of cooperation to transmit multimedia traffic (such as voice or video conferencing).
This involves studying the performance of schemes with strict delay constraint where
user cooperation is combined with source and channel coding.

Although the source and channel codecs complement each other, historically their
design had been approached independently of each other. The basic assumptions in this
design method are that the source encoder will present to the channel encoder a bit
stream where all source redundancy have been removed and that the channel decoder
will be able to present to the source decoder a bit stream where all channel errors have
been corrected. This approach is justified in Shannon’s separation theorem [181, 182],
which states that for certain systems there is no loss of optimality in designing source
and channel coding each independently of the other. Unfortunately, this theorem does
not apply in many practical systems where its assumptions of arbitrary large complexity
and infinite delay do not hold. Networks carrying delay sensitive traffic, such as multi-
media, are one example of systems for which the assumptions in Shannon’s separation
theorem are not practical. For these systems, it is better to jointly design the source and
channel units, an approach that is named joint source-channel coding (JSCC).

14.1 Joint source–channel coding bit rate allocation

In this chapter we will study the use of cooperation as part of a network where perfor-
mance is best studied from an end-to-end viewpoint. Specifically, we will now study the
application of user cooperation to transmit an interactive media. We will assume that the
transmitted source may be speech, video, or some other synthetic source that is useful
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Fig. 14.1 Block diagram of a tandem source and channel coding scheme.

for analytical purposes and can also represent any multimedia source. The multimedia
component in the traffic setup basically means that there is a strict delay constraint for
the transmission of a source sample (which in practice takes values around 100 ms).
This condition implies constraints in both delay and complexity that do not match the
assumptions in Shannon’s separation theorem. Because of this, the design of the source
and channel codecs as two independent components would translate in performance loss
and inefficiencies. In these cases a JSCC approach results in a more efficient design.

In practice, there are many approaches to the joint design of source and channel cod-
ing. In this chapter we will focus on a technique known as joint source–channel coding
bit rate allocation because it is arguably the most straightforward in terms of practical
implementation. In this technique the source and channel codecs are two separate units
working in tandem and designed jointly (Figure 14.1). Because the source and chan-
nel codecs are two separated units, the benefit with this approach is that it retains the
advantage in Shannon’s separation theorem where much of the knowledge on individ-
ual source or channel codecs can be applied in the design of the constituent source and
channel codecs. Yet, in this technique the two constituent codecs are jointly optimized
to realize the advantages of JSCC design.

The technique of JSCC bit rate allocation consists of, given the channel signal-to-
noise ratio (SNR), to allocate a fixed bit budget (in principle, the transmission capacity
made available to a call) between source encoding rate and channel coding rate. In
essence, this implies picking the source compression rate and an amount of error
protection that yields the best end-to-end performance.

The goal of the JSCC bit rate allocation is to obtain the best end-to-end performance.
It still remains unspecified how performance is defined and measured. For multimedia
data, it is best to measure performance through the end-to-end distortion. The end-to-
end distortion comprises of the source encoder distortion (which depends on the source
encoding rate) and the channel-induced distortion (which depends on the channel SNR,
error protection scheme, channel coding rate and error concealment operations). In gen-
eral, the end-to-end distortion, D, associated with the transmission of a single frame of
coded source data can be written as

D = DF P( f )+ DS(1− P( f )), (14.1)

where P( f ) is the probability that the transmitted frame has channel errors after channel
decoding and has to be discarded, DF is the distortion when the source frame is received
with errors (channel-induced distortion) and DS is the distortion due to quantization and
coding (may be compression) of the source (source encoder distortion).
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Furthermore, when including the channel state, the performance is measured in terms
of the end-to-end distortion as a function of the channel SNR, a function we name the D-
SNR curve. One of the problems when studying JSCC bit rate allocation is that it is not
possible to obtain closed form solutions for the D-SNR curves, especially for real mul-
timedia data. This is because generally the design has to be based on iterative methods
or on an exhaustive search over reduced spaces. A simple solution to obtain a bound
on the D-SNR curve is to ignore delay and complexity constraints and assume that
the source is encoded optimally and transmitted at a rate equal to the channel capacity.
This results in the OPTA (optimum performance theoretically attainable) curve. Another
approach aimed at obtaining performance bounds is based on resorting to high and low
SNR approximations, error exponents, asymptotically large source code dimension, and
infinite complexity and delay. This approach presents a valuable step forward in under-
standing the D-SNR curve for jointly source–channel coded sources because it suggests
the D-SNR relation of the type that will be discussed later in this chapter. Nevertheless,
by the own nature of this approach, it cannot answer questions arising in more practical
designs for multimedia communications, such as if performance can still be character-
ized in the same way, and how it will change depending on the source and channel codes
being used.

The discussion so far points to the need for a new approach to studying the D-SNR
curve that is suitable for system with strict delay constraints and featuring practical
(non-capacity achieving) source and channel codes. In an effort to model the D-SNR
curve of video signals with practical channel codes, a model can be selected from sev-
eral candidates by choosing the best fit to measured data. As it turns out, it is possible
to exploit the properties of how the D-SNR curve is obtained from solving the JSCC bit
rate allocation problem and arrive at a good closed-form characterization of the D-SNR
curve without the need for proposing a model beforehand. This close-form approxima-
tion will be derived later in this chapter as our main tool to study the interaction between
cooperation and JSCC.

14.2 Joint source–channel coding with user cooperation

Another limitation associated with the delay constraint we will be dealing with in this
chapter is the type of error correcting techniques that can be used. This is because after
accounting for the many sources of delay (such as encoding, decoding, propagation,
routing, transcoding, etc.), there is little time left for error correcting techniques that
introduce significant delay, such as ARQ. Because of this, techniques that improve the
link quality, such as user cooperation, become a necessity.

Nevertheless, the application of user cooperation to multimedia traffic brings up the
important design consideration that for user cooperation there is a tradeoff between
received signal quality and bandwidth efficiency. As we have studied in previous chap-
ters, typical implementations of user cooperation improve signal quality through the
combination of signals received from multiple paths, but at the same time, it can reduce
the bandwidth efficiency. This is important for schemes that adapt source and channel
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Fig. 14.2 A conceptual view at the different interdependences studied in this chapter.

coding rate, because while the presence of multiple paths can be seen as extra redun-
dancy and error protection, the ensuing sacrifice in communication capacity forces a
higher compression of the source or a choice of a weaker channel code.

This chapter will address these issues by studying the interaction between three main
components: the improvement in signal quality from using cooperation, the level of
compression of the source and the amount of redundancy introduced though differ-
ent techniques to protect against channel errors. These interactions are schematized
in Figure 14.2. The concepts represented in this figure will be developed and studied
throughout this chapter.

It should be clear from the discussion so far that, while the combination of user coop-
eration with the JSCC design adds a new dimension to the problem, the correct approach
is still a study from an end-to-end viewpoint. With this in mind, this chapter will center
around studying the tradeoffs involved in combining user cooperation with JSCC bit
rate allocation. We call this problem, the source–channel-cooperation tradeoff problem.
One of the challenges in studying the source–channel–cooperation tradeoff problem is
that it becomes necessary to find a unified framework that is able to jointly include the
effects on end-to-end performance of user cooperation and the JSCC bit rate allocation
stage.

Our approach to this problem is to use an expanded view of the concept of diversity
as the unifying tool in our analysis. We will approach the concept of diversity with a
more general view than the one limited to the presence of multiple channels or fading.
In essence, the concept of diversity, as that of transmitting multiple copies of a message,
can be extended to include the notion of redundant information. In fact, error correcting
codes exhibit an inherent diversity since the copies of the message (which may be partial
in this case) are coded as parity data of a channel code. Also, residual redundancy after
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source encoding can be seen as diversity in the form of partial information that can be
used to improve the received message quality. Then, since redundancy can be seen as
a form of diversity, we explore both in a unified way and we apply the concept to the
study and characterization of end-to-end performance resulting from source–channel–
cooperation tradeoffs. We will do so by using a unified framework for the modeling,
analysis and performance measurement of multimedia systems that use two magnitudes:
the coding gain and the diversity gain.

In conjunction with the need to study the source–channel–cooperation tradeoffs in a
unified way, it is also important not to loose track of considerations typical of multime-
dia systems, such as delay constraints precluding the use of capacity achieving codes
or typical operational envelopes that are not necessarily restricted to high SNR chan-
nels. Even when including the extra dimension of user cooperation, these are qualities
of the approach to characterize the D-SNR curve that will be developed in this chapter.
Because of this, the characterization of the D-SNR curves will be suitable not only to
study the combination of cooperation with practical source and channel codes, but also
to analyze from an end-to-end viewpoint the practical design issues associated with this
setup such as how performance is affected by the use of a stronger channel code or a
less efficient source encoder.

14.3 The Source–channel–cooperation tradeoff problem

We now formalize the description of the source–channel–cooperation tradeoff problem.
Let us consider a wireless network carrying conversational multimedia traffic between a
source node and a destination node, i.e., each ongoing call carries the information from a
source, which has been coded for transmission over noisy and bandwidth-limited chan-
nels, while also being subject to strict delay and jitter constraints. Bandwidth is shared
between users by allocating to each call an orthogonal channel that delivers a constant
number of bits, W , per transmission period. Without loss of generality, we will assume
that these bits are transmitted using BPSK modulation with coherent detection and
maximum-likelihood decoding in the receiver. As shown in Figures 14.1 and 14.2, for
each transmission period, the transmission of a message is divided in three main stages:
a source encoder, which compresses a source, a channel encoder, which adds protec-
tion against channel errors, and a radio link. In order to minimize end-to-end distortion,
both the source coding and channel coding rates can be adapted to channel conditions
through jointly allocating the W available bits. Also, cooperative communication may
or may not be used in the radio link

We assume a low mobility scenario, where the communication is carried over a quasi-
static fading channel; i.e., fading may be considered constant during the transmission
of a frame. Furthermore, we will consider the source–channel–cooperation tradeoffs
within each transmission period so as to obtain best performance when having perfect
knowledge of the channels. For this, let us implicitly assume that the network offers a
mechanism that allows the transmitters to estimate the channel states (similarly to that
of MIMO communications). This can be achieved in a time division duplexed network
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by using techniques such as channel sounding. In this case, after assuming reciprocity of
the channels, the source can estimate the source–relay channel from the signal emitted
by the relay (likely containing pilots) and the source–destination and relay–destination
channels from estimates fed back from the destination. As long as the quasi-static fading
assumption holds, the difference between the actual channels states and their estimate
(due to actual errors in channel estimation and due to the time evolution of the channel)
should have little effect on the final result. This is because, under these conditions, there
would be no difference in the parameters chosen for source and channel coding as the
range of possible choices is discrete and the selection of parameters remains the same
over a range of channel SNRs.

In general terms, in most scenarios involving node movement at speeds consistent
with pedestrian setups, the channel is expected to stay constant over the duration of
several transmit frames (for example, at a carrier frequency of 2.5 GHz and a node
velocity of 5 mph the channel coherence time is approximately 50 ms). As the channel
starts to change more rapidly, there may be differences between the actual channels
states and their estimates that would translate into a mismatched choice of source and
channel coding parameters, which would result in performance loss. The magnitude of
this loss depends on several variables, such as the rate at which the channel is changing
in relation with the duration of a transmission period, the coarseness in the range of
choices for source and channel coding, the performance of both the source and the
channel codecs, etc. Nevertheless, the effect of a rapidly changing channel affects the
considered scheme whether user cooperation is used or not.

Since the main goal of this chapter is to study the interaction between the received
signal quality-bandwidth efficiency tradeoff (stemming from user cooperation) and the
source compression-error protection tradeoff, the effects of channel mismatch can be
decouple from the results by assuming that channel states are ideally estimated at the
transmitter. This will lead to results that reveal the pure source–channel–cooperation
tradeoffs and that reflect the best performance that can be achieved in each of the
considered schemes. Finally, to follow these assumptions, we will consider that per-
formance measurement and setting design for the three transmission stages is done on a
frame-by-frame basis.

Note that the source–channel–cooperation tradeoff problem encompasses many lay-
ers of the communication stack. This affects the way in which we measure performance.
Measuring performance using relations between some measure involving channel
errors, such as bit error rate (BER), and channel SNR is applicable for studies focused
on lower layers of the communication stack, such as modulation schemes, user cooper-
ation or channel coding, but is not useful to represent all the effect of the higher layers.
At the application layer and for the case of source codecs, performance is best measured
through the distortion-rate (D-R) function; which characterizes the distortion observed
in a reconstructed source after it had been compressed at a given rate.

However, for the source–channel–cooperation tradeoff problem, it is best to use a
performance measure that reflects tradeoff effects at all layers of the source–channel–
cooperation problem and that is consistent with multimedia traffic. Thus, it is best to
measure performance through the relation between end-to-end distortion and channel
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SNR, a function we call the “D-SNR curve”. Even more, in order to study the source–
channel–cooperation problem it is necessary to have a clear understanding of the main
components of the system, namely the source codec, the error control coding block and
the transmission with and without cooperation. In the next two sections, we momentar-
ily pause in the study of user cooperative systems to present the main concepts of source
and channel coding that are pertinent to the source–channel–cooperation problem.

14.4 Source codec

During each sample period, a block of N input signal samples are presented to the
source encoder at the transmitter node (see Figure 14.2). The function of the source
encoder is to quantize and compress these samples. This operation results in a coded
representation of a sample using a number of bits that is called the source encoding
rate. On the receiver side, a decoder performs the reverse operations to those done by the
encoder so as to obtain a reconstruction of the source. Since the operations performed
at the encoder and the decoder add some distortion to the source samples, the decoder
actually obtains an approximate reconstruction of the original input signal samples.
Then, a key figure of merit for a source codec is the measurement input-output distortion
when using a certain number of bits to represent the source coded signal. This relation
is the achievable D-R (distortion-rate) function, where distortion is measured in the
majority of cases as the mean-squared error between the original and the reconstructed
source samples.

Let’s denote by RS the source encoding rate (measured in number of bits per source
sample) and by DS the distortion associated with the source encoding operation. The
D-R function is frequently modeled as

DS(RS) = c12−c2 RS , (14.2)

because this function can be used to approximate or bound many practical, well-
designed codecs. Examples of this are video coding using an MPEG codec [60, 103],
speech coding using a CELP-type codec [101], or coding when the high rate approxi-
mation holds. In the study of problems that involves the use of D-R functions without
assuming a particular type of source, it is a common practice to assume that the input
samples are memoryless, with a zero-mean, unit-variance Gaussian distribution and are
coded with a long block source code. In this case, the D-R function was shown to be
specified by c1 = 1 and c2 = 2, i.e.,

DS(RS) = 2−2RS . (14.3)

For illustrative purposes, this function is plotted in Figure 14.3.
In this chapter, we will use in most of the formulation the D-R function as given

by (14.3). Note that the exponential relation between distortion and rate makes the
D-R function to be convex and decreasing. All these properties are not exclusive to the
particular D-R function in (14.3), but, in fact, can be also observed in practical, well-
designed encoders for any type of multimedia source. Because the overall behavior of
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Fig. 14.3 The D-R function DS(RS) = 2−2RS .

D-R functions play a role in understanding the source–channel–cooperation tradeoff,
we will take next a closer look at the D-R function for some practical sources.

14.4.1 Practical source codecs

In the previous section, we explained that (14.3) is a quite general form of D-R function.
We also highlighted that the exponential relation between distortion and rate makes the
D-R function to be convex and decreasing and that these properties can be also observed
in practical, well-designed encoders. We now illustrate this concept when the source
being encoded is speech or video.

The vast majority of today’s speech codecs are based on the principle of analysis-by-
synthesis. In this approach, the human speech production mechanism is modeled as a
time-varying filter (representing the actions of the glottal flow, the vocal tract, and the
lips) that is excited by a signal representing the vocal cords, which is modeled as an
impulse train (for voiced speech) or random noise (for unvoiced speech). During each
encoding period the encoder inputs a block of samples corresponding to a few tenths
of milliseconds, or less, of speech. The encoder applies to each block of samples the
speech filter model so as to calculate a set of parameter characterizing the synthetic filter
and excitation signal. These parameters are calculated with the goal of minimizing the
distortion between the input and reconstructed speech samples, which is estimated by
running an instance of the decoder at the encoder. The output of the encoding process
is a quantized version of the voice model parameters, as well as a compressed ver-
sion of the input-output error signal (obtained using the instance of the decoder in the
encoder).
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As a distortion measure, the mean squared error has the advantage of being simple
to calculate and of frequently leading to mathematically tractable analysis. Neverthe-
less, when dealing with sources such as speech, this distortion measure needs to be used
judiciously. This is because an objective distortion measure as the mean squared error
does not take into consideration how the properties of human sound perception affect
the perceived quality of a speech sequence. In reality, the best way to obtain an assess-
ment of speech quality that accurately incorporates subjective human perception is to
assemble a group of human testers that listen and grade the target speech sequences.
This procedure has proven to be effective and has been standardized under the name of
the mean opinion score (MOS) [86]. For all the value offered by this method in pro-
viding a perceptual quality measure, the clear main drawback is the need to assemble a
panel of listeners, which may be impractical in many situations.

The solution to this problem is to develop distortion measures that still result in
perceptual-based measurements and, also, that can be obtained in a computer by fol-
lowing some algorithm. Among these measures, the International Telecommunications
Union (ITU) has standardized in 2001 a quality measure algorithm called “perceptual
evaluation of speech quality”–PESQ (ITU-T standard P.862 [88]). We have already used
a variation of this speech quality evaluation algorithm in Chapter 12. Recall that the
most important property of PESQ is that its results accurately predict those that would
be obtained in a typical subjective test using the method of polling a panel of human lis-
teners (the MOS test). In the variant of the algorithm we will use in this chapter, PESQ
will reduce measurements of quality as numbers between 4.5 and 1 [89]. The higher
the quality measurement, the better the perceptual quality is. This means that a quality
measure above 4 corresponds to excellent quality, around 4 corresponds to good quality,
around 3 is associated with fair but still acceptable quality, around 2 means poor quality
and approximately 1 corresponds to bad quality.

Figure 14.4 shows the D-R function for 18 speech sequences (half males and half
females), all from the NIST corpus [29] encoded using the widely-used speech vocoder
GSM AMR codec [36]. This codec, based on the analysis-by-synthesis principle,
encodes speech at eight possible rates: 12.2, 10.2, 7.95, 7.4, 6.7, 5.9, 5.1, and 4.75 Kbps.
In this encoder, source encoding rate adaptation is achieved by changing the encoding
parameters and internal quantization tables. In essence, the encoder operates as if it
were eight different encoders that perform the same encoding operations but only one is
selected at a time. In the figure, the distortion is not measured using the mean squared
error but through a measure derived from the PESQ quality measure. To turn the quality
measure into a distortion measure, the figure simply shows the values 4.5 − Q, where
Q is the quality measure obtained by using the PESQ algorithm. By doing this transfor-
mation the distortion will be equal to zero when quality is best, and will increase as the
quality degrades.

The applicability of the properties of the D-R function to practical sources and source
encoder, as illustrated in Figure 14.4, can also be extended to other sources. Specifically,
Figure 14.5 illustrates the same concept when the source is video. The majority of video
codecs perform compression through a combination of motion prediction and transform
coding. To do video compression, the encoder divides the frames in a video sequence
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Fig. 14.5 The D-R function, and an exponential approximation, for two video sequences encoded with the
MPEG4 FGS codec.

into groups, called group of frames (GOF). The first frame in a GOF, named an “I”
frame, is encoded essentially as if it were a single picture, i.e., it is divided in 8 × 8
blocks, each of which is transformed using the Discrete Cosine Transform followed
by some sort of entropy coding to achieve compression. For the rest of the frames,
an estimate is calculated by using the changes due to movement in past (for which
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the frames are named “P” frames) and, sometimes, future frames. Subsequently, the
difference between the actual and estimated frame is calculated. It is this rrsidual error
that is quantized and compressed as if it was an individual picture. The coded error is
finally transmitted along with compressed information about the movement in the video
frame being encoded.

Figure 14.5 shows the D-R function of one representative frame (number 182) from
two video sequences, named “Foreman” (which is considered to have high motion) and
“Akiyo” (which is considered to have low motion). Distortion in this figure is measured
using the objective mean squared error between each pixel in the original and recon-
structed frame. The video encoder used is an extension of the MPEG4 video codec,
which is designed for easy coding rate adaptation. This version, known as the MPEG4
FGS (fine granularity scalability) codec [114], generates a two-layer coded representa-
tion of the video sequence. The two layers are known as base and enhancement layers.
The base layer provides a basic, coarse representation of the video sequence of low qual-
ity. The enhancement layer contains the coded representation of the difference between
the base layer and the frame encoded into a representation with good quality. To be use-
ful, the enhancement layer needs to be combined with the base layer so as to generate a
reconstruction of the video sequence with good quality.

The easy adaptation in the coding rate is achieved by making the enhancement layer
be encoded into an embedded bit stream. An embedded bit stream is created in such a
way that it can be truncated at any point and still be decodable using the bits remaining
from the origin of the stream up to the truncation point. Note that this illustrates another
possible method, different from the one used for speech, to change the source encoding
rate. We briefly remark here that there are other methods to control the bit rate of com-
pressed video sequences but most of them are based on buffering several frames, which
add annoying delay for conversational applications.

Finally, we highlight here that Figure 14.5 illustrates how the approximately expo-
nential relation for the D-R function, as well as its associated properties of being convex
and decreasing, can still be observed in practical, well-designed encoders, such as video
in this case.

14.5 Channel codec

In the scheme of the source–channel–cooperation problem, the source-encoded bits are
organized into a source frame and protected against transmission errors through a chan-
nel code. The ratio between the number of bits at the input and output of the channel
encoder is called the rate of the channel code, which we will denote by r . The chan-
nel code rate is an important parameter describing a channel code, since it specifies the
amount of redundancy bits added to the stream, which is the cost associated with the
error protection scheme. As is the common practice in communications, we assume that
the receiver discards source frames containing errors after channel decoding. Although
error concealment schemes are typically used to replace the lost information, this is
not our focus here, so we will assume that missing data is simply concealed with its
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expected value. For input samples that are memoryless, with a zero-mean, unit-variance
Gaussian distribution, the mean squared distortion associated with this simple error
concealment scheme is equal to 1, the variance of the input samples.

Due to the strict delay constraints associated with multimedia data, our interest here
is to consider practical channel codes. We cannot consider the use of capacity-achieving
codes or even practical ARQ schemes. Therefore, we will carry on the following study
assuming the use of a family of convolutional codes. It is possible to consider other types
of codes, such as some block codes, but this will lead into similar results that would only
divert the presentation from the focus on user cooperation. Because their channel coding
rate can easily be changed, we will implement the family of variable rate convolutional
codes with rate compatible punctured convolutional (RCPC) codes. For these codes, the
channel coding rate is controlled by eliminating bits from the channel encoded stream.
We assume that decoding is performed with a soft input Viterbi decoder.

Convolutional encoders, as illustrated in Figure 14.6, operate by processing a
sequence of input bits through a tandem of one-bit memory elements. Each output bit
of the encoder is generated as the sum in modulo 2 of the values at the output of certain
memories. The collection of all the output bits, generated by feeding the input sequence
into the encoder, form a codeword. At the receiver side, the decoding operation often
employs a Viterbi decoder, which starts by associating each combination of the encoder
memory states with a code state. In this way, the encoding operation can be thought
of as a series of transitions through the different states where each transition is driven
by an input data bit and results in a number of coded bits. All the possible transitions
over time are represented in a trellis diagram. The decoder, then, uses the bits of the
received codeword (which are the product of each transition through the state diagram
with errors introduced in the noisy channel) to estimate the most likely path through the
trellis. A decoding error occurs when the decoder picks as the most likely path, one that
does not corresponds to the one followed by the encoder during encoding. This occurs
when one or more incorrect state transitions are calculated as having a larger probability
(a larger path metric, strictly speaking) than the correct one.

Rate compatible punctured convolutional (RCPC) codes are convolutional codes with
an output rate that is controlled by deleting bits from the convolutional code codeword.
This operation is called puncturing and the convolutional code from which codewords
are punctured is called the mother code. The more bits that are punctured from the
codeword, the largest the channel coding rate is and the less capable of correcting errors
the punctured codeword is. With RCPC, a family of punctured codewords of increasing
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Fig. 14.6 An example of a memory 2 convolutional encoder.
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channel coding rate is built by incrementally removing bits from the lower coding rate
codewords in such a way that once a bit has been removed, it remains punctured from
all the codewords of higher coding rate.

To consider in the analysis the contribution of channel errors to end-to-end distortion,
we are interested in finding the probability of having a source frame with errors after
channel decoding. Since RCPC codes are convolutional codes, which in turn are linear
codes, the probability that the decoder will be unable to correct channel errors can be
obtained by assuming that a sequence with all its bits equal to zero is transmitted, and
determining the probability that the decoder decides in error for a different sequence, i.e
chooses a different path in the decoding trellis. This is essentially the probability that the
all-zero sequence is sent, but a different sequence is decoded. With this assumption, the
probability of a decoding error can be obtained by first calculating the probability that
a path with d input bits has a larger probability (a larger path metric, strictly speaking)
than the correct one, and thus is chosen. Given the channel SNR γ , this can be shown
to equal

Pe(d|γ ) = 0.5 erfc
√

dγ , (14.4)

for BPSK modulation [56], with erfc(γ ) being the complementary error function
defined as erfc(γ ) = 2/π

∫∞
γ

e−u2
du. Since we are assuming that the all-zero sequence

is sent, considering sequences that differ in d bits is equivalent to consider that the
sequences in error have Hamming weight d.

Next, to obtain the probability of a decoding error, it is necessary to compute the
probability of decoding error associated with all paths with Hamming weight d. This
can be upper-bounded as a(d)Pe(d|γ ), where a(d) is the number of valid codewords
with Hamming weight d (i.e., d bits differing from the all-zero codeword). Finally, the
probability of having a source frame with errors after channel decoding results from
combining the effects of all possible paths with nonzero Hamming weight and can be
upper-bounded using the union bound as [130]

P(γ ) ≤ 1−
⎡⎣1−

W∑
d=df

a(d)Pe(d|γ )
⎤⎦N Rs

, (14.5)

where df is the free distance of the code, which is the minimum number of bits equal to
1 in a valid codeword.

14.6 Analysis of source–channel–cooperation performance

We approach the study of the source–channel–cooperation tradeoff by first characteriz-
ing the end-to-end distortion as a function of SNR, and then using this characterization
to compare the performance of different schemes. Recall that we call this function the
D-SNR curve. The end-to-end distortion is formed by the source encoder distortion
(which depends on the source encoding rate) and the channel-induced distortion (which
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depends on the channel SNR, use of cooperation, channel coding rate and error con-
cealment operations). In the system setup we are considering, the best adaptation to the
known channels SNRs is achieved by jointly setting both the source and channel cod-
ing rates so as to minimize the end-to-end distortion. At the same time, the choice for
source and channel coding rate cannot add to a total communication capacity exceeding
the maximum available W .

Typically both the source and the channel coding rates are chosen from a finite set,
resulting in a finite number of possible useful combinations. We call an operating mode
�i , the triplet that describes a choice of source encoding rate, a choice of channel
coding rate and the indication of whether user cooperation is to be used or not. Let
� = {�i ,∀i}, be the set of all operating modes. Note that since we are assuming fixed
transmit bit rate, without loss of generality we have W/2 = N RS/r if using coopera-
tion and W = N RS/r if not, i.e., any �i could be specified through either the source or
the channel coding rate. In what follows, we will make explicit the dependence of the
probability of a frame error on �i by using the notation P�i (γ ).

14.6.1 Amplify-and-forward cooperation

We consider a scheme as in Figure 14.7 where an encoded source is transmitted using
AF user cooperation. Let RSC be the number of bits used by the source encoder to
represent each of the N source samples. Let this source encoded data be protected with
a rate r RCPC code. As discussed, we have that RSC = Wr/2N . Let �(c) be the subset
of � such that user cooperation is used. Based on (14.1), the D-SNR function for AF
cooperation is the solutions to

DCAF = min
�i∈�(c)

{
DF PAF�i

(γAF)+ 2−2RSC
(
1− PAF�i

(γAF)
)}
, (14.6)
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Fig. 14.7 Configuration of the scheme featuring a source encoder with user cooperation.
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where DF is the distortion when the source frame is received with errors. When
using mean-squared error distortion measure, DF = E[(s − ŝ)2], where s is the ran-
dom variable representing the input sample, ŝ is the random variable representing its
reconstructed value and E is the expectation operator. Since when the source frame is
received with errors, the coded source is estimated by its mean, DF = E[(s − E[s])2].
For our source model (zero mean and unit variance), DF = 1. In (14.6), PAF�i

(γAF) is
the probability of having a source frame with errors after channel decoding when using
AF user cooperation. Its expression can be simply approximated from (14.5) as

PAF�i
(γAF) ≈ 1−

⎡⎣1−
W/2∑

d=d f

a(d)P(d|γAF)

⎤⎦N RSC

, (14.7)

where γAF is the SNR at the receiver after the MRC. From (5.49), it is straightforward
to see that γAF, is equal to

γAF = γs,d + γs,rγr,d

1+ γs,r + γr,d
, (14.8)

where γs,d is the SNR in the source–destination link, γs,r is the SNR in the source–relay
link and γr,d is the SNR in the relay–destination link.

Finding a close form expression for the D-SNR curve is a challenging problem.
Nevertheless, a good approximation can be found by considering the following. Let

f�i (γAF) = PAF�i
(γAF)+ 2−2RSC

(
1− PAF�i

(γAF)
)
,

as per (14.3) and (14.6), be the D-SNR function that results from the choice of one
operating mode �i ∈ �(c). We will call f�i (γAF) the single-mode D-SNR curve.
Figure 14.8 shows all the possible single-mode D-SNR curves for an AF system with
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Fig. 14.8 The overall D-SNR curve as an interleaving of single-mode D-SNR curves.
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γs,r = γr,d = 1 dB and using a memory 4, mother code rate 1/4, RCPC code family
from [56]. In addition, the Figure shows that the envelope formed by the single-mode
D-SNR curves is the solution to (14.6), i.e, the D-SNR curve. As implied in (14.6)
and seen in Figure 14.8, the D-SNR curve is made from the interleaving of sections of
D-SNR curves.

The comparison of two single-mode D-SNR curves shows the basic tradeoff asso-
ciated with bit rate allocation process in (14.6). Let’s consider that the indexes of the
operating modes are sorted in increasing source encoding rate order; i.e., i> j (from �i

and � j ) if RSCi > RSC j . Note that, due to the relation W = 2N RSC/r , i> j means
that ri > r j also. For each single-mode D-SNR curve the distortion only increases due
to channel errors because source and channel coding are fixed. Figure 14.8 illustrates
the behavior of single-mode D-SNR curves. By examining any of the of single-mode
D-SNR curves it is possible to identify three distinct parts:

• At high SNR the channel errors are few and of negligible impact. This is because
the channel code is strong enough to correct most of channel errors, making the end-
to-end distortion be practically constant and equal to the source encoder distortion
DS(�i ) for operating mode �i .

• At low SNR, the distortion increases rapidly because the channel code of the cor-
responding operating mode is too weak to correct the errors introduced by the
channel.

• Between the section where the single-mode D-SNR curve is practically constant and
the section where distortion increases rapidly, there is a section that acts as a transition
since it corresponds to the range of channel SNR for which the distortion starts to
increase due to channel errors. Let γ ∗i be the SNR value at which the distortion of the
mode-�i single-mode D-SNR curve starts to increase.

Next, we have that for i > j , DS(�i ) < DS(� j ). This implies that, over the section
where the single-mode D-SNR curve is approximately constant, a single-mode D-SNR
curve associated with a larger source encoding rate will present a lower distortion. Also,
we have that for i > j , γ ∗i > γ ∗j because ri > r j , i.e., channel errors start to become
significant for weaker channel codes at higher SNR values. The overall effect is that
for two single-mode D-SNR curves, f�i (γ ) and f�i+1(γ ), we have f�i+1(γ ) < f�i (γ )

for γ > γ ∗i+1 and f�i+1(γ ) > f�i (γ ) for γ < γ ∗i Operating modes for which these
conditions do not hold are not useful because either one or both are not active in the
solution to (14.6) (they are a degenerate mode for which, at any SNR, there is always
another operating mode with lower distortion) or they are over a negligible range of
SNRs. As Figure 14.8 illustrates, this means that the D-SNR performance resulting from
solving (14.6) is the sequential interlacing of sections of single-mode D-SNR curves.
These sections are the portion of single-mode D-SNR curves where channel-induced
distortion is such that DS(�i+1) ≤ f�i+1(γ ) ≤ DS(�i ), approximately.

Note that these observations follow from the mechanics associated with problem
(14.6), they can be found as well in applications of this problem with setups very differ-
ent from the one we are considering. Also note in Figure 14.8, that at very low SNR (and
large distortion) there is an operating region where the smallest of the channel codes had
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already been chosen and there is no more use of JSCC bit rate allocation. Performance
in this region follows that of a system with fixed channel coding, thus it is of no interest
to us.

The challenge in characterizing the D-SNR curve is that, even when there is no use of
cooperation, the expressions that can be derived do not lead to a closed-form solution to
(14.6). Because of this, we study the D-SNR curve by approximating its representation
through a curve determined by a subset of its points. Each of these points is selected
from a different single-mode D-SNR curve. The criterion used to select each point is
based on the observation that the segment of a single-mode D-SNR curve that belongs
to the solution of (14.6) follows DS(�i+1)≤ f�i+1(γ )≤DS(�i ), approximately; which
means that a point where the relative contribution of channel errors to the end-to-end
distortion is small is likely to belong to the overall D-SNR curve. Points with a rel-
ative contribution that is practically negligible or is large may or may not belong to
the D-SNR curve and, thus, are not good choices to form the approximation. Then, for
each single-mode D-SNR curve, the point chosen to represent the D-SNR curve is such
that D = (1 + �)DS(�i ), �i ∈ �(c), where � is a small number. Formally, we are
considering those points where

D = (1+�)DS(�i )

= DF PAF�i
(γAF)+ DS(�i )

(
1− PAF�i

(γAF)
)
, (14.9)

Equivalently, from (14.9), the D-SNR curve is formed by those points where

PAF�i
(γAF) = �

DF
DS(�i )

− 1
. (14.10)

This expression offers the advantage that it simplifies the D-SNR curve characterization
problem by translating it into a problem essentially in error control coding. By examin-
ing Figure 14.8 it is possible to see that a choice of � as a small number means that the
points used in the characterization of the D-SNR function falls into the “elbow” region
of typical single-mode D-SNR curves. Therefore, the choice of � as a small number,
besides being justified by the above discussion, have the advantage that the results will
show little changes to different values of �. This is because in the “elbow” region of
typical single-mode D-SNR curves, relatively large changes in distortion translate in
relatively small changes in SNR. This idea will be further explored in the problems
at the end of this chapter. Even more, to solve the characterization problem, it would
be possible to use the related fact that channel-induced errors are relatively few and
apply approximations that are accurate at low BER regime. Following these ideas and
combining (14.7) and (14.10), it follows that

�

DF
DS(�i )

− 1
≈ 1−

(
1− a(df)

2
erfc
√

d f γAF

)N RSC
, (14.11)

where we have used (14.4).
Equation (14.11) shows an implicit dependence, through d f and a(d f ), between

PAF�i
(γAF) and the rate of the particular code chosen from the RCPC family, i.e. the
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Fig. 14.9 Code rate versus free distance for two families of RCPC codes.

particular operating mode. To make this dependence explicit, we study next the rela-
tion between d f and a(d f ) with r . Figure 14.9 shows how d f changes as a function of
the code rate r for the best known RCPC codes with mother code rate 1/4, puncturing
period 8 and memory 4 or 8 (as specified in [56] and [41], respectively). Figure 14.9
also shows that the free distance of a family of RCPC codes can be approximated by a
function of the form

df ≈ κ exp(−cr) ≈ κ exp
(
− 2cN RSC

W

)
,

where κ and c are two constants. A similar study for a(d f ) shows that it is not possible
to find a practical functional approximation. Therefore, we will roughly approximate
a(d f ) by its average value, ā , an approximation that will prove to yield good results.
Using the approximations for d f and a(d f ), (14.11) becomes

�

DF
DS(�i )

− 1
≈ 1−

(
1− ā

2
erfc
(√
κe−2cN RSC/WγAF

)N RSC
. (14.12)

Using (14.10), (14.12) can be solved for γAF to show the explicit relation between γAF

and source coding rate RSC,

γAF ≈
exp
(

2cN RSC
W

)
κ

(
erfc−1

(
2

ā

[
1−

(
1− �

DF
DS(�i )

− 1

) 1
N RSC

]))2

. (14.13)

Equation (14.13) shows that two factors contribute to γAF: one that is the inverse of the
free distance and another that depends on the inverse complementary error function. If
we take the logarithm of γAF, these two factors become the two terms of a sum where
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the first term is linear in RSC. Let us work next with this second term, which we denote
as log

(
g(RSC)

)
, where

g(RSC) =
(

erfc−1
(

2

ā

[
1−

(
1− �

DF
DS(�i )

− 1

)1/(N RSC)
]))2

.

Using the approximation erfc−1(y) ≈ √− ln(y), [24], we can write

g(RSC) ≈ ln
( ā
2

)− ln

(
1−

(
1− �

DF
DS(RSC)

− 1

)1/(N RSC)
)
. (14.14)

Before continuing, we note that the approximation erfc−1(y) ≈ √− ln(y) is not tight,
yet it is still useful for us here because it is very good in representing the functional
behavior of the inverse error function. In essence, this means that the probability of
error associated with the modulation scheme approximately behaves as exp(−x2) with
respect to SNR. Working with the second term of the right-hand side of (14.14),

θ = − ln

(
1−

(
1− �

DF
DS(RSC)

− 1

)1/(N x))
(14.15)

⇒ ln
(
1− e−θ

) = 1

N RSC
ln

(
1− �

DF
DS(RSC)

− 1

)
(14.16)

⇒ − e−θ ≈ 1

N RSC

(
− �

DF
DS(RSC)

− 1

)
(14.17)

⇒ θ ≈ ln

(
N

�
RSC

( DF

DS(RSC)
− 1
))

(14.18)

≈ ln

(
N

�
RSC

)
+ ln

(
DF

DS(RSC)

)
, (14.19)

where (14.17) follows from the fact that both logarithms in (14.16) are of the form
ln(1 − y) with y# 1 and the approximation in (14.19) follows from recognizing that
in general DF/DS(x) − 1 ≈ DF/DS(x), i.e., the reconstructed source error in the case
of transmission errors is typically much larger than the quantization distortion. Fol-
lowing (14.3), θ in (14.18) is the sum of the logarithm of N RSC/� and a term that is
approximately linear in RSC, where generally N/�� RSC. Then, we can approximate

ln
(N RSC

�

)
≈ ln

(N R̄SC

�

)
,

with R̄SC being the average value of RSC, and consider that the approximately linear
term would determine the overall behavior of θ(RSC). Using (14.3), it follows that

g(RSC) ≈ ln
( āN DF R̄SC

2�

)+ 2RSC ln(2).

Recall that we are interested in finding a more useful expression for log(g(RSC)).
Through algebraic operations it can be shown that the coefficients of Taylor’s expansion
of log(g(RSC)) around R̄SC are of the form t i/ i !, with
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t = ln(4)

(
ln

(
āN DF R̄SC

2�DS(R̄SC)

))−1

being much smaller than 1 for typical system parameters. This means that the weight of
coefficients in Taylor’s expansion fall quite rapidly and log(g(RSC)) can be accurately
approximated through the first order expansion

log(g(RSC)) ≈ log(� + 2R̄SC ln(2))+ (RSC − R̄SC) log(4)

� + 2R̄SC ln(2)
(14.20)

where

� = ln

(
āN DF R̄SC

2�

)
.

Recall that we noticed that the logarithm of γAF can be decomposed into two terms:
one that is linear in RSC and the other being log(g(RSC)), which we have just shown is
approximately linear also. Therefore, we can see that, when measured in decibels, γAF

is approximately a linear function of RSC. Specifically, using (14.13) and (14.20), we
can write γAF in decibels as

γAFdB ≈
20cN RSC log(e)

W
− 10 log(κ)+ 10 log(� + 2R̄SC ln(2))

+ 10
log(4)

� + 2R̄SC ln(2)
(RSC − R̄SC). (14.21)

Then, we have γAFdB(RSC) ≈ A1x + B1, or, equivalently, RSC ≈ A2γAFdB + B2. Since
D = (1+�)DS = (1+�)2−2RSC , we have

D = (1+�)10−(log 4)RSC

≈ (1+�)10−(log 4)
(

A2γAFdB+B2

)
= (1+�)10−B2(log 4)γ

−10A2 log 4
AF . (14.22)

This is a relation of the form D ≈ (Gcγ )
−10m with, from (14.21) ,

DCAF ≈ (GcγAF)
−10mc , (14.23)

mc = log(4)

A1
=
[
20

(
cN

W ln(4)
+ 1

2� + 2R̄SC ln(4)

)]−1

, (14.24)

Gc =
[
(1+�)] −1

10m 10
−B1
10

= κ(1+�) −1
10m

� + R̄SC ln(4)
10

log(4)R̄SC
�+R̄SC ln(4) . (14.25)

Equation (14.23) has the appeal of being of the same form as the error rate-SNR
function found in the study of communication systems, as is illustrated in Section 1.4.
The main differences are that we are considering distortion instead of average error
probability, there is no assumption of asymptotically large SNR, and that (14.23) models
performance of systems with practical components instead of being a bound at high
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SNR. Following this similarity, we can derive the analogy that Gc is the coding gain
and mc is the diversity gain.

The coding gain Gc represents the SNR for a reference distortion value of 1. The
diversity gain mc determines the slope (i.e., rate of change) of the logarithm of the
distortion when SNR is measured in decibels (the factor of 10 multiplying mc in (14.23)
is to set these units). Here, we are using the concept of diversity beyond its natural realm
of transmitting multiple copies of a message over fading channels. This expanded use
of the concept of diversity beyond its natural realm of systems with fading is based
on considering that there is a significant overlap between the concept of diversity and
redundancy.

The general concept of diversity, as that of transmitting multiple copies of a message,
can be extended to other forms of redundancy. Such is the case for error correcting
codes when considering that they exhibit an inherent diversity because the (maybe par-
tial) copies of the message are coded in the form of parity data. In this sense, such an
expanded view of diversity aims at measuring more general forms of redundant infor-
mation in cross-layer designs, which allows us to consider in a unified way the use
of cooperation to deliver multiple copies of the message and the tradeoffs in redun-
dancy at the source–channel bit rate allocation stages. Also, it is worth highlighting
that the basic premise on which we base the D-SNR characterization, i.e (14.9), follows
from the problem setup and the general dynamics of the interaction of source encoding
and channel-induced distortion. This is not exclusive to a particular choice of source,
channel code family, or even a particular distortion measure. This implies that the
analysis could be extended to other types of channel code, yielding similar qualitative
results.

14.6.2 Decode-and-forward cooperation

We now consider the case when transmission is carried on using DF user cooperation.
In this case, the system setup can still be schematized as in Figure 14.7 and we still
assume a source coding rate RSC and channel coding rate r . For DF cooperation the
relation RSC = Wr/2N still holds. Thus, following (14.30), the D-SNR performance
function for DF cooperation is the solutions to

DCDF = min
�i∈�(c)

{
DF PDF�i

(γDF)+ 2−2RSC
(
1− PDF�i

(γDF)
)}
.

Here, PDF�i
(γDF) is the probability of having a source frame with errors after chan-

nel decoding when using DF user cooperation. If we denote by � the event “correct
decoding at relay” and by �̄ the event “incorrect decoding at relay,” this probability is

PDF�i
(γDF) = P�i (γDF|�)P�i (�)+ P�i (γDF|�̄)P�i (�̄)

= P�i (γs,d + γr,d)
(
1− P�i (γs,r)

)+ P�i (γs,d)P�i (γs,r).

(14.26)

Note that this relation is derived by considering that the first term in the right-hand side
of (14.26) represents the probability of successful transmission from the source to the
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relay and then to the destination. The second term represents the case when the relay
fails decoding. Here, γDF represents the received SNR at the output of the MRC when
using DF cooperation.

Therefore, to derive a close form approximation to the D-SNR curve, it is necessary
to appropriately consider the structure of PDF�i

(γDF) as in (14.26). Consequently, we
consider three cases: the source–relay channel is “good”, the source–relay channel is
“bad”, and the channel states are such that there is no solution to (14.10) when con-
sidering DF cooperation. One element introduced by the adaptability of channel coding
rate is that the classification of “good” or ‘bad” source–relay channel does not depend
only on γs,r, but also on the operating mode and the strength of its associated channel
code. This is because for a given channel state the strongest channel codes may be oper-
ating at the low BER regime but the weakest codes may be operating in the high BER
regime. This is why the source–relay channel needs to be qualified in terms of the frame
error probability P�i (γs,r).

In the case of a “good” source–relay channel the source frame error probability
(14.26) can be approximated as PDF�i

(γDF) ≈ P�i (γs,d + γr,d) for most operating
modes. In this case (14.9) becomes

D = (1+�)DS(�i ) = DF P�i (γs,d + γr,d)+ DS(�i )
(
1− P�i (γs,d + γr,d)

)
,

and we have

DCDF ≈
(
Gc(γs,d + γr,d)

)−10mc . (14.27)

In the case of a “bad” source–relay channel, (14.26) can be approximated as
PDF�i

(γDF) ≈ P�i (γs,d) for most operating modes. In this case we have

DCDF ≈
(
Gcγs,d

)−10mc . (14.28)

The differentiation between “good” and “bad” source–relay channels is done by set-
ting a threshold on P�i (γs,r) such that the operating modes are separated into two
regimes. These regimes are those where PDF(γDF) in (14.26) can approximate either
PDF�i

(γDF) ≈ P�i (γs,d+γr,d) (applicable to operating modes with strong error protec-
tion such that P�i (γs,r) is less than the threshold) or PDF�i

(γDF)≈ P�i (γs,d) (applicable
to operating modes with weak error protection such that P�i (γs,r) is more than the
threshold). Although there may be one or two operating modes in borderline cases with
P�i (γs,r) near the threshold, the rest of the modes will be clearly in a good or bad chan-
nel regime. Because of this, the composition of the two sets of modes in good or bad
channel regime show little sensitivity to the value chosen as a threshold. Following this,
we considered the threshold to be P�i (γs,r) ≈ 0.1. Also, we note that because the band-
width efficiency of DF cooperation is the same as in AF cooperation, and because both
schemes share the same value for the variables that affect mc and Gc, the value of these
two magnitudes in (14.27) and (14.28) are given by (14.24) and (14.25).

The third modeling case corresponds to situations where the channel states are such
that there is no solution to (14.10). This may occur when γs,d is very low, both γs,r and
γr,d are such that
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PDF�i
(γDF) < �

( DF

DS(�i )
− 1
)−1

for some �i . In this case, the distortion in our analysis becomes an asymptotic value.
Because� is chosen to be small, we approximate this value by solving for the operating
mode for which

lim
γs,d→0

PDF�i
(γDF) = �

( DF

DS(�i )
− 1
)−1
.

Using this fact and (14.3) into (14.12), the asymptotic distortion value can be approxi-
mated as Da ≈ 2−2RSC after solving for the source encoding rate RSC in

RSC = 1

2
log2

⎛⎜⎜⎝1+ �

1−
[
1− ā

2 erfc
(√
κ exp

(
− 2cN RSC

W

)
γr,d

)]N RSC

⎞⎟⎟⎠ . (14.29)

14.6.3 No use of cooperation

We consider also a scheme with no user cooperation. This case, schematized in
Figure 14.10, corresponds to a direct communication between source and destination.
Let RSN be the number of bits used by the source encoder to represent each of the N
source samples and �(nc) be the subset of � such that there is no use of cooperation.
Then, based on (14.1), the D-SNR curve is the solution to

DSN = min
�i∈�(nc)

{
DF P�i (γs,d)+ 2−2RSN

(
1− P�i (γs,d)

)}
. (14.30)

Equation (14.30) is of the same form as (14.6). Therefore, a closed-form approximation
for the D-SNR curve could be derived as in Section 14.6.1. The most important factor
to consider now is that because transmission is done in only one phase, we will have
twice the bandwidth efficiency as in cases using user cooperation. This implies that
R̄SN = 2R̄SC. Considering this, the approximate expression for the D-SNR curve can
be derived from algebraic manipulations of (14.23)–(14.25) and shown to be
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Fig. 14.10 Configuration of the scheme featuring a source encoder without user cooperation.
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DN ≈ (GNγs,d)
−10mN, (14.31)

mN =
[
10

(
cN

W ln(4)
+ 1

� + ln(2)(1+ 4R̄SC)

)]−1

, (14.32)

GN = κ(1+�)−1/(10mN)

� + ln(2)(1+ 4R̄SC)
10

2 log(4)R̄SC
�+ln(2)(1+4R̄SC) . (14.33)

We briefly pause now our study to illustrate our results so far with a series of
examples.

Example 14.1 Consider a system where the source encoder has a D-R performance
as in (14.3) and where variable-rate error protection is implemented with the family of
the best known RCPC codes with mother code rate 1/4, puncturing period 8 and mem-
ory 4 (as specified in [56]). Also, assume that N = 150 samples, W = 950 bits per
transmission period and� = 0.1. Figure 14.11 shows the D-SNR curves obtained from
simulations along with those derived using the characterization developed in the previ-
ous sections. In the figure, γs,d is treated as the main variable, while γs,r and γr,d are
treated as parameters. In doing so, it is possible to consider different scenarios that can
be thought of as associated with the distance between the relay and the other nodes. For
the family of RCPC codes that is being used we have ā = 6.1 (obtained from the table
of a(d) in [56]), and to approximate d f , we have κ = 30 and c = 3 (see Figure 14.9). It
can be seen in Figure 14.11 that the characterization developed in the previous sections
is able to accurately represent the behavior of the schemes under study.

Also, the figure shows that the largest difference between simulation and analytical
results occurs at a region of relative low SNR or large distortion (this is more clear
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Fig. 14.11 D-SNR curves obtained from simulations and applying analysis in Section 14.6.
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for the results of the scheme without cooperation for γs,d in the range between −3
and −1 dB). This difference is because in this range there is no adaptation of the
source or channel code because the strongest channel code has already been cho-
sen at γs,d ≈ −1 dB. In other words, the D-SNR curve has effectively become the
single-mode D-SNR curve with the strongest channel code (see Figure 14.8 for an
illustration), thus, the system is operating outside the range where the above analysis
applies. �

Example 14.2 The D-SNR characterization can also be applied to practical schemes.
This is because, as noted earlier, D-R functions of the form we have considered can
approximate or bound the performance of many practical well-designed source codecs.
Figure 14.12 illustrated this by showing the D-SNR performance of the GSM AMR
speech codec [36], coupled to the memory 4 RCPC codes just used in Example 14.1.
The figure shows seven single mode D-SNR curves, obtained through Monte Carlo
method, corresponding to source encoding rates 12.2, 10.2, 7.4, 6.7, 5.9, 5.15, and
4.75 Kbps; where the last three modes are used in AF cooperation and the first four
without cooperation. Figure 14.12 shows how the D-SNR curve is made from the
interleaving of single-mode D-SNR curves. To emphasize the wide applicability of
the D-SNR characterization, distortion is measured using the perceptually-based mea-
sure related to the ITU-T PESQ quality measure standard P.862 [88], where distortion
is measured as 4.5 − Q with Q being the output from the PESQ algorithm. The fig-
ure also includes the performance approximation as in equations (14.23) and (14.31),
with parameters obtained by measuring two performance points (as will be discussed
in detail in the next section). The figure shows that, despite the much more coarse set
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Fig. 14.12 Application of schemes to GSM AMR speech codec.
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of available operating modes, the above characterization of the D-SNR still applies in
these cases. Also, the figure illustrates how the points following (14.10) are used in the
characterization. �

Example 14.3 Figure 14.13 shows another example of a practical application, this
time video. The results shown in the figure correspond to a frame from the QCIF video
sequence “Akiyo” playing at 30 frames per second. The video sequence was encoded
using the MPEG-4 video codec and protected with a memory 8, puncturing period 8,
mother code rate 1/4 family of RCPC codes [41]. In correspondence with the system
model, the source encoding rate is controlled on a frame-by-frame basis by changing
the “Q factor” of the encoder. Roughly, the Q factor controls the level of quantization
noise of the DCT coefficients, obtained during compression of a frame. As a representa-
tive example, Figure 14.13 shows results for frame number 190. This frame is the tenth
P frame1 after an I frame.2 Here, again, it is possible to observe how the D-SNR curve
is made from the interleaving of single-mode D-SNR curves and that the D-SNR char-
acterization still applies even though there are only a few operating modes available.
Interestingly, this is the case even when the video source is not memoryless, as previ-
ously assumed. This is because, as shown in (14.9), the D-SNR characterization focuses
on points where the channel-induced distortion starts to become important, which is an
effect that is somewhat decoupled from the source memory (i.e., the channel states for
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Fig. 14.13 Application of schemes to MPEG-4 video codec.

1 Obtained through linear prediction from the preceding frame.
2 Encoded as an independent image.
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which the channel-induced distortion becomes important is such that it significantly
affects all memory interdependent frames). �

14.7 Validation of D-SNR characterization

Through the series of steps shown in (14.9)–(14.22) it was possible to find an accurate
characterization for the D-SNR function. Nevertheless, the series of steps involved a
number of approximations that are likely to accumulate error into the final distortion
approximation. Therefore, it is important, as a way to evaluate the approximation, to
look at the error between the distortion and its approximation. Due to the approach
followed to characterize the D-SNR curve, the error should be measured as the relative
error between the logarithm of the actual and the approximated distortion values at those
specific points used to approximate the D-SNR curve.

Recall from the discussion that led to (14.10), that the actual distortion value at these
points is, by definition, (1 + �)DS(�i ), where �i may or may not involve the use of
cooperation. For each point used to approximate the D-SNR curve (one per operating
mode) it is possible to find the actual SNR value by solving for γ in

P�i (γ ) =
�

DF
DS(�i )

− 1
. (14.34)

When the operating modes �i in (14.34) are those with no cooperation, the resulting γ
will correspond to the γs,d of the points used to approximate the D-SNR curve. Because
(14.34) does not depend on the specific type of cooperation and we are solving for γ
as the unknown variable, when the operating modes are those with cooperation, the
resulting γ at the points used to approximate the D-SNR curve, will correspond to γAF

if using AF cooperation or either γs,d + γr,d or γs,d if using DF cooperation. From the
knowledge of γ for each scenario, it is possible to find the approximate values of the
distortion at the points used to approximate the D-SNR curve through (14.24), (14.27),
(14.28), or (14.31).

Figure 14.14 shows, for the memory 4 RCPC code already used before, the relative
error between the logarithm of the actual and the approximated distortion values at the
points used to approximate the D-SNR curve for schemes with and without cooperation.
Only one curve is needed for all the schemes with cooperation because the abscissa rep-
resents γAF, γs,d + γr,d or γs,d, depending on the case and because Gc and mc are the
same for all schemes with cooperation. In the figure, it can be seen that the approxima-
tion is sufficiently good with most points having relative errors of less than 5% (many,
in fact, less than 2.5%) and only one slightly exceeding 10%. The source for most of
the error can be traced to the tightness of the approximation df ≈ κ exp(−cr) and the
approximation of a(df) by its average value.
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Fig. 14.14 Relative error between the logarithm of the actual and the approximated distortion values
at the points used to approximate the D-SNR curve.

14.8 Effects of source–channel–cooperation tradeoffs

From the previous results, it follows that to study the tradeoff between source and chan-
nel coding and use of cooperation, it is important to study the relation between mN and
mc, and GN and Gc, since they characterize the D-SNR performance.

We first consider the relation between mc and mN, as given by (14.24) and (14.32).
Because in practice � > ln(2), we have that 2� + 2R̄SC ln(4) > � + ln(2)(1+ 4R̄SC),
which implies that mN/mc < 2. Also, it can be shown through algebraic operation that
the condition mN/mc < 1 requires cN/(W ln(4)) < 0, which is not possible. Therefore,
we conclude that

1 <
mN

mc
< 2. (14.35)

Furthermore, for typical system setups the term cN/(W ln 4) is the one that con-
tributes most to the value of mc or mN because it typically differs from (2� +
2R̄SC ln(4))−1 or (� + ln(2)(1 + 4R̄SC))

−1 by approximately an order of magnitude.
This implies that we can approximate

mN

mc
≈ 2. (14.36)

Physically, (14.35) means that the distortion will always decrease at a faster rate for sys-
tems without user cooperation and (14.36) means that, in fact, distortion will decrease
at a rate approximately twice as fast in systems without user cooperation (as can be seen
in Figure 14.11, for example). Interestingly, note that this later relation follows mostly
from the fact that when using cooperation, the communication capacity is halved.
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Secondly, to study the relation between GN and Gc, we recall that (14.23), (14.27),
(14.28), and (14.31) show that the functional relation between end-to-end distortion and
received SNR (be it γs,d, γAF, or γDF) is linear in log-log scales. Therefore, mN, GN, mc

and Gc can be calculated from the knowledge of only two points of the D-SNR curve.
Let (DN1, γN1) and (DN2, γN2) be the coordinates of these points for schemes without
cooperation and (DC1, γC1) and (DC2, γC2) be those for schemes using cooperation.
The coordinates of these points could be approximated using again the observation that
each single-mode D-SNR curve contributes to the overall D-SNR curve over a section
where the contribution of channel-induced error is relatively small. Then, from (14.9)
and (14.10), and for i equalt to 1 and 2,

Di =
(
1+�

)
2−2Ri , γdBi = 10 log

[
P−1
�i

(
�

22Ri − 1

)]
, (14.37)

where the subscript dB denotes a magnitude expressed in decibels. Knowing the points
coordinates, it is then possible to find

mN = log
(
DN1/DN2

)
γN2,dB − γN1,dB

, GNdB = −
(
γN1,dB + log DN1

mN

)
,

mc = log
(
DC1/DC2

)
γC2,dB − γC1,dB

, GcdB = −
(
γC1,dB + log DC1

mc

)
.

Focusing on GN and Gc, note that log DC1 = log(1+�)− 2RSC1 log 2. Since � is
small, log DC1 ≈ −2RSC1 log 2 = −RSN1 log 2 ≈ (log DN1)/2. Then, since mN/mc ≈
2, we have log DC1/mc ≈ log DN1/mN, which implies that the relation between GN

and Gc, approximately only depends on the relation between γN1,dB and γC1,dB. Fur-
thermore, when the channel-induced errors are few, (14.5) can be approximated using a
first-order Taylor approximation as

P(γ ) � N Rs

⎛⎝ W∑
d=df

a(d)P(d|γ )
⎞⎠ .

Differentiating explicitly between the use or not of cooperation by using the subscripts
C and N, respectively, it follows that PC(γ ) ≈ PN(γ )/2 for a given operating mode�i .
Considering these observations along with (14.9) and (14.10), leads to (14.37) being
re-written as

γCi,dB = 10 log

[
P−1

N�i

(
2�

2RSNi − 1

)]
, i = 1, 2, (14.38)

which implies that γC1,dB < γNi,dB. Therefore, we conclude that

GCdB > GNdB . (14.39)
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Consider next the value of γs,d for which DCAF = DN.(
Gc

(
γs,d + γs,rγr,d

1+ γs,r + γr,d

))−10mc

= (GNγs,d)
−10mN

⇒ GmN
N

Gmc
c
=
(
γs,d + γs,rγr,d

1+γs,r+γr,d

)mc

γ
mN
s,d

⇒ G2
N

Gc
≈
(
γs,d + γs,rγr,d

1+γs,r+γr,d

)
γ 2

s,d

(14.40)

⇒ γs,d ≈ G2
c

GN

⎛⎝1+
√

1+ 4

(
γs,rγr,d

1+ γs,r + γr,d

)
G2

N

Gc

⎞⎠ , (14.41)

where in (14.40), we have used the approximation (14.36). Equation (14.41) shows that
there is only one value of γs,d for which the distortion using cooperation equals the
one without cooperation. The combined effect of (14.35), (14.39) and (14.41) is that
there are a range of values of γs,d (those that correspond to relative high SNR) for
which it is better not to use cooperation and a range of values for which it is better to
use cooperation. The same analysis that leads to (14.41) could be carried out for DF
cooperation and reach the same conclusion.

We explore further this issue by studing the ratio DC/DN between distortion with
and without cooperation. Figures 14.15 and 14.16 show results for source–relay chan-
nels that are classified as “good” or “bad,” respectively, for most operating modes in DF
cooperation. These figures also explore the effects of the relative strength of the channel
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code family by comparing results for the memory 4 family of RCPC codes, to those
obtained for a memory 8 RCPC codes from [41] (for these codes we have ā = 7.1,
κ = 45 and c = 2.8). The results confirm that non-cooperation is better than coopera-
tion at large γs,d, i.e. DC/DN. This relation is inverted at low γs,d. As it is to expect, the
value of γs,d for which cooperation is better increases with γs,r. Also, in the case of AF
cooperation we note that there is a value of γs,d for which the ratio is minimum (cooper-
ation yields best performance gain). This value does not depend on γs,r, γr,d or the type
of cooperation, it only depends on the channel code family used and is close to the value
of γs,d for which the non-cooperative distortion reaches 1. Comparison between AF and
DF cooperation shows that the later is better for all values of source–destination and
relay–destination channel SNRs when the source–relay channel is “good.” In the case
of a “bad” source–relay channel, DF cooperation outperforms AF only at low γs,d, and
this advantage can be overcome by choosing a family of channel codes that is strong
enough.

Among other results, Figures 14.15 and 14.16 also show the effects on performance
due to a change in the channel codec. We now briefly consider the influence that a
change in source codec efficiency has on the results. In practice, different source codecs
exhibit different compression efficiency, i.e. different source codecs achieve the same
distortion values at different encoding rates. Thus, the efficiency of the source codec
can be incorporated into the formulation by writing the D-R function as

DS(RS) = 2−2(1−λ)RS = 2−λ̂RS ,

where λ determines the coding inefficiency and λ̂
�= 2(1−λ). By modifying the previous

results accordingly, we have that (14.24), (14.25), (14.32), and (14.33) become



14.8 Effects of source–channel–cooperation tradeoffs 509

mc =
[
20

(
cN

W λ̂ ln(2)
+ 1

2� + 2λ̂ ln(2)R̄SN

)]−1

,

Gc = κ(1+�)−1/(10mc)

� + λ̂R̄SN ln(2)
10

λ̂ log(2)R̄SN
�+λ̂R̄SN ln(2) ,

mN =
[
10

(
cN

W λ̂ ln(2)
+ 1

� + ln(2)(1+ 2λ̂R̄SN)

)]−1

,

GN = κ(1+�)−1/(10mN)

� + ln(2)(2λ̂R̄SN + 1)
10

λ̂ log(2)R̄SN
�+ln(2)(2λ̂R̄SN+1) .

These equations show that mc and mN change with λ̂ approximately in a linear fash-
ion. Thus, the relation mN/mc ≈ 2 is maintained. Figures 14.17 and 14.18 show the
ratio DC/DN when λ = 0.2. It can be seen that in the case of a “bad” source–relay
channel, the increased inefficiency of the source codec translates into an increase in
the range of values of γs,d for which no cooperation outperforms AF cooperation. This
effect is compensated by using stronger channel coding. Also, it can be seen that DF
cooperation now outperforms AF cooperation for a larger range of values of γs,d. In the
case of a “good” source–relay channel, DF cooperation is the cooperative scheme that
is outperformed by no cooperation over a larger range of γs,d. Also, we can see that the
results show a reduced sensitivity to the value of γr,d.
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14.9 Chapter summary and bibliographical notes

In this chapter, we have studied the effects that the tradeoffs among source coding,
channel coding, and use of cooperation have on the performance of multimedia com-
munication systems. We considered practical source and channel codecs and for user
cooperation we considered amplify-and-forward and decode-and-forward schemes. As
such, the topics treated in this chapter are very much based on the theory of source
and channel coding. Being source and channel coding two of the most important parts
in the process of communication, their treatment could encompass several books. A
classic book covering many topics in source coding, including the OPTA (optimum
performance theoretically attainable) curve, is [10]. In addition, source coding is a topic
covered in most information theory text books, of which, the book by Cover and Thomas
[26] is a good source. On the channel coding side, general theory can be found in infor-
mation theory text books and in specialized error correcting codes books such as [228].
The specifics details of RCPC codes can be found in [56].

As was discussed at the start of this chapter, the problem of whether to jointly design
the source and channel coding stages considering end-to-end performance was first stud-
ied in Shannon’s separation theorem [181, 182]. This theorem states the conditions
under which it is optimal to design the source and channel codecs as two indepen-
dent components. Since these conditions do not hold in many practical designs, JSCC
solutions for these cases had been the subject of much research. In terms of studying the
achievable performance, in [68, 69] bounds were developed by resorting to high and low
SNR approximations, error exponents, asymptotically large source code dimension, and
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infinite complexity and delay. In practice, there are many approaches to the joint design
of source and channel coding. Hence, there are many JSCC techniques, encompassing
digital, analog and hybrid digital-analog (HDA) implementations. Among the not all-
digital techniques, many are built on the idea of designing mappings from the source
space into the channel space. While for the analog JSCC techniques the mapping is
direct [61], in HDA techniques there is a quantization step that is applied to the source
samples [42, 148, 113, 27].

With respect to all the digital techniques, many are reviewed in [51, 30]. Integrated
source–channel coders (those where the source and channel codecs are two separate
units working in tandem and designed jointly) are studied in [31], and specific variations
of this technique are studied in [37] for channel optimized quantization, [238] for index
assignment, [194] for unequal error protection and [139] for joint bit rate allocation.
In this chapter we have focused on the joint source–channel coding bit rate allocation
technique because is one of the most practical and straightforward to implement. There
are many examples in the research literature where JSCC bit rate allocation has been
applied to transmission of multimedia sources. For illustrative purposes, we highlight
here only the representative works [48, 221] for speech transmission in mobile channels,
[134] for image transmission and [19, 197, 98] for video communication. Also, there
are many works presenting different design methods for different problem setups, as is
the case in [227, 183, 118, 102], which deals with iterative solutions, or [20], which
presents a design based on exhaustive search over reduced spaces.

The study in this chapter is based on measuring performance using the D-SNR curve.
This curve represents the relation between end-to-end distortion and channel SNR. We
saw that the D-SNR curve can be accurately approximated as a linear function in a log–
log scale. To show this, we used an approach that considers practical source and channel
codes and their settings, while it avoids resorting to high SNR asymptotic analysis.
While further study of the D-SNR curve can be found in [106] and [100], the extension
of the theory to consider cooperation can be found in [107].

We have also seen that the schemes using cooperation have better coding gain (due
to the better error performance when using cooperation) but they show a decrease of
distortion at approximately half the rate of schemes not using cooperation (due to the
sacrifice in bandwidth efficiency). The overall effect is that non-cooperative schemes
have better performance at high source–destination SNR, while AF or DF coopera-
tive schemes have better performance in the rest of cases. Further analysis showed
that the best performance among cooperative schemes is achieved with DF coopera-
tion in most of the cases but, when the source–relay channel is bad the performance
advantage of DF cooperation is reduced by choosing a channel code family sufficiently
strong.

In addition, in this chapter we have studied the effects that the efficiency of the source
codec has on system performance and we showed that it reduces the diversity gain
proportionally to the codec loss of efficiency. Also, we saw that for a “bad” source–
relay channel, AF cooperation is outperformed by DF cooperation and no cooperation
over a larger range of channel SNRs but this effect could be compensated by choosing
a stronger family of channel codes. Similar observations apply to DF cooperation in
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the case of a “good” source–relay channel. Further study of the interaction between
practical source and channel coding with cooperation for multimedia communications
can be found in [104] and [105].

Exercises

14.1 In this problem we explore the dependence of the diversity and coding gain on
the choice of the parameter �. We do so in two steps.

(a) We first study how a small charge in� affects the calculation of mc and GcdB .
Formally, this is measured by calculating the sensitivity of mc and GcdB with
respect to �, which is respectively defined as

Smc
� = dmc/mc

d�/�

S
GcdB
� = dGcdB/GcdB

d�/�

Find the expression for the sensitivity of mc and GcdB with respect to �
and plot these results for � between 0.05 and 0.2. What conclusions can
be derived? To plot the results use the same setup as in Example 14.1 on
page 501, i.e., the source encoder has a D-R performance as in (14.3), the
variable-rate error protection is implemented with the family of memory 4,
puncturing period 8, mother code rate 1/4, RCPC codes from [56] (ā = 6.1,
κ = 30, and c = 3), N = 150 samples, and W = 950 bits per transmission
period.

(b) We now study how relatively large charges in � (while still remaining a
small number) affects the calculation of mc and GcdB . Taking the setup from
example 14.1, in page 501, plot the characterization of the D-SNR curve for
AF cooperation, as in 14.23, for � = 0.05, � = 0.1, and � = 0.2. What
conclusions can be derived?

14.2 Derive the expressions for mN and GN in (14.32) and (14.33).
14.3 Derive the expression for the source encoding rate associated with the asymptotic

distortion in decode-and-forward given by (14.29).
14.4 In this problem we study how channel encoding affects the performance of a vari-

ation of a decode-and-forward scheme. Consider a decode-and-forward where
two transmitting nodes are paired-up. Phase 1 of the scheme remains uncharged
from the scheme used in this chapter. In phase 2 a node will forward the message
from the partner only if its reception was correct, otherwise it will send a copy of
its own transmitted message. Both paired nodes will symmetrically operate with
the same protocol. Consider that variable source and channel coding is still used
but now the performance measure of interest is the block error rate after channel
decoding.

(a) What would be the advantage of this DF scheme instead of the one
considered in this chapter?
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(b) Derive the expression for the probability of having a source frame with errors
after channel decoding.

(c) Assume that the variable-rate error protection is implemented with the family
of memory 4, puncturing period 8, mother code rate 1/4, RCPC codes from
[56] (ā = 6.1, κ = 30, and c = 3), N = 150 samples, and W = 950
bits per transmission period. Applying the modeling equations used during
the analysis in this chapter, plot the probability of having a source frame
with errors after channel decoding as a function of the channel SNR for
−4 dB ≤ γs,d ≤ 4 dB and

(i) γs,r = 6 dB, γr,d = 0 dB.
(ii) γs,r = 3 dB, γr,d = 0 dB.

(iii) γs,r = 0 dB, γr,d = 0 dB.

Explain the differences in the results and draw conclusions.



15 Asymptotic performance of distortion
exponents

In Chapter 13 we argued that cooperation can benefit the layers of the communication
stack that are above the physical layer, where the idea was approached through the study
of distributed cooperative routing. In Chapter 14 cooperation was studied as combined
with source and channel coding, which extends the use of cooperation with the higher
application layer. In fact, when considering that the benefits of cooperation come from
the degree of diversity it provides, it is important to also recognize that diversity is not
exclusive to implementations at the physical layer. Diversity can also be formed when
multiple channels are provided to the application layer, where they are exploited through
the use of multiple description source encoders. In multiple description coding different
descriptions of the source are generated with the property that they can each be individ-
ually decoded or, if possible, be jointly decoded to obtain a reconstruction of the source
with lower distortion. More importantly, a multiple description stream provides diver-
sity that can be exploited by sending each description through an independent channel.
This form of diversity has been called source coding diversity. Similarly, if we consider
channel coding instead of source coding as the originator of diversity, we would be gen-
erating channel coding diversity. This chapter focuses on studying systems that exhibit
three forms of diversity: source coding diversity, channel coding diversity, and cooper-
ation. More specifically, in this chapter we consider how cooperative diversity interacts
with source and channel coding diversity in its traditional form (when compared with
Chapter 14)

We will be considering source coding diversity through the particular form of multi-
ple description coding where the number of descriptions is two. This form of multiple
description coding is known as dual description coding and, because it is the simplest
form of multiple description coding, it is by far the best understood. On the side of user-
cooperation diversity, we will consider both relay channels and multi-hop channels, with
a single or M relays helping the source by repeating its information either using the
amplify-and-forward or the decode-and-forward protocols. As understood in this chap-
ter, the differentiation between relay channels and multi-hop channels means whether
there is or not a direct communication path between the source and the destination, a
system design variable that is worth considering in this study.

Given the presence of fading channels, we will study the system behavior at
large SNR where system performances can be compared in terms of the dis-
tortion exponent, which measures the rate of decay of the end-to-end distortion
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at high SNR. Based on this, the goal will be to study the tradeoff between the diver-
sity gain (which will be directly related to the number of relays) and the quality of the
source encoder.

15.1 Systems setup for source–channel diversity

Let us focus on systems that communicate a source signal over a wireless multi-hop
or relay channel. Let the input to the system be a memoryless sourcer. Let us also
assume that communication is performed over a complex, additive white Gaussian noise
(AWGN) fading channel. Denoting by I the maximum average mutual information
between the channel input and output for a given channel realization, from Section 1.2

I = log(1+ |h|2SNR), (15.1)

where h is the fading value. Because of the random nature of the fading, I and the ability
of the channel to support transmission at some rate are themselves random. Recall that
the probability of the channel not being able to support a rate R is called the outage
probability and was given in (1.29), or in short form by P0 = Pr[I < R].

It will be convenient for us to work with the random function eI . At large SNR, eI

from (15.1) can be simplified to

eI ≈ |h|2SNR. (15.2)

This implies that the random function eI will have at high SNR approximately the same
statistics as |h|2 (although the SNR scaling will trivially affect them). The study in this
chapter will frequently make use of the cumulative distribution function (cdf) for eI .
In particular, at high SNR eI will have approximately the same cumulative distribu-
tion function (cdf) as |h|2, e.g., if the channel is Rayleigh, eI will have the cdf of an
exponential random variable. Furthermore, with the goal of using a sufficiently general
model for the cdf of eI (or |h|2) beyond the Rayleigh case, we will assume that the cdf
of |h|2 is smooth enough that it can be approximated through the first term of its Taylor
series around the origin. In other words, we will assume that the cdf, FeI , of eI can be
approximated at high SNR as

FeI (t) ≈ c

(
t

SNR

)p

. (15.3)

Both c and p are model-dependent parameters. The parameter c can be seen as a nor-
malizing constant, which will play a rather minor role in the study in this chapter. The
parameter p is the order of the first nonzero derivative in the Taylor series. For the case
of Rayleigh fading we have p = 1. Other values of p may be used to consider other
distributions suitable for modeling |h|2, such as the Nakagami distribution.

Let us consider a communication system, as shown in Figure 15.1, consisting of a
source, a source encoder and a channel encoder. Let the input to the system be a memo-
ryless sourcer. The source samples are fed into the source encoder for quantization and
compression. The output of the source encoder are fed into a channel encoder which
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Fig. 15.1 Simplified block diagram of the system studied in this chapter.

outputs N channel inputs. For K source samples and N channel inputs, we denote by
β � N/K , the bandwidth expansion factor or processing gain. We assume that K is
large enough to average over the statistics of the source but N is not sufficiently large
to average over the statistics of the channel, i.e., we assume a block fading wireless
channel.

In this chapter, we are specifically interested in systems where the source signal aver-
age end-to-end distortion is the figure of merit. Thus, performance will be measured in
terms of the expected distortion

E[D] = E[d(s, ŝ)],
where

d(s, ŝ) = 1

K

K∑
k=1

d(sk, ŝk)

is the average distortion between a sequence s of K samples and its corresponding
reconstruction ŝ and d(sk, ŝk) is the distortion between a single sample sk and its
reconstruction ŝk . We will assume d(sk, ŝk) to be the mean-squared distortion measure.

Following the fading channels assumption, we will be interested in studying the sys-
tem behavior at large channel SNRs where system performances can be compared in
terms of the rate of decay of the end-to-end distortion. This figure of merit called the
distortion exponent is defined as

� � − lim
SNR→∞

log E[D]
log SNR

. (15.4)

We will consider two types of source encoders: a single description (SD) and a
dual description source encoder. The SD codec corresponds to the cases of source
codecs found in earlier chapters. In an SD encoder, a source is encoded into one
stream or description. A dual description code is a special case of a multiple description
(MD) source codec, where the encoder generates two coded descriptions of the source
(Figure 15.2). Multiple description codecs have the property that each of the source
descriptions can be decoded independently of each other, thus obtaining separate rep-
resentations of the source. Even more, at the MD decoder, the descriptions can also be
combined together to obtain a representation of the source of better quality than the
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Fig. 15.2 Simplified diagram of a dual description source codec as a special case of a multiple description
source codec.

representations provided by each separate description. In a communications applica-
tion, MD codecs can be used in such a way that as long as any one description can be
received error-free, it is possible to obtain a representation of the source. Now, if more
than one description can be received error-free then these descriptions can be combined
and decoded together to obtain a representation of the source with better quality. As
a simple example of a MD codec, consider a video codec that generates two coded
streams: one from the odd numbered frames and one from the even numbered frames.
At the receiver, it is possible to play either one of the stream but when the two streams
are available with no errors, playing them interleaved will result in a better quality
video.

The performance of source encoders can be measured through its achievable rate-
distortion (R-D) function, which characterizes the tradeoff between source encoding
rate and distortion. As discussed in Section 14.4, the R-D function for SD source
encoders is frequently considered to be of the form

R = 1

c2
log
(c1

D

)
,

where, for convenience, we are taking now the logarithm with base e and hence, R, the
source encoding rate, is measured in nats per channel use. This form of R-D function
can approximate or bound a wide range of practical systems such as video coding with
an MPEG codec, speech using a CELP-type codec, or when the high rate approxima-
tion holds. Assuming that high resolution approximation can be applied to the source
encoding operation, each of the input samples can be modeled as a memoryless Gaus-
sian source, showing a zero-mean, unit-variance Gaussian distribution. In this case, the
R-D function can be approximated without loss of generality, as

R = 1

2β
log
( 1

D

)
. (15.5)

For MD source encoders, the R-D region is only known for the dual description
source encoders. Let R1 and R2 be the source encoding rates of descriptions 1 and
2, respectively, and Rmd = R1 + R2. Let D1 and D2 be the reconstructed distortions
associated with descriptions 1 and 2, respectively, when each is decoded alone. Let D0

be the source distortion when both description are combined and jointly decoded. For
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the same source model and assumptions as in the single description case, R1 and D1,
and R2 and D2 are related through,

R1 = 1

2β
log
( 1

D1

)
, R2 = 1

2β
log
( 1

D2

)
. (15.6)

The R-D function when both descriptions can be combined at the source decoder differs
depending on whether distortions can be considered low or high [32]. The low distortion
scenario corresponds to D1 + D2 − D0 < 1, in which case we have,

Rmd = 1

2β
log
( 1

D0

)
+ 1

2β
log

(
(1− D0)

2

(1− D0)2 −
[√
(1− D1)(1− D2)−√(D1 − D0)(D2 − D0)

]2).
(15.7)

All the schemes we will consider in this work present the same communication condi-
tions to each description. Therefore, it will be reasonable to assume R1 = R2 = Rmd/2.
Under this condition, it is possible to derive from (15.7) the bounds

(4D0 D1)
−1/(2β) � eRmd � (2D0 D1)

−1/(2β), (15.8)

where the lower bound requires D0 → 0 and the upper bound requires also D1 → 0.
In the case of the high distortion scenario, D1 + D2 − D0 > 1, the R-D function

equals

Rmd = 1

2β
log
( 1

D0

)
, (15.9)

because in this scenario there is no penalty due to representing the source into two
streams with dual-description properties.

The channel-encoded message is then sent from the source node to a destination
node with or without user cooperation. In a setup with user cooperation, the relay nodes
are associated with the source node to achieve user-cooperation diversity as has been
explained earlier. Communication in a cooperative setup with one relay node takes place
in two phases. In phase 1, the source node sends information to its destination node. In
phase 2, the relay node cooperates by forwarding to the destination the information
received from its associated source node. At the destination node, both signals received
from the source and the relay are combined and detected.

For each additional relay used during transmission, a new phase, similar to phase 2,
is added to allow transmission of the new relay. Because of this multi-phase transmis-
sion and for fair comparison of the different schemes that will be consider, we need to
fix the total number of channel uses for a source block of size K and change the band-
width expansion factor accordingly to each scheme, as will be seen in detail later in this
chapter. We will consider two techniques that implement user cooperation, amplify-
and-forward and decode-and-forward, each differing in the processing done at the relay.
Recall that in amplify-and-forward, the relay retransmits the source’s signal without fur-
ther processing other than power amplification. In decode-and-forward, the relay first
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decodes the message from the source. If the decoded message has no error, the relay
re-encodes it and transmits a copy. If the relay fails to decode the message, it idles until
the next is received.

15.2 Multi-hop channels

In this section, we consider the distortion exponents of multi-hop networks using
amplify-and-forward and decode-and-forward user-cooperation protocols. By multi-
hop channel we mean it is a channel where there is no direct path between the source
and destination; i.e., the information path between source and destination contains one
or more relaying nodes. Without loss of generality we consider the two-hop case. The
analysis can be easily extended to scenarios with larger number of hops.

15.2.1 Multi-hop amplify-and-forward protocol

In this section, we will consider the analysis for multi-hop amplify-and-forward
schemes with different channel and source coding diversity achieving schemes. We
derive the distortion exponent for the two-hop single relay channel with an SD source
encoder and extend the result to the case of M relays with repetition channel coding
diversity.

15.2.1.1 Single relay
The system under consideration consists of a source, a relay and a destination as shown
in Figure 15.3. Transmission of a message is done in two phases. In phase 1, the source
sends its information to the relay node. The received signal at the relay node is given by

yr1 = hs,r1

√
Pxs + ns,r1 , (15.10)

where hs,r1 is the channel gain between the source and the relay node, xs is the transmit-
ted source symbol, P is the source transmit power with E[‖xs‖2] = 1, and ns,r1 is the

(a)

(b)

Source transmits
xs

Relay re-transmits
xs

Source Relay Destination

Nm Nm

hs,r1
hr1,d

Fig. 15.3 Two-hop single relay system: (a) system model, (b) time frame structure.
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noise at the relay node modeled, as zero-mean, circularly symmetric complex Gaussian
noise with variance N0/2 per dimension. In phase 2, the relay normalizes the received
signal by the factor

α1 ≤
√

P

P|hs,r1 |2 + N0
,

as discussed in previous chapters, and retransmits to the destination. The received signal
at the destination is given by

yd = hr1,dα1yr1 + nr1,d

= hr1,dα1hs,r1

√
Pxs + hr1,dα1ns,r1 + nr1,d, (15.11)

where nr1,d is the noise at the destination node and is modeled as zero-mean, circu-
larly symmetric complex Gaussian noise with variance N0/2 per dimension. Following
(4.17), the mutual information in this case is given by

I (xs, yd) = log

(
1+ |hs,r1 |2SNR|hr1,d|2SNR

|hs,r1 |2SNR+ |hr1,d|2SNR+ 1

)
, (15.12)

where SNR = P/N0. At high SNR, we have

I (xs, yd) ≈ log

(
1+ |hs,r1 |2SNR|hr1,d|2SNR

|hs,r1 |2SNR+ |hr1,d|2SNR

)

≈ log

(
|hs,r1 |2SNR|hr1,d|2SNR

|hs,r1 |2SNR+ |hr1,d|2SNR

)
. (15.13)

Equation (15.13) indicates that the two-hop amplify-and-forward channel appears as
a link with signal-to-noise ratio that is the harmonic mean of the source–relay and
relay–destination channels signal-to-noise ratios. To calculate the distortion exponent,
consider the source–relay and relay–destination channels for which the maximum
average mutual information is, respectively,

I1 = log(1+ |hs,r1 |2SNR),

I2 = log(1+ |hr1,d|2SNR).

At high SNR we can write

exp(I1) ≈ |hs,r1 |2SNR,

exp(I2) ≈ |hr1,d|2SNR.

Denoting

Z1 = |hs,r1 |2SNR,

Z2 = |hr1,d|2SNR,



15.2 Multi-hop channels 521

and assuming statistical symmetry between the source–relay and relay–destination
channels, we have

FZ1(t) ≈ c

(
t

SNR

)p

FZ2(t) ≈ c

(
t

SNR

)p

,

(15.14)

where FZ1(.) and FZ2(.) are the cdf of Z1 and Z2, respectively.
The harmonic mean of two nonnegative random variables can be upper and lower

bounded as
1

2
min(Z1, Z2) ≤ Z1 Z2

Z1 + Z2
≤ min(Z1, Z2), (15.15)

where the lower bound is achieved if and only if Z1 = Z2, Z1 = 0 or Z2 = 0, and the
upper bound is achieved if and only if Z1 = 0 or Z2 = 0.

Define the random variable

Z = Z1 Z2

Z1 + Z2
,

from (15.15) we have

Pr [min(Z1, Z2) < t] < Pr [Z < t] ≤ Pr [min(Z1, Z2) < 2t] . (15.16)

Then we have

Pr [min(Z1, Z2) < t] = 2FZ1(t)−
(
FZ1(t)

)2
≈ 2c

(
t

SNR

)p

− c2
(

t

SNR

)2p

≈ c1

(
t

SNR

)p

,

(15.17)

where c1 = 2c. Similarly, we have

Pr [min(Z1, Z2) < 2t] ≈ c2

(
t

SNR

)p

, (15.18)

where c2 = 2p+1c. From (15.17) and (15.18) we get

c1

(
t

SNR

)p

� FZ (t) � c2

(
t

SNR

)p

, (15.19)

where FZ (t) is the cdf of the random variable Z . The minimum expected end-to-end
distortion can now be computed as

E[D] = min
D

{
Pr [I (xs, yd) < R(D)]+ D Pr [I (xs, yd) ≥ R(D)]

}
, (15.20)

where D is the source encoder distortion and R is the source encoding rate. Note that
(15.20) implicitly assumes that in case of an outage the missing source data is concealed
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by replacing the missing source samples with their expected value (equal to zero).
Using the bounds in (15.19) the minimum expected distortion can be upper and lower
bounded as

min
D

{
c1

(
exp(R(D))

SNR

)p

+
[
1− c2

(
exp(R(D))

SNR

)p]
D

}
� E[D] � min

D

{
c2

(
exp(R(D))

SNR

)p

+
[
1− c1

(
exp(R(D))

SNR

)p]
D

}
.

(15.21)

For sufficiently large SNRs, we have

min
D

{
c1

(
exp(R(D))

SNR

)p

+ D

}
� E[D] � min

D

{
c2

(
exp(R(D))

SNR

)p

+ D

}
. (15.22)

From (15.5), exp(R(D)) = D−1/2βm , where βm = Nm/K as illustrated in Figure 15.3,
which leads to

min
D

c1
D

−p
2βm

SNRp + D � E[D] � min
D

c2
D

−p
2βm

SNRp + D. (15.23)

Differentiating the lower bound and setting equal to zero we get the optimizing
distortion

D∗ =
(

2βm

c1 p

) −2βm
2βm+p

SNR
−2βm p
2βm+p . (15.24)

Substituting from (15.24) into (15.23) we get

CLB SNR
−2βm p
2βm+p � E[D] � CUB SNR

−2βm p
2βm+p , (15.25)

where CLB and CUB are terms that are independent of the SN R.
The distortion exponent is now given by the following theorem.

T H E O R E M 15.2.1 The distortion exponent of the two-hop single-relay amplify-and-
forward protocol is

�SH−1R−AMP = 2pβm

p + 2βm
, (15.26)

where βm = Nm/K, and Nm is the number of the source channel uses and K is the
number of source samples.

Before continuing, we note here that in the sequel, for simplicity of presentation we
will use

FZ (t) ≈ ć

(
t

SNR

)p

, (15.27)

where Z is the harmonic mean of the source–relay and relay–destination signal-to-noise
ratios and ć is a constant. The basis for the simplification is that the analysis will not
be affected by this substitution as we can always apply the analysis presented here by
forming upper and lower bounds on the expected distortion and this will yield the same
distortion exponent.
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15.2.1.2 Multiple relays
We consider now a system consisting of a source, M relay nodes and a destination
as shown in Figure 15.4. The M relay nodes amplify the received signals from the
source and then retransmit to the destination. The destination selects the signal of the
highest quality (highest SNR) to recover the source signal. The distortion exponent of
this system is given by the following theorem.

T H E O R E M 15.2.2 The distortion exponent of the two-hop M-relay selection channel
coding diversity amplify-and-forward protocol is

�SH−MR−AMP = 4Mpβm

M(M + 1)p + 4βm
. (15.28)

Proof Let ydi be the signal received at the destination due to the i-th relays trans-
mission. At sufficiently high SNR, the mutual information between xs and ydi is
given by

I (xs, ydi ) ≈ log

(
|hs,ri |2SNR|hri ,d|2SNR

|hs,ri |2SNR+ |hri ,d|2SNR

)
, i = 1, 2, . . . ,M.

(a)

(b)

Source transmits
xs

Relay 1 re-transmits
xs

Relay M re-transmits
xs

Source

Relay 1

Destination

Relay 2

Relay M

hs, r1

hs, r2

hs, rM

hr1, d

hr2, d

hrM, d

Nm′ Nm′ Nm′

Fig. 15.4 Two-hop M-relay system: (a) system model, (b) time frame structure.
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Define the random variable

Wi = |hs,ri |2SNR|hri ,d|2SNR

|hs,ri |2SNR+ |hri ,d|2SNR
, i = 1, 2, . . . ,M.

The cdf of Wi can be approximated at high SNR as

FWi (t) ≈ ć

(
t

SNR

)p

. (15.29)

The minimum end-to-end expected distortion can be computed as

E [D] =min
D

{
Pr
[
max(I (xs, yd1), I (xs, yd2), . . . , I (xs, ydM )) < R(D)

]
+ Pr

[
max(I (xs, yd1), I (xs, yd2), . . . , I (xs, ydM )) ≥ R(D)

]
D

}

=min
D

{
M∏

i=1

FWi (exp(R(D)))+
[

1−
M∏

i=1

FWi (exp(R(D)))

]
D

}

≈min
D

⎧⎨⎩ćM D
−Mp
2β′m

SNRMp
+
⎡⎣1− ćM D

−Mp
2β′m

SNRMp

⎤⎦ D

⎫⎬⎭
≈min

D

⎧⎨⎩ćM D
−Mp
2β′m

SNRMp
+ D

⎫⎬⎭ , (15.30)

where D is the source encoding distortion, β ′m = N ′m/K , and N ′m is the number of the
source channel uses, as illustrated in Figure 15.4. Differentiating and setting equal to
zero we get the optimizing distortion

D∗ =
(

ćM Mp

2β ′m

) 2β′m
Mp+2β′m

SNR
−2Mβ′m p
2β′m+Mp . (15.31)

Substituting we get

E [D] ≈ CMR SNR
−2Mβ′m p
2β′m+Mp , (15.32)

where CMR is a term that does not depend on the SNR. Hence, the distortion exponent
is given as

�SH−MR−AMP = 2Mβ ′m p

2β ′m + Mp
. (15.33)

For fair comparison with the single relay case, we should compare the different systems
under the same number of channel uses. So that we have 2Nm = (M + 1)N ′m , from
which we have β ′m = (2/M + 1)βm . Substituting in (15.33) we get

�SH−MR−AMP = 4Mpβm

M(M + 1)p + 4βm
. (15.34)

�
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The distortion exponent shows a tradeoff between the diversity and the source encoder
performance. Increasing the number of relay nodes increases the diversity of the sys-
tem at the expense of using lower rate source encoder, e.g., higher distortion under no
outage.

Now let us calculate the optimal number of relays nodes to maximize the distortion
exponent in (15.28). To get the optimal number of relays, Mopt , note that the distortion
exponent in (15.28) can be easily shown to be concave in the number of relays (if we
think of M as a continuous variable). Differentiating and setting equal to zero, we get

∂

∂M
�SH−MR−AMP = 0 −→ Mopt = 2

√
βm

p
. (15.35)

If Mopt in (15.35) is an integer number then it is the optimal number of relays. If Mopt

in (15.35) is not an integer, substitute in (15.28) with the largest integer that is less than
Mopt and the smallest integer that is greater than Mopt and choose the one that yields
the higher distortion exponent as the optimum number of relay nodes. From the result
in (15.35) it is clear that the number of relays decreases, for a fixed βm , as p increases.

For higher channel quality (higher p) the system performance is limited by the dis-
tortion introduced by the source encoder in the absence of outage. Then, as p increases,
the optimum number of relays decreases to allow for the use of a better source encoder
with lower source encoding distortion. In this scenario, the system is said to be a quality
limited system because the dominant phenomena in the end-to-end distortion is source
encoding distortion and not outage.

Similarly as βm increases (higher bandwidth), for a fixed p, the performance will be
limited by the outage event rather than the source encoding distortion. As βm increases,
the optimum number of relays increases to achieve better outage performance. In this
case, the system is said to be an outage limited system.

15.2.1.3 Optimal channel coding diversity with two relays
We now expand the study of performance in terms of distortion exponent by exploiting
the cooperative diversity at higher layers of the communication stack. In this section,
this idea translates into splitting the output of the channel coding stage into parts that
are transmitted through a different relay node, i.e., a separate path. Let us consider now
a system as shown in Figure 15.5 comprising a source, two relays and a destination.
After channel encoding, the resulting block is split into two blocks: xs1 and xs2 , which
are transmitted to the relay nodes. The first relay will only forward the block xs1 and
the second relay will only forward xs2 as shown in Figure 15.5. From (15.13), it can be
shown that the mutual information is

I ≈ log

(
1+ |hs,r1 |2SNR|hr1,d|2SNR

|hs,r1 |2SNR+ |hr1,d|2SNR

)

+ log

(
1+ |hs,r2 |2SNR|hr2,d|2SNR

|hs,r2 |2SNR+ |hr2,d|2SNR

)
, (15.36)
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(a)

(b)
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Relay 1 re-transmits
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hr2,d

Nm′′Nm′′Nm′′Nm′′

Fig. 15.5 Two-hop two-relay optimal channel coding diversity (source coding diversity) system: (a)
system model, (b) time frame structure.

where xs1 and xs2 are independent zero-mean, circularly symmetric complex Gaussian
random variables with variance 1/2 per dimension. We can show that the distortion
exponent of this system is given by the following theorem.

T H E O R E M 15.2.3 The distortion exponent of the two-hop two-relay optimal channel
coding diversity amplify-and-forward system is

�SH−2R−OPTCH−AMP = 2pβm

p + βm
. (15.37)

Proof Consider a setup where the physical layer presents to the upper layers two par-
allel and independent channels with the same statistical characteristics. The distortion
exponent for the optimal channel coding diversity over two parallel channels can be
written as

�SH−2R−OPTCH−AMP = 4pβ ′′m
p + 2β ′′m

, (15.38)

Using (15.27) and (15.36) and considering β ′′m = N ′′m/K where N ′′m is the number of
source channel uses for the xs1 (xs2 ) block (refer to Figure 15.5) we get for our system
the same distortion exponent as (15.38). For fair comparison with the previous schemes
we should have 2Nm = 4N ′′m , which means that β ′′m = 1/2βm . Finally, substituting this
relation in (15.38) yields (15.37). �

In previous studies of multiplexed channel coding diversity the setting assumes that at
the physical layer there exist a number of parallel channels, which can be exploited at
higher layers to obtain diversity. The existence of the parallel channels is not related with
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the use of cooperation; which translates into the observation of a gain in the distortion
exponent for the multiplexed channel coding diversity scheme (compared to the direct
transmission) due to the increase in the bandwidth obtained from the simultaneous use
of the parallel channels. When introducing cooperative diversity into the system setup,
there is no gain in using multiplexed channel coding diversity because the overall band-
width of the channel is kept fixed and needs to be distributed among the transmissions
in the different cooperative phases, i.e., using either one relay or two relays does not
increase the bandwidth of the channel. This is because only one node, either the source
or a relay, is transmitting at a given time slot. The multiplexed channel coding diversity
in this case is equivalent to allowing one relay helping the source to forward an SD
source-coded message during one block and using the other relay for the next block.
Hence, when using cooperative diversity, the multiplexed channel coding diversity is
equivalent to the two-hop single-relay system with the same distortion exponent.

15.2.1.4 Source coding diversity with two relays
In the previous section we exploited cooperative diversity to transmit different parts of
the output of the channel coding stage through different relay nodes. The same gen-
eral idea can be extended to the source encoder, with the difference that now the source
encoder is a dual description encoder, which implies that its output will have some prop-
erties that are not present in SD codecs and that can be used at the decoder to provide
source coding diversity. Let us consider again a system with one source, two relays, and
one destination nodes as shown in Figure 15.5. The source transmits two blocks xs1 and
xs2 to the relay nodes. Each block represents one of the two descriptions generated by
the dual descriptions source encoder. In this case, the two blocks are broken up before
the channel encoder, that is, each description is fed to a different channel encoder. The
first relay will only forward the block xs1 and the second relay will only forward xs2 as
shown in Figure 15.5. The distortion exponent of this system is given by the following
theorem.

T H E O R E M 15.2.4 The distortion exponent of the two-hop two-relay source coding
diversity amplify-and-forward protocol is

�SH−2R−SRC−AMP = max

[
4pβm

3p + 2βm
,

2pβm

p + 2βm

]
. (15.39)

Proof The distortion exponent for the source coding diversity over two parallel
channels can be written as

�SH−2R−SRC−AMP = max

[
8pβ ′′m

3p + 4β ′′m
,

4pβ ′′m
p + 4β ′′m

]
, (15.40)

Using (15.27) and (15.36) and considering β ′′m = N ′′m/K (refer to Figure 15.5) we get
for our system the same distortion exponent as (15.40). For fair comparison with the
previous schemes, 2Nm = 4N ′′m ; which leads to β ′′m = 1/2βm . Substituting this equality
in (15.40) completes the proof. �
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15.2.2 Multi-hop decode-and-forward protocol

In this section, we will analyze schemes using multi-hop decode-and-forward user coop-
eration under different channel and source coding diversity schemes. In these cases, the
relay nodes decode the received source symbols. Only those relay nodes that had cor-
rectly decoded the source symbols will proceed to retransmit them to the destination
node. When a relay fails in decoding the source symbols we say that an outage has
occurred. Furthermore, an outage occurs when either the source–relay or the relay–
destination channel are in outage, as discussed in Sections 4.2.1.2 and 15.1. That
is, the quality of the source–relay–destination link is limited by the minimum of the
source–relay and relay–destination channels. Therefore, for the single–relay case we
can formulate the outage as

Poutage = Pr
[
min(I (xs, yr1), I (xr1 , yd)) < R(D)

]
, (15.41)

where xr1 is the transmitted signal from the relay node.
Note that in those schemes using decode-and-forward the mutual information of any

source–relay–destination link is limited by the minimum of the source–relay and relay–
destination links SNRs. On the other hand, for two-hop amplify-and-forward schemes,
the performance is limited by the harmonic mean of the source–relay and the relay–
destination links SNRs which is strictly less than the minimum of the two links SNRs.
Hence, the multi-hop amplify-and-forward protocol has a higher outage probability
(lower quality) than the multi-hop decode-and-forward protocol. That is, in terms of out-
age probability, the multi-hop decode-and-forward protocol outperforms the multi-hop
amplify-and-forward protocol.

The above argument is also applicable under different performance measures (for
example, if the performance measure was symbol error rate). From our presentation so
far it is clear that the distortion exponents for multi-hop decode-and-forward schemes
are the same as their corresponding multi-hop amplify-and-forward schemes for the
repetition channel coding diversity and source coding diversity cases. For example, for
the two-hop single–relay decode-and-forward scheme, the minimum expected distortion
is given by the lower bound in (15.25), which has the same distortion exponent as the
two-hop single–relay amplify-and-forward scheme. The following theorem summarizes
the results (see Exercise 15.5).

T H E O R E M 15.2.5 The distortion exponent of the multi-hop decode-and-forward
schemes are:

• for the two-hop single relay

�SH−1R−DEC = 2pβm

p + 2βm
, (15.42)

• for the two-hop M-relay selection channel coding diversity

�SH−MR−DEC = 4Mpβm

M(M + 1)p + 4βm
, (15.43)
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• for the two-hop two-relay source coding diversity

�SH−2R−SRCDEC = max

[
4pβm

3p + 2βm
,

2pβm

p + 2βm

]
. (15.44)

15.2.2.1 Optimal channel coding diversity with two relays
We consider now the use of optimal channel coding with two-relay decode-and-forward
protocols. In this case, each relay will treat the two blocks xs1 and xs2 together, combin-
ing them for joint decoding. This means that when any relay decodes correctly, it will
have useful copies of both xs1 and xs2 and could forward both blocks, as illustrated in
Figure 15.6. Restricting the first relay to forward only xs1 (if it has decoded correctly)
will cause a performance degradation in those cases when the second relay had decoded
erroneously. Hence, if the first relay decoded correctly and the second did not, it is better
(in terms of outage probability) for the first relay to forward both xs1 and xs2 .

Clearly, a similar argument could be applied to the operation of the second relay.
Also, when both relays decode correctly, allowing the second relay to transmit also xs1

and xs2 will cause a loss of diversity. To gain both advantages (lower outage probability
when only one relay decodes correctly and diversity when both correctly decode) we
propose to use a space–time transmission scheme. Without loss of generality, we choose
the Alamouti scheme introduced in Example 1.5 and also discussed in Section 2.2.2,
with the time frame structure as shown in Figure 15.6. Then, the distortion exponent of
this system is given by the following theorem.

T H E O R E M 15.2.6 The distortion exponent of the two-hop two-relay optimal channel
coding diversity decode-and-forward protocol is

�SH−2R−OPTCH−DEC = 2pβm

p + βm
. (15.45)

Proof We start by deriving the expression for the outage probability. Let S −→ Ri

and Ri −→ D denote the channel between the source and the i-th relay and the channel
between the i-th relay and the destination, respectively. Let R1, R2 −→ D denote the
channel between the two relays and the destination when both relays decode correctly.

Relay 1 re-transmits
if correctly decoded

Relay 2 re-transmits
if correctly decoded

else 0

else 0

Source transmits
xs1

Source transmits
xs2

∗

∗

xs1

xs2

Relay 1 re-transmits
if correctly decoded

Relay 2 re-transmits
if correctly decoded

else 0

-

else 0

xs2

xs1

Nm′′Nm′′Nm′′ Nm′′

Fig. 15.6 Two-hop two-relay decode-and-forward optimal channel coding diversity system time frame
structure.
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Also, we denote by Ri
o−→D as the event that a channel is in outage and by Ri

ô−→D the
event that it is not in outage. We calculate the outage probability by splitting the outage
event into disjoint events, i.e., Poutage = Po1 + Po2 + Po3 + Po4 , where

Po1 = Pr
[
S

o−→R1, S
o−→R2

]
= Pr

[
S

o−→R1

]
.Pr
[
S

o−→R2

]
= Pr

[
2 log(1+ |hs,r1 |2SNR) < R(D)

]
Pr
[
2 log(1+ |hs,r2 |2SNR) < R(D)

]
≈ co1

(
exp(pR(D))

SNR2p

)
. (15.46)

Po2 = Pr
[
S

o−→R1, S
ô−→R2, R2

o−→D
]

= Pr
[
S

o−→R1

]
.Pr
[
S

ô−→R2

]
.Pr
[
R2

o−→D
]

≈ co2

(
exp(pR(D))

SNR2p

)
. (15.47)

Po3 = Pr
[
S

o−→R2, S
ô−→R1, R1

o−→D
]

≈ co3

(
exp(pR(D))

SNR2p

)
. (15.48)

Po4 = Pr
[
S

ô−→R1, S
ô−→R2, R1, R2

o−→D
]

= Pr
[
S

ô−→R1

]
.Pr
[
S

ô−→R2

]
.Pr
[
R1, R2

o−→D
]

≈ Pr
[
2 log(1+ 1

2
(|hr1,d|2SNR+ |hr2,d|2SNR)) < R(D)

]
,

(15.49)

where the factor 1/2 in (15.49) is due to the loss in SNR because of the use of transmit
diversity. To calculate Po4 in (15.49) we need to calculate the cdf of the random variable
|hr1,d|2SNR + |hr2,d|2SNR. Let W1 = |hr1,d|2SNR and W2 = |hr2,d|2SNR. The pdf of
W1 +W2 can be computed as

fW1+W2(w) =
∫ w

0
fW1(τ ) fW2(w − τ)dτ

≈ c11c22 p2

SNR2p

∫ w

0
τ p−1(w − τ)p−1dτ

= c11c22 p2 w
2p−1

SNR2p
B(p, p), (15.50)
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where B(., .) is the Beta function [50]. The cdf of W1 +W2 can be computed as

FW1+W2(w) =
∫ w

0
fW1+W2(τ )dτ = c33

( w

SNR

)2p
, (15.51)

from which we have

Po4 ≈ co4

(
exp(pR(D))

SNR2p

)
. (15.52)

Then, the outage probability is

Poutage = Po1 + Po2 + Po3 + Po4

= co

(
exp(pR(D))

SNR2p

)
.

In the proof, we have assumed that xs1 and xs2 are independent zero-mean, complex
Gaussian with variance 1/2 per dimension. We can easily show that this choice of xs1

and xs2 is the optimal choice for maximizing the mutual information (minimizing the
outage probability) by inspection of the individual outage events in (15.53).
Following this result, the minimum expected distortion can now be computed as

E[D] = min
D

{
Poutage + D

(
1− Poutage

)}
≈ min

D

{
co

(
exp(pR(D))

SNR2p

)
+ D

[
1− co

(
exp(pR(D))

SNR2p

)]}
≈ min

D

{
co

(
exp(pR(D))

SNR2p

)
+ D

}
(15.53)

≈ min
D

{
co

D
− p

2β′′m

SNR2p
+ D

}
, (15.54)

where D is the source encoder distortion, (15.53) follows from high SNR approximation
and (15.54) follows from (15.5). Differentiating and setting equal to zero we get the
optimizing distortion

D∗ =
(

2β ′′m
co p

) −2β′′m
2β′′m+p

SNR
−4β′′m p
2β′′m+p . (15.55)

Hence, the distortion exponent is given as

�RC−1R−AMP = 4β ′′m p

2β ′′m + p
. (15.56)

For fair comparison, the total number of channel uses should be kept fixed for all
schemes. Thus, we have Nm = 2N ′′m , from which we have β ′′m = (1/2)βm . Substituting
in (15.56) we get

�SH−2R−OPTCH−DEC = 2pβm

p + βm
. (15.57)

�
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(a)

(b)

Source Destination

hs, d

Nr

Source transmits
xs

Fig. 15.7 No diversity (direct transmission) system: (a) system model, (b) time frame structure.

15.3 Relay channels

We now extend the analysis on distortion exponents to the case of a relay channel when
using either amplify-and-forward or decode-and-forward user cooperation. By a relay
channel, we now consider that in addition to the source–relay–destination channels there
is also a direct communication channel between the source and destination nodes. For
comparison purposes, we consider the case when the source transmits a single descrip-
tion source coded message over the source–destination channel without the help of any
relay node. The system is shown in Figure 15.7. In this case, the distortion exponent can
be derived in a similar way as Theorem 15.2.1 and is given by

�NO−DIV = 2pβr

p + 2βr
, (15.58)

where βr = Nr/K and Nr is the number of channel uses for the source block.

15.3.1 Amplify-and-forward protocol

In this section, we analyze the same schemes presented for the multi-hop channels when
now they are used over the amplify-and-forward relay channel. We will consider both
single and M-relay repetition channel coding diversity and two-relay optimal channel
coding diversity and source coding diversity.

15.3.1.1 Single relay
Consider a system comprising a source, a relay, and a destination as shown in
Figure 15.8. We consider that the relay operates following an amplify-and-forward
user-cooperation scheme. We also assume that the destination applies a maximum ratio
combiner (MRC) to detect the transmitted signal from those received in each phase. The
mutual information of this system is given by

I (xs, yd) = log

(
1+ |hs,d|2SNR+ |hs,r1 |2SNR|hr1,d|2SNR

|hs,r1 |2SNR+ |hr1,d|2SNR+ 1

)
, (15.59)
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(a)Source

Relay

Destination

hs, r1

hs, d

hr1, d

(b)

Nr′Nr′

Source transmits
xs

Source re-transmits
xs

Fig. 15.8 Single-relay system: (a) system model, (b) time frame structure.

where SNR = P/N0 and hs,d is the channel between the source and the destination. At
high SNR, we have

I (xs, yd) ≈ log

(
1+ |hs,d|2SNR+ |hs,r1 |2SNR|hr1,d|2SNR

|hs,r1 |2SNR+ |hr1,d|2SNR

)

≈ log

(
|hs,d|2SNR+ |hs,r1 |2SNR|hr1,d|2SNR

|hs,r1 |2SNR+ |hr1,d|2SNR

)
.

(15.60)

The distortion exponent of this system is given by the following theorem.

T H E O R E M 15.3.1 The distortion exponent of the single-relay amplify-and-forward
scheme is

�RC−1R−AMP = 2pβr

2p + βr
. (15.61)

Proof Let

W1 = |hs,d|2SNR,

and

W2 = |hs,r1 |2SNR|hr1,d|2SNR

|hs,r1 |2SNR+ |hr1,d|2SNR
.

The outage probability can be calculated as

Poutage = Pr
[
log(1+W1 +W2) < R(D)

]
≈ Pr

[
W1 +W2 < exp(R(D))

]
.

(15.62)
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From the proof of Theorem 15.2.6, the cdf of W1 +W2 is given by

FW1+W2(w) ≈ c33

( w

SNR

)2p
. (15.63)

The minimum expected distortion can now be computed as

E[D] ≈ min
D

{
Pr
[
W1 +W2 < exp(R(D))

]+ Pr
[
W1 +W2 ≥ exp(R(D))

]
D
}

= min
D

{
FW1+W2(exp(R(D)))+ Pr[1− FW1+W2(exp(R(D)))] D

}
≈ min

D

{
c33

(
exp(2pR(D))

SNR2p

)
+
[
1− c33

(
exp(2pR(D))

SNR2p

)]
D

}

≈ min
D

{
c33

⎛⎝ D
−p
β′r

SNR2p

⎞⎠+ D

}
, (15.64)

where β ′r = N ′r/K and N ′r is the number of source channel uses (refer to Figure 15.8).
Differentiating and setting equal to zero we get the optimizing distortion

D∗ =
(
βr

c33 p

) −β′r
β′r+p

SNR
−2β′r p
β′r+p . (15.65)

Hence, the distortion exponent is given as

�RC−1R−AMP = 2β ′r p

β ′r + p
. (15.66)

For fair comparison we should have Nr = 2N ′r from which we have β ′r = (1/2)βr .
Substituting into (15.66) we get

�RC−1R−AMP = 2βr p

βr + 2p
. (15.67)

�

If we asymptotically compare the distortion exponents for the cases of no diversity and
a single relay we have

lim
βr /p→∞

�RC−1R−AMP

�NO−DIV
= 2,

lim
βr /p→0

�RC−1R−AMP

�NO−DIV
= 1

2
.

(15.68)

Note that as βr/p increases (bandwidth increases) the system becomes outage limited
because the performance is limited by the outage event. In this case, the single-
relay amplify-and-forward system will achieve a higher distortion exponent since it
achieves diversity. Conversely, as βr/p tends to zero (higher channel quality) the per-
formance is not limited by the outage event, but is limited by the source encoder quality
performance.
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The ongoing analysis can be easily extended to the case of M amplify-and-forward
relay nodes. The distortion exponent in this case is given by the following theorem.

T H E O R E M 15.3.2 The distortion exponent of the M-relay-nodes amplify-and-
forward protocol is

�RC−MR−AMP = 2(M + 1)pβr

2βr + (M + 1)2 p
. (15.69)

Again we can think of selecting the optimum number of relays to maximize the dis-
tortion exponent. This is again a tradeoff between the diversity and the quality of the
source encoder.

15.3.1.2 Optimal channel coding diversity with two relays
We consider the same problem as in Section 15.2.1.3, but new for the relay channel.
Once again, we assume a system consisting of a source, two relays and a destination
as shown in Figure 15.9. The source transmits two channel-coded blocks xs1 and xs2 to
the destination and the relay nodes. The first relay will only forward the block xs1 and
the second relay will only forward xs2 as shown in Figure 15.9. First, we calculate the
mutual information for optimal channel coding. In phase 1, the source broadcasts its
information to the destination and two relay nodes. The received signals are

ys,dm =
√

Phs,dxsm + ns,d, (15.70)

ys,ri =
√

Phs,ri xsm + ns,ri , i = 1, 2, m = 1, 2. (15.71)

Relay 1 will only forward xs1 and relay 2 will only forward xs2 . The received signals at
the destination due to relay 1 and relay 2 transmissions are given by

yri ,d = hri ,dζi ys,ri + nri ,d, i = 1, 2, (15.72)

(a)

(b)
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xs2

Relay 1 re-transmits
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Relay 2 re-transmits
xs2
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Relay 1

DestinationRelay 2
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hs,d

hs,r2

hr1,d

hr2,d

Nr″ Nr″ Nr″ Nr″

Fig. 15.9 Two-relay system: (a) system model, (b) time frame structure.
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where ζi is the signal amplification performed at the relay which satisfies the power
constraint with equality, that is,

ζi =
√

P

P|hs,ri |2 + N0
, (15.73)

and where all the noise components are modeled as independent zero-mean, complex
Gaussian random variables with variance N0/2 per dimension.

Define the 4×1 vector, y = [ys,d1 , ys,d2 , yr1,d, yr2,d]T. To get the mutual information
between x = [xs1 , xs2 ] and y, we consider that the receiver has to detect the two
blocks xs1 and xs2 by operating separately on the two amplify-and-forward channels
that are established through each of the relays. In this way, an MRC detector is applied
on ys,d1 , yr1,d and another MRC detector is applied on ys,d2, yr2,d. The output of the first
MRC detector is given by

r1 = αs ys,d1 + α1yr1,d, (15.74)

where αs =
√

Ph∗s,d/N0 and

α1 =
√

Pζ1h∗r1,dh∗s,r1
(ζ 2

1 |hr1,d|2 + 1)N0
.

We can write r1 in terms of xs1 as

r1 =
(
|hs,d|2SNR+ |hr1,d|2SNR|hs,r1 |2SNR

|hs,r1 |2SNR+ |hr1,d|2SNR+ 1

)
xs1 + n1, (15.75)

where n1 is a zero-mean, complex Gaussian noise of variance

|hs,d|2SNR+ |hr1,d|2SNR|hs,r1 |2SNR

|hs,r1 |2SNR+ |hr1,d|2SNR+ 1
.

Similarly we can have r2, representing the output of the second MRC detector, given by

r2 =
(
|hs,d|2SNR+ |hr2,d|2SNR|hs,r2 |2SNR

|hs,r2 |2SNR+ |hr2,d|2SNR+ 1

)
xs2 + n2, (15.76)

where n2 is a zero-mean, complex Gaussian noise of variance

|hs,d|2SNR+ |hr2,d|2SNR|hs,r2 |2SNR

|hs,r2 |2SNR+ |hr2,d|2SNR+ 1
.

This means that, given the channel coefficients, r1 and r2 act as the received xs1 and xs2

when transmitted over an additive white Gaussian channel. Because of this, it follows
the well known fact that r1 and r2, given the channel coefficients, are sufficient statistics
for x [223]. This implies that the mutual information between x and y equals the mutual
information between x and r = [r1, r2], that is

I (x; r) = I (x; y). (15.77)
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As was discussed in the proof of Theorem 15.2.6, for any covariance matrix of x the
mutual information is maximized when x is a zero-mean, complex Gaussian random
vector. Define

γ1 = |hs,d|2SNR+ |hr1,d|2SNR|hs,r1 |2SNR

|hs,r1 |2SNR+ |hr1,d|2SNR+ 1

γ2 = |hs,d|2SNR+ |hr2,d|2SNR|hs,r2 |2SNR

|hs,r2 |2SNR+ |hr2,d|2SNR+ 1
.

The mutual information can be computed as

I (x, y) = I (x, r) = log

(
det

[
I2 +

[
γ1 αγ ′
α∗γ ′′ γ2

]])
, (15.78)

where I2 is the 2× 2 identity matrix, γ ′ and γ ′′ are functions of the channel coefficients
and the noise variance and α = E

[
xs1 x∗s2

]
. It is next necessary to maximize (15.78)

in order to find the maximum mutual information. From (15.78) it is clear that both α
and −α will give the same mutual information. From the concavity of the log-function
we can see that the mutual information maximizing α is α = 0, that is xs1 and xs2 are
independent (since both xs1 and xs2 are Gaussian). The maximum mutual information
can now be given as

I ≈ log

(
1+ |hs,d|2SNR+ |hs,r1 |2SNR|hr1,d|2SNR

|hs,r1 |2SNR+ |hr1,d|2SNR

)

+ log

(
1+ |hs,d|2SNR+ |hs,r2 |2SNR|hr2,d|2SNR

|hs,r2 |2SNR+ |hr2,d|2SNR

)
. (15.79)

The distortion exponent of this system is given by the following theorem.

T H E O R E M 15.3.3 The distortion exponent of the two-relay optimal channel coding
diversity amplify-and-forward protocol is

�RC−2R−OPTCH−AMP = 3pβr

3p + βr
. (15.80)

Proof To compute the distortion exponent we start with the analysis of a subopti-
mal system at the destination node. In the suboptimal system, the detector (suboptimal
detector) selects the paths with the highest SNR and does not apply an MRC detector
(the optimal detector is the one that applies MRC on the received signals). For example,
for xs1 , it either selects the source–destination link or the source–relay–destination link
based on which one has higher SNR. The mutual information for the suboptimal system
can be easily proved to be

Isub ≈ log

(
1+max

(
|hs,d|2SNR,

|hs,r1 |2SNR|hr1,d|2SNR

|hs,r1 |2SNR+ |hr1,d|2SNR

))

+ log

(
1+max

(
|hs,d|2SNR,

|hs,r2 |2SNR|hr2,d|2SNR

|hs,r2 |2SNR+ |hr2,d|2SNR

))
. (15.81)
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Let

W1 = |hs,d|2SNR,

W2 = |hs,r1 |2SNR|hr1,d|2SNR

|hs,r1 |2SNR+ |hr1,d|2SNR
,

W3 = |hs,r2 |2SNR|hr2,d|2SNR

|hs,r2 |2SNR+ |hr2,d|2SNR
.

The outage probability of the suboptimal system is given by

Poutage = Pr[Isub < R]
= Pr

[
log(1+max(W1,W2))+ log(1+max(W1,W3)) < R

]
= Pr

[
{2 log(1+W1) < R,W1 > W2,W1 > W3}⋃
{log(1+W1)+ log(1+W3) < R,W1 > W2,W3 > W1}⋃
{log(1+W2)+ log(1+W1) < R,W2 > W1,W1 > W3}⋃
{log(1+W2)+ log(1+W3) < R,W2 > W1,W3 > W1}

]
= Pr[2 log(1+W1) < R,W1 > W2,W1 > W3]
+ Pr[log(1+W1)+ log(1+W3) < R,W1 > W2,W3 > W1]
+ Pr[log(1+W2)+ log(1+W1) < R,W2 > W1,W1 > W3]
+ Pr[log(1+W2)+ log(1+W3) < R,W2 > W1,W3 > W1],

(15.82)

where the last equality follows from the events being disjoint. In the last equation we
used R instead of R(D) for simplicity of presentation. The joint pdf of W1, W2, and
W3, which are independent random variables, is given by

f (w1, w2, w3) ≈ c j p3

(
w

p−1
1 w

p−1
2 w

p−1
3

SNR3p

)
, (15.83)

where c j is a constant. To find the outage probability, we calculate the probability of the
individual outage events in (15.82),

P1 = Pr[2 log(1+W1) < R,W1 > W2,W1 > W3]

=
∫ exp(R/2)

w1=0

∫ w1

w3=0

∫ w1

w2=0
f (w1, w2, w3)dw2dw3dw1

≈
∫ exp(R/2)

w1=0

∫ w1

w3=0

∫ w1

w2=0
c j p3

(
w

p−1
1 w

p−1
2 w

p−1
3

SNR3p

)
dw2dw3dw1

=
c j exp

(
3pR

2

)
3SNR3p

.
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P2 = Pr[log(1+W1)+ log(1+W3) < R,W1 > W2,W3 > W1]
≈ Pr[log(W1)+ log(W3) < R,W1 > W2,W3 > W1]

=
∫ exp(R/2)

w1=0

∫ exp(R)
w1

w3=w1

∫ w1

w2=0
f (w1, w2, w3)dw2dw3dw1

≈
∫ exp(R/2)

w1=0

∫ exp(R)
w1

w3=w1

∫ w1

w2=0
c j p3

(
w

p−1
1 w

p−1
2 w

p−1
3

SNR3p

)
dw2dw3dw1

= c j p2

SNR3p

∫ exp(R/2)

w1=0

∫ exp(R)
w1

w3=w1

w
2p−1
1 w

p−1
3 dw3dw1

=
2c j exp

(
3pR

2

)
3SNR3p

.

P3 = Pr[log(1+W2)+ log(1+W1) < R,W2 > W1,W1 > W3]
≈ Pr[log(W1)+ log(W3) < R,W1 > W2,W3 > W1]

≈
2c j exp

(
3pR

2

)
3SNR3p

.

P4 = Pr[log(1+W2)+ log(1+W3) < R,W2 > W1,W3 > W1]
≈ Pr[log(W2)+ log(W3) < R,W2 > W1,W3 > W1]

=
∫ exp(R/2)

w1=0

∫ exp(R)
w1

w2=w1

∫ exp(R)
w2

w3=w1

f (w1, w2, w3)dw3dw2dw1

≈
∫ exp(R/2)

w1=0

∫ exp(R)
w1

w2=w1

∫ exp(R)
w2

w3=w1

c j p3

(
w

p−1
1 w

p−1
2 w

p1
3

SNR3p

)
dw3dw2dw1

=
4c j exp

(
3pR

2

)
3SNR3p

,

where we have limw1→0w
p
1 logw1 = 0 for p ≥ 1. The outage probability for the

suboptimal system is

Poutage = P1 + P2 + P3 + P4 ≈
cm exp

(
3pR

2

)
SNR3p

, (15.84)

where cm is a constant. The minimum expected end-to-end distortion can now be
computed as

E[D] = min
D

{
Poutage +

(
1− Poutage

)
D
}

≈ min
D

⎧⎨⎩cm exp
(

3pR
2

)
SNR3p

+
⎛⎝1−

cm exp
(

3pR
2

)
SNR3p

⎞⎠ D

⎫⎬⎭
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≈ min
D

⎧⎨⎩cm D
−3p
4β′′r

SNR3p
+
⎛⎝1− cm D

−3p
4β′′r

SNR3p

⎞⎠ D

⎫⎬⎭
≈ min

D

⎧⎨⎩cm D
−3p
4β′′r

SNR3p
+ D

⎫⎬⎭ , (15.85)

where β ′′r = N ′′r /K (refer to Figure 15.9), D is the source encoder distortion and we
have used both high SNR approximations and (15.5). Differentiating and setting equal
to zero, we get the optimizing distortion

D∗ =
(

4β ′′r
3cm p

) −4β′′r
4β′′r +3p

SNR
−12β′′r p
4β′′r +3p .

Substituting we get the distortion exponent for this suboptimal system as

�SUBOPTIMAL = 12β ′′r p

4β ′′r + 3p
.

For fair comparison the total number of channel uses is fixed and, thus, β ′′r = (1/4)βr ,
which leads to the distortion exponent of the suboptimal system be given by

�SUBOPTIMAL = 3βr p

βr + 3p
.

For the optimal detector (the one using an MRC detector), the distortion exponent
satisfies

�RC−2R−OPTCH−AMP ≥ �SUBOPTIMAL = 3βr p

βr + 3p
. (15.86)

Next, we find an upper bound on the distortion exponent for the optimal system. In this
case, the mutual information in (15.79) can be upper and lower bounded as

log(1+ 2W1 +W2 +W3) ≤ log (1+W1 +W2)+ log (1+W1 +W3)

≤ 2 log(1+W1 + 1

2
W2 + 1

2
W3),

where W1, W2, and W3 are non-negative numbers. The upper bound follows from
the concavity of the log-function. Therefore, the outage probability Po of the optimal
system can be upper and lower bounded as

Pr[2 log(1+W1 + 1

2
W2 + 1

2
W3) < R] ≤ Po ≤ Pr[log(1+ 2W1 +W2 +W3) < R].

(15.87)

From (15.87) we can easily show that

CL

exp
(

3pR
2

)
SNR3p

� Po � CU
exp(3pR)

SNR3p
, (15.88)
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where CL and CU are two constants that do not depend on the SNR. Similar to the
suboptimal system, and using (15.88), the minimum expected end-to-end distortion for
the optimal system can be lower bounded as

E[D] � min
D

⎧⎨⎩CL

exp
(

3pR
2

)
SNR3p

+
(

1− CU
exp(3pR)

SNR3p

)
D

⎫⎬⎭
≈min

D

⎧⎨⎩CL D
−3p
4β′′r

SNR3p
+
⎛⎝1− CU D

−3p
2β′′r

SNR3p

⎞⎠ D

⎫⎬⎭
≈min

D

⎧⎨⎩CL D
−3p
4β′′r

SNR3p
+ D

⎫⎬⎭ .
(15.89)

Differentiating the lower bound and setting equal to zero we get the optimizing
distortion as

D∗ =
(

4β ′′r
3pCL

) −4β′′r
4β′′r +3p

SNR
−12β′′r p
4β′′r +3p . (15.90)

Substituting, we get

E[D] � CLOSNR
−12β′′r p
4β′′r +3p , (15.91)

from which we can upper bound the distortion exponent of the optimal system as

�RC−2R−OPTCH−AMP ≤ 12β ′′r p

4β ′′r + 3p
= 3βr p

βr + 3p
. (15.92)

Finally, from (15.86) and (15.92) we get

�RC−2R−OPTCH−AMP = 3βr p

βr + 3p
. (15.93)

�

15.3.1.3 Source coding diversity with two relays
We continue analyzing a system as in Figure 15.9 but now we assume that each of the
two blocks sent from the source, xs1 and xs2 , represents one description generated from
a dual descriptions source encoder. The first relay will only forward the block xs1 and
the second relay will only forward xs2 as shown in Figure 15.9. The distortion exponent
of this system is given by the following theorem.

T H E O R E M 15.3.4 The distortion exponent of the two-relay source coding diversity
amplify-and-forward protocol is

�RC−2R−SRC−AMP = max

[
2pβr

2p + βr
,

3pβr

4p + βr

]
, (15.94)
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Proof The receiver applies an MRC detector on the received data to detect xs1 and xs2 .
Let

W1 = |hs,d|2SNR,

W2 = |hs,r1 |2SNR|hr1,d|2SNR

|hs,r1 |2SNR+ |hr1,d|2SNR
,

W3 = |hs,r2 |2SNR|hr2,d|2SNR

|hs,r2 |2SNR+ |hr2,d|2SNR
.

The minimum expected end-to-end distortion is given by

E[D] ≈ min
D0,D1

Pr
[

log(1+W1 +W2) < Rmd(D0, D1)/2,

log(1+W1 +W3) < Rmd(D0, D1)/2
]

+ Pr
[

log(1+W1 +W2) < Rmd(D0, D1)/2,

log(1+W1 +W3) > Rmd(D0, D1)/2
]

+ Pr
[

log(1+W1 +W2) > Rmd(D0, D1)/2,

log(1+W1 +W3) < Rmd(D0, D1)/2
]
D1

+ Pr
[

log(1+W1 +W2) > Rmd(D0, D1)/2,

log(1+W1 +W3) > Rmd(D0, D1)/2
]
D0, (15.95)

where Rmd, D0, and D1 are as introduced in Section 15.1. To calculate the minimum
expected distortion we need to calculate the following probabilities in (15.95):

P ′1 = Pr
[

log(1+W1 +W2) < Rmd(D0, D1)/2,

log(1+W1 +W3) < Rmd(D0, D1)/2
]

= Pr
[

log(1+W1 +max(W2,W3)) < Rmd(D0, D1)/2
]

≈ cs1
1

SNR3p
exp

(
3p

2
Rmd(D0, D1)

)
.

P ′2 = Pr
[

log(1+W1 +W2) > Rmd(D0, D1)/2,

log(1+W1 +W3) > Rmd(D0, D1)/2
]

= Pr
[

log(1+W1 +min(W2,W3)) > Rmd(D0, D1)/2
]

= 1− Pr
[

log(1+W1 +min(W2,W3)) < Rmd(D0, D1)/2
]

≈ 1− cs2
1

SNR2p
exp
(

pRmd(D0, D1)
)
.
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P ′3 = Pr
[

log(1+W1 +W2) < Rmd(D0, D1)/2,

log(1+W1 +W3) > Rmd(D0, D1)/2
]

+ Pr
[

log(1+W1 +W2) > Rmd(D0, D1)/2,

log(1+W1 +W3) < Rmd(D0, D1)/2
]

= 1− P ′1 − P ′2

≈ cs2
1

SNR2p
exp (pRmd(D0, D1))− cs1

1

SNR3p
exp

(
3p

2
Rmd(D0, D1)

)
≈ cs2

1

SNR2p
exp (pRmd(D0, D1)) .

The minimum expected distortion in (15.95) can now be calculated as

E[D] ≈ min
D0,D1

{
cs1

1

SNR3p
exp

(
3p

2
Rmd(D0, D1)

)
+ cs2

1

SNR2p
exp (pRmd(D0, D1)) D1

+
(

1− cs2
1

SNR2p
exp (pRmd(D0, D1))

)
D0

}
≈ min

D0,D1

{
cs1

1

SNR3p
exp

(
3p

2
Rmd(D0, D1)

)
+ cs2

1

SNR2p
exp (pRmd(D0, D1)) D1 + D0

}
.

Substituting from (15.8) yields upper and lower bound for the minimum expected end-
to-end distortion as

E[D] � min
D0,D1

cs1

SNR3p

(
1

4D0 D1

) 3p
4β′′r + cs2

SNR2p

(
1

4D0 D1

) p
2β′′r
.D1 + D0

E[D] � min
D0,D1

cs1

SNR3p

(
1

2D0 D1

) 3p
4β′′r + cs2

SNR2p

(
1

2D0 D1

) p
2β′′r
.D1 + D0.

(15.96)

Note that for p ≥ 2β ′′r the minimum expected distortion increases as D1 decreases.
Hence, the optimal choice of D1 approaches a constant that is bounded away from zero.
For D1 ≥ 1/2 the source coding rate is given by (15.9) and not (15.8). The optimal
system in this case degenerates to the single relay system (the argument is the same as
for the multi-hop channel). Thus, the distortion exponent is given by

�RC−2R−SRC−AMP = 2pβr

2p + βr
, p ≥ 1

2
βr = 2β ′′r . (15.97)
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For p < 2β ′′r , we can find the optimal value of D1 by differentiating the lower bound in
(15.96) and setting it equal to zero. We get

D∗1 =
(

cs1

cs2

(
3p

(βr − 2p)

)) βr
p+βr

SNR−
pβr

p+βr (4D0)
− p

p+βr , p <
1

2
βr , (15.98)

where, for fair comparison, we fix the total number of channel uses and get β ′′r =
(1/4)βr . For the case when p < (1/2)βr , substituting (15.98) in the lower bound in
(15.96) we get

E[D] � min
D0

C.D
− 3p

p+βr
0 .SNR−

3pβr
p+βr + D0, p <

1

2
βr , (15.99)

where C is a constant that does not depend on D0 and the SNR. Differentiating and
setting equal to zero we can get the expression for the optimizing D0 as

D∗0 = C ′.SNR−
3pβr

4p+βr , p <
1

2
βr . (15.100)

Hence, from (15.100) we have

C ′LBSNR−
3pβr

4p+βr � E[D] � C ′UBSNR−
3pβr

4p+βr , p <
1

2
βr . (15.101)

From (15.97) and (15.101) we conclude that the distortion exponent for the source
diversity system is given by

�RC−2R−SRC−AMP = max

[
2pβr

2p + βr
,

3pβr

4p + βr

]
, (15.102)

where the second term in (15.102) is the maximum for the case p < (1/2)βr . �

15.3.2 Decode-and-forward relay channel

We now analyze the decode-and-forward relay channel. The distortion exponents for
the different schemes can be easily derived from the analysis presented in the previous
sections. We collect the corresponding results in the following theorem.

T H E O R E M 15.3.5 The distortion exponents of the decode-and-forward relay
channel are:

• For the single-relay channel

�RC−1R−DEC = 2pβr

2p + βr
. (15.103)

• For the M-relay selection channel coding diversity

�RC−MR−DEC = 2(M + 1)pβr

2βr + (M + 1)2 p
. (15.104)

• For the optimal channel coding with two relays, with the same time frame structure as in
Figure 15.6,

�RC−2R−OPTCH−AMP = 3pβr

3p + βr
. (15.105)
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• For the source coding diversity with two relays

�RC−2R−SRC−DEC = max

[
2pβr

2p + βr
,

3pβr

4p + βr

]
. (15.106)

In summary, the distortion exponents for the decode-and-forward relay channel are the
same as the amplify-and-forward relay channel.

15.4 Discussion

The distortion exponent for the various schemes analyzed in this chapter are summa-
rized in Table 15.1. From the results in Table 15.1 we can see that the optimal channel
coding diversity scheme always results in a higher distortion exponent than the source
coding diversity scheme at any bandwidth expansion factor (the result is valid over both
the multi-hop and relay channels). This means that, between source and channel coding,
it is better to exploit diversity at the channel encoder level.

Comparing the expressions for the distortion exponents for the single-relay and M-
relay nodes we can see that increasing the number of relays does not always result
in an increase in the distortion exponent, showing that there is a tradeoff between the
quality (resolution) of the source encoder and the amount of cooperation (number of
relays).

Figure 15.10 compares the distortion exponent for the various systems as a function
of βm for the multi-hop channel. The results in Figure 15.10 confirms that the optimal
channel coding diversity gives better distortion exponent than the source coding diver-
sity. Note that as βm increases, the factor that limits the distortion exponent performance
is the diversity (number of relays nodes). In this case (high βm), the system is said to be

Table 15.1 Distortion exponents for the amplify-and-forward (decode-and-forward) multi-hop
and relay channels.

Multi-hop channels Relay channel

Single relay
2pβm

p + 2βm

2pβr

2p + βr

Selective channel coding
diversity with M relays

4Mpβm

M(M + 1)p + 4βm

2(M + 1)pβr

2βr + (M + 1)2 p

Optimal channel coding
diversity with two relays

2pβm

p + βm

3pβr

3p + βr

Source coding diversity
with two relays max

[
4pβm

3p + 2βm
,

2pβm

p + 2βm

]
max

[
2pβr

2p + βr
,

3pβr

4p + βr

]
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Fig. 15.10 Distortion exponents for two-hop amplify-and-forward (decode-and-forward) protocol. P = 1
(Rayleigh facling channel).
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Fig. 15.11 Distortion exponents for the amplify-and-forward (decode-and-forward) relay channel. P = 1
(Rayleigh fading channel).

an outage limited system as the outage probability, rather than the quality of the source
encoder, is the main limiting factor in the end-to-end distortion. Figure 15.10 shows
that in this scenario, the distortion exponent performance is improved by increasing the
number of relays so as to increase diversity.
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At low βm the system is said to be quality limited as the quality of the source encoder
(distortion under no outage), rather than the outage probability, is the main limiting fac-
tor in the end-to-end distortion. In this case, the gain from using a better source encoder,
that has a higher resolution, is more significant than the gain from increasing the num-
ber of relay nodes. Figure 15.10 shows that in this scenario, the distortion exponent
performance is improved by using only a single relay node, which allows for the use of
a higher resolution source encoder.

Figure 15.11 shows the distortion exponent versus βr for the various relay channel
schemes. Figure 15.11 confirms that the scheme with optimal channel coding diver-
sity yields a better distortion exponent than the one with source coding diversity. As
was the case for multi-hop schemes, as βm increases, diversity becomes the limiting
factor for the distortion exponent, in which case, Figure 15.11 also shows that increas-
ing the number of relays improves the distortion exponent results. Again, at low βm ,
direct transmission (no-diversity) results in a lower end-to-end distortion which can be
interpreted in the same way as for the multi-hop channel.

15.5 Chapter summary and bibliographical notes

In this chapter, we have studied the performance of systems that combine user coopera-
tion diversity with diversity generated at higher layers of the communication stack in the
form of source coding and channel coding diversity. In the case of source coding, diver-
sity is introduced through the use of dual-description source encoders. Channel coding
diversity is obtained from joint decoding of channel coded blocks sent through different
channels. From the viewpoint of user cooperation, diversity is provided to upper layers
through configurations with a direct path between the source and the destination node
(a relay channel), and without such direct path (a multi-hop channel). We have consid-
ered user cooperation using either the amplify-and-forward or the decode-and-forward
techniques to study the achievable performance limits, which was measured in terms of
the distortion exponent.

The study in this chapter shows that channel coding diversity provides better perfor-
mance, followed by source coding diversity. For the case of having multiple relays that
can help the source node to forward its information, and depending on the operating
bandwidth expansion factor, we have determined the optimal number of relay nodes to
cooperate with the source node to maximize the distortion exponent. The study shows a
tradeoff between the source coding resolution and the number of relay nodes assigned
for helping the source node. We note that at low bandwidth it is not the channel out-
age event, but the distortion introduced at the source coding stage the dominant factor
limiting the distortion exponent performance. Therefore, in these cases it is better not
to cooperate and use a lower distortion source encoder. Similarly, we showed that as
the bandwidth expansion factor increases, the distortion exponent improves by allow-
ing user cooperation. In these cases, the system is said to be an outage limited system
and it is better to cooperate so as to minimize the outage probability and, consequently,
minimize the end-to-end distortion.
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The presentation in this chapter can be framed first within the idea that diversity can
also be formed when multiple channels are provided to the application layer. A good
study of this idea, from the perspective of the achievable performance of source–channel
diversity over general parallel channels, can be found in [110]. The study in this paper is
also focused on distortion exponent but without considering cooperation. An example of
a work that uses distortion exponent to study single description source coded schemes
with cooperation is [53]. In terms of multiple description coding, the work in [140]
presents an early and useful study of the most important topics, such as rate-distortion
performance. A further study on the achievable rates of multiple description coding can
be found in [32] and further information on source–channel diversity in cooperative
networks can be found in [173, 177, 169]

Exercises

15.1 For the dual description description source encoder operating in the region of low
distortion (D1+D2−D0 < 1), use (15.7) and the fact that for any well-designed
MD codec D0 ≤ D1/2, to derive the inequalities (15.8),

(4D0 D1)
−1/(2β) � eRmd � (2D0 D1)

−1/(2β).

[Hint: Recall that the lower bound requires D0 → 0 and the upper bound requires
also D1 → 0.]

15.2 Using the techniques presented in this chapter prove that for the case when the
source transmits a single description source coded message without the help of
any relay node the distortion exponent is given by

�NO−DIV = 2pβr

p + 2βr
,

where βr = Nr/K and Nr is the number of channel uses for the source block
(refer to Figure 15.7).

15.3 Using the techniques presented in this chapter prove that Theorem 15.2.3 is
true, i.e., show that for the two-hop two-relay optimal channel coding diversity
amplify-and-forward system the distortion exponent is

�SH−2R−OPTCH−AMP = 2pβm

p + βm
.

15.4 Following the techniques used in this chapter show that the distortion exponent
for the source coding diversity over two parallel channels can be written as

�SH−2R−SRC−AMP = max

[
8pβ ′′m

3p + 4β ′′m
,

4pβ ′′m
p + 4β ′′m

]
.

15.5 For the multi-hop channels with the decode-and-forward protocol, we have the
following expressions for the distortion exponents, as stated in Theorem 15.2.5:



Exercises 549

• for the two-hop single relay

�SH−1R−DEC = 2pβm

p + 2βm
,

• for the two-hop M-relay selection channel coding diversity

�SH−MR−DEC = 4Mpβm

M(M + 1)p + 4βm
,

• for the two-hop two relay source coding diversity

�SH−2R−SRC−DEC = max

[
4pβm

3p + 2βm
,

2pβm

p + 2βm

]
.

Prove Theorem 15.2.5 using the techniques presented in this chapter.
15.6 For the relay channels with the decode-and-forward protocol, we have the

following expressions for the distortion exponents, as stated in Theorem 15.3.5:

• For the single-relay channel

�RC−1R−DEC = 2pβr

2p + βr
.

• For the M-relay selection channel coding diversity

�RC−MR−DEC = 2(M + 1)pβr

2βr + (M + 1)2 p
.

• For the optimal channel coding with two relays, with the same time frame
structure as in Figure 15.6

�RC−2R−OPTCH−AMP = 3pβr

3p + βr
.

• For the source coding diversity with two relays

�RC−2R−SRC−DEC = max

[
2pβr

2p + βr
,

3pβr

4p + βr

]
.

Prove Theorem 15.3.5 using the techniques presented in this chapter.
15.7 In Section 15.1 we highlighted the fact that a high SNR approximation of the

CDF of eI as

FeI (t) ≈ c

(
t

SNR

)p

,

allows considering other distributions suitable for modeling |h|2 besides the
Rayleigh distribution. Assume now that the channel can be modeled with a Rice
distribution and derive the value of the parameter p for this case. Use this result
to redo Figures 15.10 and 15.11, and analyze the differences.
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For practical implementation of cooperative communications in wireless networks, we
need to develop protocols by which nodes are assigned to cooperate with each other.
In most of the previous chapters on cooperation, the cooperating relays are assumed
to exist and are already paired with the source nodes in the network. A deterministic
network topology, i.e., deterministic channel gain variances between different nodes
in the network, was also assumed. If the random users’ spatial distribution, and the
associated propagation path losses between different nodes in the network, are taken
into consideration, then these assumptions, in general, are no longer valid.

Moreover, it is of great importance for service providers to improve the coverage area
in wireless networks without the cost of more infrastructure and under the same quality
of service requirements. This poses challenges for deployment of wireless networks
because of the difficult and unpredictable nature of wireless channels.

In this chapter, we address the relay assignment problem for implementing coopera-
tive diversity protocols to extend the coverage area in wireless networks. We study the
problem under the knowledge of the users’ spatial distribution which determines the
channel statistics, as the variance of the channel gain between any two nodes is a func-
tion of the distance between these two nodes. We consider an uplink scenario where a
set of users are trying to communicate to a base station (BS) or access point (AP) and
describe practical algorithms for relay assignment.

Another way to look at employing cooperation for coverage extension is to think of
the relays as additional cheap access points that the service provider can deploy in the
network. These relays communicate to the base station through the wireless channels,
and can help those users away from the base station. Next, we elaborate more on this
concept.

16.1 System model

We consider a wireless network with a circular cell of radius ρ. The BS/AP is located
at the center of the cell, and N users are uniformly distributed within the cell. The
probability density function of the user’s distance r from the BS/AP is thus given by

q(r) = 2r

ρ2
, 0 ≤ r ≤ ρ, (16.1)
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and the user’s angle is uniformly distributed between [0, 2π). Two communications
schemes are going to be examined in the sequel. Non-cooperative transmission, or
direct transmission, where users transmit their information directly to the BS/AP, and
cooperative communications where users can employ a relay to forward their data.

In the direct transmission scheme, which is employed in current wireless networks,
the signal received at the destination d (BS/AP) from source user s, can be modeled as

ys,d =
√

P Kr−αs,d hs,dx + ns,d; (16.2)

where P is the transmitted signal power, x is the transmitted data with unit power, hs,d

is the channel fading gain between the two terminals. The channel fade of any link is
modeled as a zero-mean, circularly symmetric complex Gaussian random variable with
unit variance. In (16.2), K is a constant that depends on the antennas design, α is the
path loss exponent, and rs,d is the distance between the two terminals. K , α, and P are
assumed to be the same for all users. The term ns,d in (16.2) denotes additive noise. All
the noise components are modeled as white Gaussian noise (AWGN) with variance N0.
From (16.2), the received signal-to-noise ratio is

SNR(rs,d) =
| hs,d |2 Kr−αs,d P

N0
. (16.3)

We characterize the system performance in terms of outage probability. Outage is
defined as the event that the received SNR falls below a certain threshold γnc, where
the subscript nc denotes non-cooperative transmission. The probability of outage Pnc

for non-cooperative transmission is defined as,

Pnc = P(SNR(r) ≤ γnc). (16.4)

The SNR threshold γnc is determined according to the application and the transmit-
ter/receiver structure. If the received SNR is higher than the threshold γnc, the receiver
is assumed to be able to decode the received message with negligible probability of
error. If an outage occurs, the packet is considered lost.

For the cooperation protocol, a hybrid version of the incremental and selection relay-
ing is employed. In this hybrid protocol, if a user’s packet is lost, the BS/AP broadcasts
negative acknowledgement (NACK) so that the relay assigned to this user can re-
transmit this packet again. This introduces spatial diversity because the source message
can be transmitted via two independent channels as depicted in Figure 16.1. The relay
will only transmit the packet if it is capable of capturing the packet, i.e., if the received
SNR at the relay is above the threshold. In practice, this can be implemented by utilizing
a cyclic redundancy check (CRC) code in the transmitted packet. The signal received
from the source to the destination d and the relay l in the first stage can be modeled as

ys,d =
√

P Kr−αs,d hs,dx + ns,d,

ys,l =
√

P Kr−αs,l hs,lx + ns,l. (16.5)

If the SNR of the signal received at the destination from the source falls below the
cooperation SNR threshold γc, the destination requests a second copy from the relay.
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Fig. 16.1 Illustrating the difference between the direct and cooperative transmission schemes, and the
coverage extension prospected by cooperative transmission.

Then if the relay was able to receive the packet from the source correctly, it forwards it
to the destination:

yl,d =
√

P Kr−αl,d hl,dx + nl,d. (16.6)

The destination will then combine the two copies of the message x as follows:

yd = as,dys,d + al,dyl,d; (16.7)

where as,d = I
√

P Kl−αs,d h∗s,d, and ar,d =
√

P Kl−αr,d h∗r,d. The formulation in (16.7) allows

us to consider two scenarios at the destination: if I = 1 then the combining at the
destination is a maximal ratio combiner (MRC); on the other hand, if I = 0, then the
destination only uses the relay message for decoding. The later scenario might be useful
in the case where the destination cannot store an analogue copy of the source’s message
from the previous transmission.
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16.2 Relay assignment: protocols and analysis

In this section, we start with driving the average outage for direct transmission. Then
we calculate the conditional outage probability for cooperative transmission and try to
use the formulas to deduce the best relay location.

16.2.1 Direct transmission

As discussed before, the outage is defined as the event that the received SNR is lower
than a predefined threshold which we denote by γnc. The outage probability for the
direct transmission mode POD conditioned on the user’s distance can be calculated as

POD(rs,d) = P
(
SNR(rs,d) ≤ γnc

)
= 1− exp

(
−N0γncrαs,d

K P

)
� N0γncrαs,d

K P
, (16.8)

where the above follows because | hs,d |2, the magnitude of the channel fade squared,
has an exponential distribution with unit mean. The approximation in (16.8) is at high
SNR.

To find the average outage probability over the cell, we need to average over the user
distribution in (16.1). The average outage probability is thus given by

POD =
∫ ρ

0
POD(rs,d)q(rs,d)drs,d

=
∫ ρ

0

2rs,d

ρ2

(
1− exp

(
−N0γncrαs,d

K P

))
drs,d

= 1− 2

αρ2

(
K P

N0γnc

) 2
α

�

(
2

α
,

N0γncρ
α

K P

)
� 2γncρ

αN0

K P(α + 2)
, (16.9)

where �(., .) is the incomplete Gamma function, and it is defined as

�(a, x) =
∫ x

0
exp−t ta−1dt. (16.10)

16.2.2 Cooperative transmission: conditional outage probability

Consider a source–destination pair that are rs,d units distance apart. Let us compute
the conditional outage probability for given locations of the user and the helping relay.
Using (16.5), the SNR received at the BS/AP d and the relay l from the source s is
given by
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SNR(rs,d) =
| hs,d |2 Kr−αs,d P

N0
,

SNR(rs,l) =
| hs,l |2 Kr−αs,l P

N0
. (16.11)

While from (16.7), the SNR of the combined signal received at the BS/AP is given by

SNRd = I
| hs,d |2 Kr−αs,d P

N0
+ | hl,d |2 Kr−αl,d P

N0
. (16.12)

The terms | hs,d |2, | hs,l |2, and | hl,d |2 are mutually independent exponential ran-
dom variables with unit mean. The outage probability of the cooperative transmission
POC conditioned on the fixed topology of the user s and the relay l can be calculated as
follows. Using the law of total probability we have

POC = Pr(Outage|SNRs,d ≤ γc)Pr(SNRs,d ≤ SNRs,d) (16.13)

where the probability of outage is zero if SNRs,d > γc. The outage probability
conditioned on the event that the source–destination link is in outage is given by

Pr(Outage|SNRs,d ≤ γc) = Pr(SNRs,l ≤ γc)+ Pr(SNRs,l > γc)

× Pr(SNRd ≤ γc|SNRs,d ≤ γc), (16.14)

where the addition of the above probabilities is because they are disjoint events, and the
multiplication is because the source–relay link is assumed to fade independently from
the other links. The conditioning was removed for the same reason.

For the case where MRC is allowed at the destination, then the conditional outage
probability at the destination is given by

Pr(SNRd ≤ γc|SNRs,d ≤ γc) = Pr(SNRd ≤ γc)

Pr(SNRs,d ≤ γc
. (16.15)

Using (16.15) and (16.14) in (16.13), the conditional outage probability for cooperative
communications with MRC can be calculated as

POC(rs,d, rs,l, rl,d) =
(
1− f (γc, rs,d)

) (
1− f (γc, rs,l)

)+ f (γc, rs,l)

×
[

1− r−αs,d

r−αs,d − r−αl,d

f (γc, rs,d)−
r−αl,d

r−αl,d − r−αs,d

f (γc, rl,d)

]
where f (x, y) = exp(−N0xyα/K P). The above expression can be simplified as
follows:

POC(rs,d, rs,l, rl,d) =
(
1− f (γc, rs,d)

)− r−αl,d

r−αl,d − r−αs,d

× f (γc, rs,l)
(

f (γc, rl,d)− f (γc, rs,d)
)
.

For the I = 1 case, or when MRC is used at the destination, then using the approx-
imation exp(−x) � 1 − x + x2/2 for small x , the above outage expression can be
approximated at high SNR to
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POC(rs,d, rs,l, rl,d) � N0

K P
rαs,d −

N 2
0

2K 2 P2
r2α
s,d −

rαs,d
rαs,d − rαl,d

×
[

N0

K P
(rαs,d − rαl,d)+

N 2
0

2K 2 P2

(
(rαl,d − rαs,d)(2rαs,l + rαl,d + rαs,d)

)]

Simplifying the above expression, we get

POC(rs,d, rs,l, rl,d) � N 2
0

2K 2 P2
r2α
s,d

[
2

rαs,l
rαs,d

+ rαl,d
rαs,d

]
(16.16)

For the I = 0 case, or when no MRC is used at the destination, then the conditional
outage expression in (16.15) simplifies to

Pr(SNRd ≤ γc|SNRs,d ≤ γc) = Pr(SNRd ≤ γc). (16.17)

This is because the SNR received at the destination in this case is just due to the signal
received from the relay–destination path. The conditional outage expression in this case
can be shown to be given by

POC(rs,d, rs,l, rl,d) =
(
1− f (γc, rs,d)

) [
1− f (γc, rl,d) f (γc, rs,l)

]
. (16.18)

16.2.3 Optimal relay position

To find the optimal relay position, we need to find the pair (rs,l, rl,d) that minimizes
the conditional outage probability expression in (16.16). First we consider the I = 1
scenario, where MRC is utilized at the receiver.

16.2.3.1 MRC case
In the following, we will prove that the optimal relay position, under fairly general
conditions, is towards the source and on the line connecting the source and destination.
Examining the conditional outage expression in (16.16), it is clear that, for any value
of rl,d, the optimal value for rs,l that minimizes the outage expression is the minimum
value for rs,l. And since for any value of rl,d the minimum rs,l lies on the straight line
connecting the source and destination, we get the first intuitive result that the optimal
relay position is on this straight line.

Now, we prove that the optimal relay position is towards the source. Normalizing
with respect to rs,d by substituting x = rl,d/rs,d in (16.16) and 1 − x = rs,l/rs,d, we
have

POC(x) = N 2
0

2K 2 P2
r2α
s,d

[
2(1− x)α + xα

]
. (16.19)

Taking the derivative with respect to x we get

∂POC(x)

∂x
= N 2

0

2K 2 P2
r2α
s,d

[
−2α(1− x)α−1 + αxα−1

]
. (16.20)
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Fig. 16.2 The effect of the relay location on the outage probability.

Equating the above derivative to zero we get the unique solution

x∗ = 1

1+
(

1
2

) 1
α−1

. (16.21)

Checking for the second-order conditions, we get, that P ′′OC(x) ≥ 0, which shows that
the problem is convex, and x∗ specified in (16.21) is indeed the optimal relay position.
Note from the optimal relay position in (16.21), that for propagation path loss α ≥ 2, we
have that x∗ > 0.5, which means that the optimal relay position is closer to the source
node. In Figure 16.2, we plot the conditional outage probability expression for different
source–destination separation distances, and different values for the relay location x .
It is clear from the figure that the optimal relay position is, for a lot of cases, around
x = 0.6 to x = 0.75. This is the motivation for considering the nearest-neighbor relay
selection protocol in the next section.

16.2.3.2 No-MRC case
Next, we determine the optimal relay location for the I = 0 case. From the conditional
outage expression in (16.18), it can be seen that if we have the freedom to put the relay
anywhere in the two-dimensional plane of the source–destination pair, then the opti-
mal relay position should be on the line joining the source and the destination – this is
because if the relay is located at any position in the two-dimensional plane, then its dis-
tances to both the source and the destination are always larger than their corresponding
projections on the straight line joining the source–destination pair.
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In this case, we can substitute for rl,d by rs,d− rs,l. The optimal relay position can be
found via solving the following optimization problem:

r∗s,l = arg min
rs,l

POC(rs,d, rs,l),

s.t. 0 ≤ rs,l ≤ rs,d. (16.22)

Since the minimization of the expression in (16.16) with respect to rs,l is equivalent
to minimizing the exponent in the second bracket, solving the optimization problem in
(16.22) is equivalent to solving

r∗s,l = arg min
rs,l

rηs,l +
(
rs,d − rs,l

)η
,

s.t. 0 ≤ rs,l ≤ rs,d. (16.23)

The above optimization problem can be simply analytically solved,and the optimal relay
position can be shown to be equal to r∗s,l = rs,d/2 for η > 1. Therefore, the optimal
relay position is exactly in the middle between the source and destination when no
MRC is used at the destination. For this case, we are able to drive a lower bound on the
performance of any relay assignment protocol as will be discussed later.

16.3 Relay assignment algorithms

In this section, we describe two distributed relay assignment algorithms. The first is
a user cooperation protocol in which the nearest neighbor is assigned as a relay. The
second considers the scenario where fixed relays are deployed in the network to help
the users.

16.3.1 Nearest-neighbor protocol

In this subsection, we describe the nearest-neighbor protocol for relay assignment,
which is both distributed and simple to implement. In this protocol, the relay assigned
to help is the nearest neighbor to the source as demonstrated in Figure 16.3. The source
sends a “Hello” message to its neighbors and selects the signal received with the largest
SNR, or the shortest arrival time, to be its closest neighbor.

The outage probability expression, which we refer to as PONN, for given source–
relay–destination locations is still given by (16.16). To find the total probability, we
need to average over all possible locations of the user and the relay. The user’s location
distribution with respect to the BS/AP is still given as in the direct transmission case
(16.1). The relay’s location distribution, however, is not uniform. In the sequel we cal-
culate the probability density function of the relay’s location. According to our protocol,
the relay is chosen to be the nearest neighbor to the user. The probability that the nearest
neighbor is at distance rs,l from the source is equivalent to calculating the probability
that the shaded area in Figure 16.3 is empty.
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Fig. 16.3 Illustrating cooperation under the nearest-neighbor protocol: the nearest neighbor is at a distance
rs,l from the source. Therefore, the shaded area should be empty from any users.

Denote this area, which is the intersection of the two circles with centers s and d, by
A(rs,d, rs,l). For 0 < rs,l ≤ ρ − rs,d, the area of intersection is a circle with radius rs,l

and center s. The probability density function of rs,l, prs,l(x), can be calculated as

prs,l(x) =
∂

∂x

(
1− P(rs,l > x)

)
(16.24)

= ∂

∂x

⎛⎝1−
(

1− x2

ρ2

)N−1
⎞⎠ (16.25)

= 2(N − 1)x

ρ2

(
1− x2

ρ2

)N−2

, 0 < rs,l ≤ ρ − rs,d. (16.26)

For ρ − rs,d < rs,l ≤ ρ + rs,d, the intersection between the two circles can be divided
into three areas: (1) the area of the sector acb in circle s; (2) area of the triangle asb;
(3) area enclosed by the chord ab in circle d. Hence, the intersection area, denoted by
A(rs,d, rs,l) can be written as

A(rs,d, rs,l) = r2
s,lθ +

1

2
r2
s,l sin(2θ)+

(
ρ2φ − 1

2
ρ2 sin(2φ)

)
(16.27)

where θ = cos−1
(
ρ2−r2

s,l−r2
s,d

2rs,lrs,d

)
, and φ = cos−1

(
r2
s,l−ρ2−r2

s,d
2ρrs,d

)
. The probability density

function for rs,l for this range is given by

prs,l(x) =
∂

∂x

(
1−

(
1− A(rs,d, rs,l)

πρ2

)N−1
)
, ρ − rs,d < rs,l ≤ ρ + rs,d. (16.28)

This completely defines the probability density function for the nearest neighbor and
the average can be found numerically as the integrations are extremely complex. In the
sequel, we derive an approximate expression for the outage probability for both the
MRC and no-MRC scenarios under the following two assumptions. Since the relay is
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chosen to be the nearest neighbor to the source, the SNR received at the relay from
the source is rarely below the threshold γc, hence, we assume that the event of the relay
being in outage is negligible. The second assumption is that the nearest neighbor always
lies on the intersection of the two circles, as points a or b in Figure 16.3. This second
assumption is a kind of worst-case scenario, because a relay at distance rs,l from the
source can be anywhere on the arc âcb, and a worst-case scenario is to be at points a
or b. This simplifies the outage calculation as the conditional outage probability (16.16)
for the MRC case is now only a function of the source distance rs,l as follows:

PONN(rs,d) � 1− f (γc, rs,d)− N0γc

K P
rγs,d f (γc, rs,d). (16.29)

Averaging (16.29) over the user distribution (16.1) and using the definition of the
incomplete Gamma function in (16.10), we get

PONN � 1− 2

αρ2

(
K P

N0γc

) 2
α

�

(
2

α
,

N0γcρ
α

K P

)
− 2

αρ2

(
K P

N0γc

) 2
α

�

(
2

α
+ 1,

N0γcρ
α

K P

)
.

Using the same approximation as above, the conditional outage probability for the
no-MRC case is given by

PONN(rs,d) =
(
1− f (γc, rs,d)

)2
. (16.30)

Averaging the above expression over rs,d we have

PONN � 1− 4

αρ2

(
K P

N0γc

) 2
α

�

(
2

α
,

N0γcρ
α

K P

)
+ 2

αρ2

(
K P

2N0γc

) 2
α

�

(
2

α
,

2N0γcρ
α

K P

)
.

16.3.2 Fixed relays strategy

In some networks, it might be easier to deploy fixed nodes in the cell to act as relays.
This will reduce the overhead of communications between users to pair for cooperation.
Furthermore, in wireless networks users who belong to different authorities might act
selfishly to maximize their own gains, i.e., selfish nodes. For such scenarios protocols
for enforcing cooperation or to introduce incentives for the users to cooperate need to
be implemented. In this subsection, we consider deploying nodes in the network that act
as relays and do not have their own information. Each user will be associated with one
relay to help in forwarding the dropped packets. The user can select the closets relay,
which can be implemented using the exchange of “Hello” messages and selecting the
signal with shortest arrival time, for example.

Continuing with our circular model for the cell, with uniform users distribution, the
relays are deployed uniformly by dividing the cell into a finite number m of equal sec-
tors, equal to the number of fixed relays to be deployed. Figure 16.4 depicts a network
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Fig. 16.4 Illustrating cooperation under the nearest-neighbor protocol: the nearest neighbor is at a distance
rs,l from the source. Therefore, the shaded area should be empty from any users.

example for m = 3. The relays are deployed at a distance rl,d from the destination. This
distance should be designed to minimize the average outage probability as follows:

r∗l,d = arg min POC(rl,d),

s.t. 0 < rl,d < ρ (16.31)

where the average outage probability POC(rl,d) is defined as

POC =
∫ ρ

0

2ls,d
ρ2

∫ π
m

− π
m

POC(rs,d, rs,l(θ), rl,d)
m

2π
dθdls,d (16.32)

where POC(ls,d, ls,r, lr,d) is defined in (16.16), and the distance from the source to the
fixed relay is given by

rs,l(θ) =
√

r2
s,d + r2

l,d − 2rs,drl,d cos(θ), (16.33)

where θ is uniformly distributed between [−π/m, π/m]. Solving the above optimiza-
tion problem is very difficult, hence, let us consider the following heuristic. In the
nearest-neighbor protocol, the relay was selected to be the nearest neighbor to the
user. Here, we can calculate the relay position that minimizes the mean square dis-
tance between the users in the sector and the relay. Without loss of generality, assuming
the line dividing the sector to be the x-axis, the mean square distance between a user at
distance r and angle θ from the center of the cell and the relay is given by the following
function:

q(rl,d) = E
(
‖rejθ − rl,d‖2

)
, (16.34)
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Fig. 16.5 Average outage probability versus the number of relays in fixed relaying.

where j = √−1, and E denotes the joint statistical expectation over the random
variables r and θ . Solving for the optimal rl,d that minimizes q(rl,d),

r∗l,d = arg min E
(
‖rejθ − rl,d‖2

)
, (16.35)

we get

r∗l,d =
2m

3π
sin
(π

m

)
ρ. (16.36)

Figure 16.5 depicts the average outage probability versus the number of relays
deployed in the network for different cell sizes. The numerical results are for the fol-
lowing parameters: K = 1, α = 3, P = 0.05, R = 1, and N0 = 10−12. We can see
from the results that the performance saturates at approximately m = 6 relays, which
suggests that dividing the cell into six sectors with a relay deployed in each sector can
provide good enough performance.

16.3.3 Lower bound: the Genie-aided algorithm

For both the MRC and no-MRC cases, we determined the optimal relay location. For
the MRC case, the optimal relay position is towards the source. For the no-MRC case,
we showed that the optimal relay position is in the mid-point between the source and the
destination. We will derive a lower bound on the outage probability for any relay assign-
ment protocol based on a Genie-aided approach. This bound serves as a benchmark
for the performance of the nearest-neighbor protocol, and the fixed relaying scheme
described in the chapter.
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The Genie-aided protocol works as follows. For any source node in the network, a
Genie is going to put a relay at the optimal position on the line joining this source node
and the destination (BS/AP).

Next we analyze the average outage performance of the Genie-aided protocol. For the
MRC case, substituting the optimal relay position in (16.21) in the conditional outage
expression in (16.16) we get

POC(rs,d) = 1− f (γc, rs,d)− 1

1− x∗
f (γc, (1− x∗)rs,d)

(
f (γc, x

∗rs,d)− f (γc, rs,d)
)
.

(16.37)

Averaging the above expression over the user distribution, the average outage probabil-
ity for the Genie-aided lower bound for the MRC case I = 1 is given by
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(16.38)

We will denote the average probability of outage for the no-MRC case by POG,2.
Substituting the optimal relay position r∗s,l in the conditional outage expression (16.16),
we get

POG(rs,d) =
(

1− exp

(
−N0γcrαs,d

K P

))(
1− exp

(
−2N0γc

( rs,d
2

)α
K P

))
. (16.39)

Averaging the above expression over all possible users’ locations,
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16.4 Numerical results

We performed some computer simulations to compare the performance of the above
discussed relay assignment protocols and validate the theoretical results we derived in
this chapter. In all of our simulations, we compared the outage performance of three dif-
ferent transmission schemes: direct transmission, nearest-neighbor protocol, and fixed
relaying. In all of the simulations, the channel fading between any two nodes (either a
user and the BS/AP or two users) is modeled as a random Rayleigh fading channel with
unit variance.

For fairness in comparison between the described cooperative schemes and the direct
transmission scheme, the spectral efficiency is kept fixed in both cases and this is done
as follows. Since a packet is either transmitted once or twice in the cooperative protocol,
the average rate in the cooperative case can be calculated as

E(Rc) = RcPOD,γc(rs,d)+ Rc

2
POD,γc(rsd). (16.41)

where Rc is the spectral efficiency in bits/s/Hz for cooperative transmission, and
POD,γc(rs,d) denotes the outage probability for the direct link at rate Rc. In (16.41),
note that one time slot is utilized if the direct link is not in outage, and two time slots
are utilized if it is in outage. Note that the later scenario is true even if the relay does not
transmit because the time slot is wasted anyway. Averaging over the source–destination
separation, the average rate is given by

R̄c = Rc

2

(
1+ 2

αρ2
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K P

γcN0

) 2
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�
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α
,

N0γcρ
α
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(16.42)

We need to calculate the SNR threshold γc corresponding to transmitting at rate Rc.
The resulting SNR threshold γc should generally be larger than γnc required for non-
cooperative transmission. It is in general very difficult to find an explicit relation
between the SNR threshold γc and the transmission rate Rc, and thus we render to a
special case to capture the insights of this scenario. Let the outage be defined as the
event that the mutual information I between two terminals is less than some specific
rate R. If the transmitted signals are Gaussian, then according to our channel model, the
mutual information is given by I = log(1 + SNRs,d). The outage event for this case is
defined as

OI �
{
hs,d : I < R

} = {hs,d : SNRs,d < 2R − 1
}
. (16.43)

The above equation implies that if the outage is defined in terms of the mutual informa-
tion and the transmitted signals are Gaussian, then the SNR threshold γc and the spectral
efficiency R are related as γc = 2R

c − 1, i.e., they exhibit an exponential relation. Intu-
itively, under a fixed modulation scheme and fixed average power constraint, one can
think of the SNR threshold as being proportional to the minimum distance between the
constellation points, which in turn depends on the number of constellation points for
fixed average power, and the later has an exponential relation to the number of bits per
symbol that determines the spectral efficiency R. For the sake of comparison R̄c should
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be equal to R, the spectral efficiency of direct transmission. Thus for a given R one
should solve for Rc. This can lead to many solutions for Rc, and we are going to choose
the minimum Rc as we have discussed before in Chapter 11.

Example 16.1 In the following simulation comparisons, we study the outage proba-
bility performance when varying three basic quantities in our communication setup:
the transmission rate, the transmit power, and the cell radius. In all the scenarios, we
consider direct transmission, nearest-neighbor, fixed relaying with six relays deployed
in the network, and the Genie-aided lower bound. For all the cooperative transmission
cases, both MRC and no-MRC is examined.

Figure 16.6 depicts the outage probability versus the transmit power in dBW. It is
clear from the slopes of the curves that cooperation yields more steeper curves due to the
diversity gain. Fixed relaying with MRC has the best performance, and it is very close
to the Genie lower bound with no MRC. Fixed relay has a generally better performance
than the nearest-neighbor protocols. Cooperation yields around 7 dbW savings in the
transmit power with respect to direct transmission

Figure 16.7 depicts the outage probability curves versus the cell radius. Fixed relaying
also has the best performance. There is a 200% increase in the cell radius at an 0.01
outage. We can see that the gap between direct transmission and cooperation decrease
with increasing the cell size. The rationale here is that with increasing the cell size,
the probability of packets in outage increases, and hence, the probability that the relay
will forward the source’s packet increases. This reduces the bandwidth efficiency of the
system, and hence increases the overall outage probability. This tradeoff between the
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Fig. 16.6 Average outage probability versus the transmit power.
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Fig. 16.8 Average outage probability versus the spectral efficiency.

spectral efficiency and the diversity gain of cooperation makes direct transmission good
enough for larger cell sizes.

Similar conclusions can be drawn from Figure 16.8, which plots the outage probabil-
ity versus the spectral efficiency. �
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16.5 Chapter summary and bibliographical notes

Most of the literature on relay assignment assumes the availability of a list of candidate
relays and develop relay-selection algorithms from among the list [123]. In [128], two
approaches for selecting a best relay are provided: best-select in the neighbor set and
best-select in the decoded set. The best-select in the neighbor set algorithm is based on
the average received SNRs, or equivalently the distance, while the latter is based on the
instantaneous channel fading realization.

In this chapter, we addressed the relay assignment problem for coverage extension in
cooperative transmission over wireless networks based on the knowledge of the chan-
nel statistics governed by the users’ spatial distribution. The subject has been treated in
the literature in [155, 158, 157, 153]. We described in this chapter two distributed relay
assignment protocols. The nearest-neighbor protocol is a simple algorithm in which the
relay is selected to be the nearest neighbor to the user. We also considered the scenario
where fixed relays are deployed in the network to help the existing users. Outage per-
formance of the protocols was analyzed. We further developed lower bounds on the
performance of any relay assignment protocol via a Genie-aided method. Our numeri-
cal results indicate significant gains in the system performance. In particular, fixing the
average transmit power, significant increase in the coverage area (more than 200%) of
the network can be achieved by our simple distributed protocols. Similarly, for fixed
cell radius, the average power required to achieve a certain outage probability is signif-
icantly reduced by more than 7 dbW in our numerical examples. We have also shown
that cooperation can allow, at the same quality of service, transmitting at higher rates
compared to direct transmission; more than 2 bits/s/Hz can be gained at the same trans-
mit power. We can also see that for larger cell sizes, the performance gap between direct
and cooperative transmission diminishes.

Exercises

16.1 In this chapter, the distribution of the nearest neighbor was derived to find the out-
age performance of the nearest-neighbor protocol. Consider the scenario where
instead of assigning the first neighbor to act as a relay, the second neighbor is
assigned this role.

(a) Find the distribution of the second nearest neighbor.
(b) Find the outage probability when utilizing the second nearest neighbor as a

relay. Compare the performance to the scenario described in this chapter in
which the nearest neighbor acts as the relay.

16.2 Numerical examples for the fixed relays scheme with six relays were developed
in the chapter. Simulate the performance of the fixed relay scenarios with N > 6
relays. Find the value of N at which the performance starts to saturate.
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16.3 Assume a cell with a fixed user density of 20 users/km2.

(a) Write a Matlab code to simulate the outage probability performance
of the nearest neighbor protocol with increasing cell radius from 1 km
to 5 km.

(b) Assuming six relays are deployed in the cell, simulate the outage perfor-
mance as a function of the cell radius.

16.4 Consider the scenario when you can at most deploy three relays in the cell in
the fixed-relaying technique. Compare the performance to the nearest-neighbor
protocol assuming a fixed user density as in the previous problem.

16.5 Prove that the optimal relay location in the fixed relays strategy is given by
(16.36), i.e., prove that

r∗l,d =
2m

3π
sin
(π

m

)
ρ. (E16.1)

16.6 Prove the outage probability expression when maximal ratio combiner (MRC)
is used at the destination. Prove the following simplified form of the outage
expression:

POC(rs,d, rs,l, rl,d) =
(
1− f (γc, rs,d)

)− r−αl,d

r−αl,d − r−αs,d

× f (γc, rs,l)
(

f (γc, rl,d)− f (γc, rs,d)
)
.

16.7 Prove that the average outage probability for the Genie-aided lower bound for
the MRC case I = 1 is given by (16.38):
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16.8 Prove that the average outage probability for the Genie-aided lower bound for
the no-MRC case is given by (16.40):
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17 Broadband cooperative
communications

In broadband communications, OFDM is an effective means to capture multipath
energy, mitigate the intersymbol interference, and offer high spectral efficiency. OFDM
is used in many communications systems, e.g., wireless local area networks (WLANs)
and wireless personal area networks (WPANs). Recently, OFDM together with time–
frequency interleaving across subbands, the so-called multiband OFDM [9], has been
adopted in the ultra-wideband (UWB) standard for wireless personal area networks
(WPANs).

To improve the performance of OFDM systems, the fundamental concept of cooper-
ative diversity can be applied. Nevertheless, special modulations/cooperation strategies
are needed to efficiently exploit the available multiple carriers.

In this chapter, we study an OFDM cooperative protocol that improves spectral
efficiency over those based on fixed relaying protocols while achieving the same perfor-
mance of full diversity. By exploiting limited feedback from the destination node, the
described protocol allows each relay to help forward information of multiple sources
in one OFDM symbol. We also describe a practical relay assignment scheme for
implementing this cooperative protocol in OFDM networks.

17.1 System model

In this section, we describe the system model of a wireless network, in which we take
into consideration the random users’ spatial distribution. The channel model, the signal
model, and the performance measure in term of outage probability are discussed.

We consider an OFDM wireless network such as a WLAN or a WPAN with a circular
cell of radius ρ. The cell contains one central node and multiple users, each communi-
cating with the central node. The central node can be a base station or an access point in
case of the WLAN, and it can be a piconet coordinator in case of the WPAN. Suppose
the central node is located at the center of the cell, and K users are uniformly located
within the cell. Then, the user’s distance Ds,d from the central node has the following
probability density function (pdf):

pDs,d(D) = 2D/ρ2, 0 ≤ D ≤ ρ, (17.1)

and the user’s angle is uniformly distributed over [0, 2π). We assume that each node is
equipped with single antenna, and its transmission is constrained to half-duplex mode.
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We consider an uplink scenario where all users transmit their information to the central
node. Channel access within the cell is based on orthogonal multiple access mechanism
as used in many current OFDM wireless networks.

The channel fades for different propagation links are assumed to be statistically
independent. This assumption is reasonable since nodes in the network are usually spa-
tially well separated. The data packet of each user consists of preamble, header, and
frame payload which carries several OFDM data symbols. The header includes the pilot
symbols which allow channel estimation to be performed at the central node.

For subsequent analysis, we consider a stochastic tapped-delay-line channel model
as in (1.6), which allows to take into consideration the frequency selectivity of wireless
channels. If the channel between each pair of transmit-receive nodes have L inde-
pendent delay paths, the channel impulse response from node i to node j can be
modeled as

hi, j (t) =
L−1∑
l=0

αi, j (l)δ(t − τi, j (l)), (17.2)

where the subscript {i, j} indicates the channel link from node i to node j , τi, j (l) is the
delay of the l-th path, and αi, j (l) is the complex amplitude of the l-th path. The path
amplitude |αi, j (l)| is Rayleigh distributed, whereas the phase � αi, j (l) is uniformly dis-
tributed over [0, 2π). Specifically, The fade αi, j (l) is modeled as zero-mean, complex
Gaussian random variables with variances E

[|αi, j (l)|2
] = �i, j (l),

The received signal at subcarrier n of destination d from source user s can be
modeled as

ys,d(n) =
√

PncκD−νs,d Hs,d(n)xs(n)+ zs,d(n), (17.3)

where Pnc is the transmitted power in each subcarrier at the source in non-cooperative
mode, xs(n) denotes an information symbol to be transmitted from the source s at
subcarrier n, zs,d(n) is an additive white Gaussian noise with zero mean and variance
N0, and Hs,d(n) is the frequency response of the channel at the n-th subcarrier. If we
consider OFDM with N subcarriers and assume that the length of cyclic prefix in the
OFDM symbol is longer than the channel delay spread, then we can express the channel
frequency response as

Hs,d(n) =
L−1∑
l=0

αs,d(l) exp (−j2πnτs,d(l)/N ). (17.4)

In (17.3), κ is a constant whose value depends on the propagation environment and
antenna design, ν is the propagation loss factor, and Ds,d represents the distance
between source node s and destination node d. The parameters Pnc, κ , and ν are
assumed to be the same for all users.

Let each information symbol have unit energy. For a given distance Ds,d between
the source and the destination, the received signal-to-noise ratio (SNR) for the n-th
subcarrier can be given by

ζ
(n)
s,d = PncκD−νs,d |Hs,d(n)|2/N0. (17.5)
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In case of direct transmission between two nodes that are Ds,d apart, the maximum
average mutual information in a subcarrier n, which is achieved for the independent
and identically distributed zero-mean, circularly symmetric complex Gaussian inputs,
is given by

I (n)(Ds,d) = log(1+ ζ (n)s,d ). (17.6)

Let R denote a target rate for each subcarrier, then the probability that a subcarrier is in
outage can be given by

PD
out(Ds,d) = Pr

(
I (n)(Ds,d) ≤ R

)
= Pr

(
ζ
(n)
s,d ≤ 2R − 1

)
. (17.7)

If an outage occurs in a subcarrier, then the transmitted information in that subcarrier
is considered loss. Otherwise, the receiver is assumed to be able to decode the received
information with negligible probability of error.

17.2 Cooperative protocol and relay-assignment scheme

In this section, we first describe the cooperative protocol for OFDM wireless networks,
and then present the relay assignment scheme. Consider a cooperation scenario where
each source can employ a relay to forward its information to the destination.

In phase 1, each user transmits its packet to the destination (central node) and the
packets are also received at the relay. After receiving the user’s packet, the destination
performs channel estimation using the OFDM pilot symbols in the packet header. Based
on the estimated channel coefficients, the destination is able to specify which subcarrier
symbols are not received successfully (i.e., those in the subcarriers of which the com-
bined SNRs fall below the required SNR threshold), and then broadcasts the indices
of the subcarriers carrying those symbols. Such feedback enables the assigned relay to
help forward the source information only when necessary.

In phase 2, the relay decodes the source symbols that are unsuccessfully received
at the destination via direct transmission, and then forwards the decoded information to
the destination. The relay will only decode the source symbol that the relay is capable of
capturing, i.e., when the received SNR at the relay is above the target threshold. Since it
is unlikely that all subcarrier symbols are sent unsuccessfully by the source, the protocol
makes efficient use of the available bandwidth by allowing the relay to help forward the
information of multiple source users in one OFDM block.

Specifically, suppose a relay is assigned to help k users, then after all k users transmit
their packets in phase 1, the relay sends in phase 2 an additional packet containing
these users’ symbols that are not captured at the destination in phase 1. In order for the
destination to know which relay subcarriers carry information of which users, the relay
can send an additional overhead together with the source symbols. Or the relay can use
a fixed subcarrier assignment scheme such that that the destination can specify the relay
subcarrier assignment without the use of additional overhead.

For instance, if ni subcarriers of user i are in outage, then in phase 2, the relay can
use the first n1 subcarriers to transmit the data of user 1, the next n2 subcarriers to
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transmit the data of user 2, and so on. The fixed subcarrier assignment scheme requires
no additional overhead, but it does not fully utilize the resources when both relay and
destination cannot decode the source symbols; nevertheless, this event occurs with small
probability.

Figure 17.1 illustrates as example of the signal transmissions of the described pro-
tocol with fixed subcarrier assignment scheme for an OFDM system with two source
users and one relay. Figure 17.1(a) and (b) depict transmission in phase 1 and phase 2,
respectively.

In phase 1, the received signals at the destination and the relay are

ys,d(n) =
√

PcκD−νs,d Hs,d(n)xs(n)+ zs,d(n) (17.8)

and

ys,r(n) =
√

PcκD−νs,r Hs,r(n)xs(n)+ zs,r(n), (17.9)

respectively, where Pc is the transmitted power in the cooperative mode. In phase 2, the
signal received at the destination from the relay is

yr,d(n) =
√

PcκD−νr,d Hr,d(n)x̃s(n)+ zr,d(n), (17.10)

where x̃s(n) denotes the source symbols that are not captured by the destination in
phase 1.

To decide the pairing of sources and relays, we describe in this subsection a practical
relay assignment scheme for cooperative OFDM networks. We focus on a fixed-relay-
location scenario in which a certain number of relays are installed in fixed locations
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Relay

Destination

Destination
Data of source 1 Data of source 2
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bits
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Subcarrier in outage
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Source 2

Source 2

OFDM block
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Fig. 17.1 Illustrations of the described cooperative protocol for OFDM system with two users and one
relay. (a) Phase 1: Source transmits information to the destination. (b) Phase 2: Relay forwards
source information to the destination.
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Fig. 17.2 An example of relay assignment for a multi-user OFDM system. A cell with three relays.
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Fig. 17.3 An example of relay assignment for a multi-user OFDM system. One sector.

in the network. Let W denote the number of relays in a circular cell with radius ρ, as
illustrated in Figure 17.2. Then, the relay assignment scheme is as follows:

• The cell is equally divided into W sectors, each with central angle 2π/W . One relay
is assigned to help users within each sector.

• In each sector, the relay is placed at an optimum relay location which minimizes
the outage probability for all possible source–destination pairs within the sector
(Figure 17.3).

The optimum relay location will be determined in Section 17.5.

17.3 Performance analysis

In this section, we first analyze the outage probability of the described cooperative pro-
tocol based on fixed subcarrier assignment scheme, then provide its closed-form lower
bound, and finally determine the optimum relay location.
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17.3.1 Outage probability

In the non-cooperative protocol, the channel resources (time and frequency) are divided
among K users. In the cooperative protocol, on the other hand, W relays are also
utilized, so the same channel resources are divided among K + W users. Thus,
for the cooperative protocol, the mutual information in each subcarrier is given by
K/(K + W )I (n)(Di, j ), and the event that a subcarrier in the i– j transmit–receive link
is in outage is

K

K +W
I (n)(Di, j ) ≤ R, (17.11)

which corresponds to the event

|Hi, j (n)|2 ≤ (2(K+W )R/K − 1)N0

κPc
D−νi, j � βD−νi, j . (17.12)

where β is a constant.
Under the described cooperative protocol, the average probability that a subcarrier is

in outage can be expressed as

Pout =
K∑

k=0

Pout|kPr(k users in the sector), (17.13)

where Pout|k denotes the outage probability per subcarrier given that k users are in
the sector. With W sectors in the cell and the assumption that the users are uniformly
located in the cell, the chance that a user is located in a specific sector is given by 1/W .
Accordingly, the probability that k users are located in one sector follows the binomial
distribution as

Pr(k users in the sector) =
(

K

k

)(
1

W

)k (
1− 1

W

)K−k

� c(k), k ∈ {0, 1, . . . , K }. (17.14)

The conditional outage probability per subcarrier, Pout|k , can be determined as fol-
lows. In the case that the relay has available resources to help forward the source
information, the outage event in subcarrier n is equivalent to the event

� = ({I (n)(Ds,d) ≤ R̃} ∩ {I (n)(Ds,r) ≤ R̃}) ∪ ({I (n)(Ds,d) ≤ R̃}
∩ {I (n)(Dr,d) ≤ R̃} ∩ {I (n)(Ds,r) > R̃}), (17.15)

where R̃ = (K+W )R/K . The first term in the union of (17.15) corresponds to the event
that both the source–destination and source–relay links are in outage, while the second
term corresponds to the event that both the source–destination and relay–destination
links are in outage while the source–relay link is not. According to (17.12) and Rayleigh
distribution, we have

Pr({I (n)(Di, j ) ≤ R̃}) = Pr(|Hi, j (n)|2 ≤ βDνi, j ) = 1− exp(−βDνi, j ), (17.16)
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where β is defined in (17.12). Note that the events in the union in (17.15) are mutually
exclusive. Hence, the conditional outage probability under the cooperative mode can be
determined as

PC
out =

⎡⎣1− exp

⎛⎝− (2R̃ − 1)N0 Dνs,d
κPc

⎞⎠⎤⎦[1− exp

(
− (2

R̃ − 1)N0

κPc
(Dνs,r + Dνr,d)

)]
.

(17.17)
In case that the relay does not have resources to help forward the source information,
the outage event in subcarrier n is equivalent to that of direct transmission between the
source and destination, which is given by

PD
out = Pr

(
I (n)(Ds,d) ≤ R̃

) = 1− exp

(
− (2

(K+W )R/K − 1)N0 Dνs,d
κPc

)
. (17.18)

Given k users in the sector, the conditional outage probability per subcarrier can be
obtained from (17.17) and (17.18) as

Pout|k = PC
out(1− Q|k)+ PD

outQ|k . (17.19)

In (17.19), Q|k is defined as the probability that a source subcarrier that is in outage is
not helped by the relay, under the condition that there are k users in the sector. In other
words, the relay uses all of its resources to help forward the k users’ information carried
in other subcarriers. The physical meaning of (17.19) is that a diversity gain of two is
achieved when the relay has available resource to help forward the source information,
which occurs with probability Q|k , whereas the diversity gain reduces to one when all
the resources (allocated subcarriers) at the relay are fully used.

The probability Q|k can be determined as follows. Consider a sector with k users,
each transmitting information in N subcarriers during one OFDM symbol period.
Equivalently, the total number of kN subcarriers (in k OFDM symbol periods) are used
to transmit the information from all k users in the sector. Assume that the subcarriers
in outage are helped by the relay with equal probability. Then, given that x out of kN
subcarriers are in outage, the probability that a subcarrier in outage is not helped by the
relay is (x − N )/x for N + 1 ≤ x ≤ kN . Thus, the probability Q|k can be obtained as

Q|k =
kN∑

x=N+1

x − N

x
Pr(x out of kN subcarriers in outage). (17.20)

Since each subcarrier is in outage with probability PD
out, the probability that x out of

kN subcarriers are in outage can be approximated by

Pr(x out of kN subcarriers in outage) =
(

kN

x

)(
PD

out

)x (
1− PD

out

)kN−x
. (17.21)

In (17.21), it is difficult, if not impossible, to derive a closed form formulation that
includes all possible combinations of the users’ locations. For analytical tractability of
the analysis, we resort to an approximate probability which is based on an assumption
that all the x subcarriers are in outage with the same probability PD

out. This approx-
imation would be effective for small cell sizes where path loss is not the dominant
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fading effect. As we will show later, the analytical outage probability obtained from
this approximation is very close to the simulation results.

Substituting (17.18) and (17.21) into (17.20), we obtain the probability Q|k as

Q|k =
kN∑

x=N+1

x − N

x

(
kN

x

)[
1− exp(−βDνs,d)

]x[ exp(−βDνs,d)
]kN−x

. (17.22)

From (17.22) and (17.19), we can determine the conditional outage probability of the
described scheme as

Pout|k =
(
1− exp(−βDνs,d)

)(
1− exp(−β(Dνs,r + Dνr,d))

)
(1− Q|k)

+ (1− exp(−βDνs,d)
)
Q|k . (17.23)

Substituting (17.14) and (17.23) into (17.13), the outage probability of the described
scheme can be obtained as

Pout =
(
1− exp(−βDνs,d)

)[
1− exp(−β(Dνs,r + Dνr,d))(1− g(Ds,d))

]; (17.24)

where

g(Ds,d) =
K∑

k=1

c(k)
kN∑

x=N+1

x − N

x

(
kN

x

)[
1− exp(−βDνs,d)

]x[ exp(−βDνs,d)
]kN−x

.

(17.25)
It is worth noting that when spectral efficiency goes to infinity, direct transmission out-
performs cooperative communications. As the number of users increases, for a fixed
number of relays, the performance of the cooperative scheme approaches that of direct
transmission.

Finally, we determine the average outage probability by averaging (17.24) over the
distribution of the user’s distance as follows. Without loss of generality, we consider a
sector as shown in Figure 17.2 where the relay is located at Dr,dejφr and a source user
is located at Ds,dejφs (0 ≤ φr , φs ≤ θw). The distance between the source and the relay
can be expressed as

Ds,r =
[
D2

s,d + D2
r,d − 2Ds,d Dr,d cos(φr − φs)

] 1
2 � f (Ds,d, φs). (17.26)

Assuming that users are uniformly distributed within the cell, the pdf of the user’s dis-
tance D from the destination conditioned that the user is located in the sector can be
given by

pD(D | 0 ≤ φs ≤ θW ) = 2D

Wρ2
, 0 ≤ D ≤ ρ. (17.27)

Therefore, given specific relay locations, the average outage probability of the coopera-
tive protocol can be obtained as

P̄out = 1

πρ2

∫ ρ

0

∫ 2π
W

0

[
1− e−β( f ν (Ds,d,φs )+Dνr,d)(1− g(Ds,d))

]
× Ds,d

(
1− e−βDνs,d

)
dφsdDs,d. (17.28)
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From (17.28), we can clearly see that the performance of the cooperative protocol
depends on the number of relays in the cell and how each relay are assigned to help
the source users. To get more insights of the cooperation systems, we provide the lower
bound on the outage probability of the cooperative protocol and the performance of the
relay-assignment scheme in the following subsections.

17.4 Performance lower bound

We exploit the hypothetical Genie-aided relay assignment scheme to find a lower bound
on the outage probability of any practical relay assignment schemes as follows. The
Genie-aided relay assignment scheme assumes that the assigned relay for any source in
the network is located in the optimum location that minimize the outage probability for
the fixed source–destination pair.

Observe that if the relay can be placed anywhere in the cell, the optimum relay
location for a source–destination pair is on the line joining the source and destination.
Accordingly, the optimum distance between the relay and destination can be written as

Ds,r = Ds,d − Dr,d. (17.29)

Thus, from (17.17), the optimum relay location for a source–destination pair can be
obtained by solving

D∗r,d = arg min
Dr,d

{
1− exp

(− β((Ds,d − Dr,d)
ν + Dνr,d)

)
(1− g(Ds,d))

}
s.t. 0 ≤ Dr,d ≤ Ds,d. (17.30)

The optimization problem in (17.30) is equivalent to find Dr,d that minimizes (Ds,d −
Dr,d)

ν+Dνr,d. Thus, (17.30) can be analytically solved simply, and the optimum solution
can be shown to be

D∗r,d = Ds,d/2, (17.31)

i.e., the optimum relay location for a specific source–destination pair is at the mid point
of the line joining the source and the destination.

Using the Genie-aided relay assignment scheme and the optimum relay location D∗r,d,
we can determine the lower bound on the outage probability as follows. Substitute D∗r,d
and D∗s,r = Ds,d − D∗r,d = Ds,d/2 into the outage probability formulation in (17.28),
then the outage probability of the cooperative protocol can be lower bounded by

Pout ≥
(
1− exp(−βDνs,d)

)[
1− exp(−βDνs,d/(2

ν−1))(1− g(Ds,d))
]
. (17.32)

Averaging (17.32) over all users’ possible locations, we have

P̄out ≥ 2

ρ2

∫ ρ

0
Ds,d

(
1− e−βDνs,d

)[
1− e−βDνs,d/(2

ν−1)]dDs,d

+ 2

ρ2

K∑
k=0

c(k)
kN∑

x=N+1

x − N

x

(
kN

x

)∫ ρ

0
Ds,d

(
1− e−βDνs,d

)x+1

× (e−βDνs,d
)kN−x+ 1

2ν−1 dDs,d. (17.33)
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At high SNR, the effect of the second term in (17.33) on the outage probabil-
ity is insignificant. Thus, neglecting the second term in (17.33), the average outage
probability of the protocol can be lower bounded by

P̄out ≥ 1+ 2

νρ2

(
1

β(1+ 21+ν)

) 2
ν

ϒ

(
2

ν
, β(1+ 21+ν)ρν

)
− 2

νρ2

(
1

β

) 2
ν

ϒ

(
2

ν
, βρν

)
− 2

νρ2

(
1

β(1+ 21+ν)

) 2
ν

ϒ

(
2

ν
, 21−νβρν

)
,

(17.34)

where ϒ(a, x) is the incomplete Gamma function, defined as

ϒ(a, x) =
∫ x

0
e−t ta−1dt.

17.5 Optimum relay location

Based on the average outage probability (17.28), we determine in this subsection the
optimum relay location in each sector for a cell with W sectors. Since the users are
uniformly located in the cell, one can show that the optimum relay location is on the
line that divides the central angle θw into two equal parts, i.e., the optimum relay angle is

φ∗r = θw/2. (17.35)

Now, the remaining problem is to determine the optimum relay distance D̂r,d. Sub-
stitute φ∗r into (17.28) and take the first derivative of P̄out with respect to Dr,d, then the
optimum relay distance D∗r,d can be obtained by solving∫ ρ

0
Ds,d

(
1− exp(−βDνs,d)

)
(1− g(Ds,d)

∫ 2π
W

0
η(Ds,d, φs)

× exp(−β( f ν(Ds,d, φs)+ Dνr,d))dφsdDs,d = 0, (17.36)

in which

η(Ds,d, φs) = [D2
s,d + D2

r,d − 2Ds,d Dr,d cos(π/W − φs)] ν2−1

(Dr,d − Ds,d cos(π/W − φs))+ Dν−1
r,d . (17.37)

To gain further insight, we also provide here an explicit relay location that achieves
close performance to that of optimum relay location. First, we find the average value of
all possible users’ locations as

D̄s,d =
∫ ρ

0
Ds,d pDs,d(Ds,d)dDs,d = 2ρ/3. (17.38)

From (17.19) and (17.38), an approximate relay location can be obtained by solving

D̄r,d = arg min
0≤Dr,d≤D̄s,d

1− e−β((D̄s,d−Dr,d)
ν+Dνr,d)(1− g(D̄s,d)), (17.39)

which results in

D̄r,d = D̄s,d/2 = ρ/3. (17.40)
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The approximate relay location can be shown to achieve very close performance to the
optimum relay location.

Example 17.1 We performed simulation scenarios under WLAN scenario. Each
OFDM symbol has 64 subcarriers and the total bandwidth is 20 MHz. The target rate is
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Outage probability versus average transmitted power.
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fixed at R = 1 bit/s/Hz per user per subcarrier. The propagation loss factor is ν = 2.6,
and the number of users in the cell is set at 10 users.

Figure 17.4(a) and (b) compare the performance of the cooperative protocol with
that of direct transmission scheme and the lower bound. The theoretical performance is
plotted along with the simulation curves.

Figure 17.4(a) depicts the outage probability versus the cell radius. The average trans-
mitted power is fixed at 12 dBm. If the outage performance is required to be at most
0.01, then the maximum cell size achieved by the direct transmission scheme is about
60 m. With the cooperative protocol, the maximum cell size of 132 m and 140 m can
be achieved when 2 and 3 relays are deployed, respectively. The cooperative protocol
can increase the cell size by about 130% in this case. Moreover, the described scheme
achieves close performance to the lower bound, especially when the cell size is small.

In Figure 17.4(b), we study the performance gain that can be achieved by the coop-
eration protocol in terms of energy efficiency. The cell radius is fixed at 100 m, and
the average transmitted power varies from 7 dBm to 19 dBm. If the outage is required
to be at most 0.01, then the direct transmission scheme requires the transmitted power
of 18 dBm, whereas the cooperation scheme requires only about 8 dBm; in other words,
10 dB power saving is achieved. It is worth pointing out that diversity is a high SNR con-
cept and the cooperative scheme is able to achieve the diversity gain of two at practical
transmit powers.

In both figures, the theoretical curves closely match to the simulation results, which
validates the analysis. Note that the simulation and theoretical results completely match
in the direct transmission case. �

17.6 Chapter summary and bibliographical notes

For broadband networks, we described a bandwidth-efficient cooperative protocol for
multiuser OFDM systems. The destination broadcasts subcarrier indices of which the
received SNR falls below a specific SNR threshold, and the relay forwards only the
source symbols carried in those subcarriers. In this way, the relay can help forward
the data of multiple sources in one OFDM symbol, and the described protocol greatly
improves the spectral efficiency, while still achieving full diversity at high SNR. Relay
assignment algorithms have been described. On the topic of cooperative communi-
cations protocol for multiuser OFDM networks, more information can be found in
[192, 191].

An application of space–time cooperation in OFDM systems was investigated in
[233]. In [57], pairing of users and level of cooperation are jointly determined to mini-
mize overall transmitted power of OFDM system. Most of the existing works are based
on fixed relaying protocols, in which the relays always repeat the source information.
Moreover, these works rely on an assumption of fixed channel variances which implies
a fixed network topology and fixed source–relay pairs.
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Exercises

17.1 Prove the conditional outage probability expression under the cooperative mode
in 17.17, i.e., prove

PC
out =

[
1− exp

(
− (2

R̃ − 1)N0 Dνs,d
κPc

)]
×
[
1− exp

(
− (2

R̃ − 1)N0

κPc
(Dνs,r + Dνr,d)

)]
.

17.2 Prove the expression in (17.23):

Pout|k =
(
1− exp(−βDνs,d)

)(
1− exp(−β(Dνs,r + Dνr,d))

)
(1− Q|k)

+ (1− exp(−βDνs,d)
)
Q|k .

17.3 Conditioned on the user’s location, prove that the outage probability of the
cooperative broadband scheme described in this chapter is given by

Pout =
(
1− exp(−βDνs,d)

)[
1− exp(−β(Dνs,r + Dνr,d))(1− g(Ds,d))

];
where

g(Ds,d) =
K∑

k=1

c(k)
kN∑

x=N+1

x − N

x

(
kN

x

)
× [1− exp(−βDνs,d)

]x[ exp(−βDνs,d)
]kN−x

.

17.4 Consider a WLAN system. Each OFDM symbol has 128 subcarriers and the
total bandwidth is 20 MHz. The target rate is fixed at R=1 bit/s/Hz per user per
subcarrier. The propagation loss factor is ν = 2.6, and the number of users in the
cell is set at 10 users.

(a) Write Matlab code to simulate the outage performance of the broadband
cooperative protocol with direct transmission versus cell radius when the
power is fixed at 12 dBm.

(b) Repeat part (a) by fixing the cell radius at 100 m and varying the transmit
power.

(c) Consider now an OFDM system that uses 512 subcarriers. Repeat parts (a)
and (b). What is the effect of increasing the number of subcarriers on the
performance of the cooperation protocol.

17.5 In this chapter, the relay is assumed to use an incremental relaying scheme with
decode-and-forward. Assume instead that the relay uses only selective decode-
and-forward. In such scenario the relay will only forward the packets from users
that where decoded correctly irrespective of whether the destination was able to
decode the packet correctly or not.

(a) Find the outage probability for a single user.
(b) Find the outage probability assuming N users in each sector.
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(c) Compare the performance of such relaying scheme with that described in the
chapter.

17.6 The uplink case is studied in this chapter. Consider now the downlink where the
base station transmits data to different users. Assume there are N users in each
sector, and that the base station schedules the users in N consecutive time slots.
In each time slot the base station transmits an OFDM symbol to a user. A single
relay is deployed in each sector to help the users using a similar approach as
described in the chapter.

(a) Find the probability that a user has n subcarriers in outage.
(b) Find the outage probability of m subcarriers at the relay node for a given

base station transmission.
(c) Find the total average outage probability taking into account the finite

resources at the relay.



18 Network lifetime maximization
via cooperation

Extending the lifetime of battery-operated devices is a key design issue that allows
uninterrupted information exchange among distributed nodes in wireless networks.
Cooperative communications enables and leverages effective resource sharing among
cooperative nodes. This chapter provides a general framework for lifetime extension of
battery-operated devices by exploiting cooperative diversity. The framework efficiently
takes advantage of different locations and energy levels among distributed nodes. First,
a lifetime maximization problem via cooperative nodes is considered and performance
analysis for M-ary PSK modulation is provided. With an objective to maximize the
minimum device lifetime under a constraint on bit error rate performance, the optimiza-
tion problem determines which nodes should cooperate and how much power should be
allocated for cooperation. Moreover, the device lifetime is further improved by a deploy-
ment of cooperative relays in order to help forward information of the distributed nodes
in the network. Optimum location and power allocation for each cooperative relay are
determined with an aim to maximize the minimum device lifetime. A suboptimal algo-
rithm is presented to solve the problem with multiple cooperative relays and cooperative
nodes.

18.1 Introduction

In many applications of wireless networks, extending the lifetime of battery-operated
devices is a key design issue that ensures uninterrupted information exchange and alle-
viates burden of replenishing batteries. Lifetime extension of battery-limited devices
has become an important issue due to the need in sensor and ad-hoc networks. However,
there is not a broadly accepted definition of the concept of network lifetime because it
often depends on the application of the networks under consideration. For example, a
network lifetime can be defined as the time until the first node in the network dies or as
the time until a certain percentage of nodes die. Alternatively, concerning the quality of
communication, network lifetime can be defined in terms of the packet delivery rate or
in terms of the number of alive flows.

Consider contemporary wireless networks which comprise heterogeneous devices
such as mobile phones, laptop computers, personal digital assistants (PDAs), etc. These
devices have limited lifetime; nevertheless, some of them may have longer lifetimes due
to their location or energy advantages. For instance, a devices in some ideal location
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may have location advantage, while another devices may have energy advantage if they
are equipped with high initial energy. By introducing a cooperation protocol among dis-
tributed nodes, a portion of energy from these devices can be allocated to help forward
information of other energy depleting devices in the network. In this way, the lifetime of
the energy depleting devices can be greatly improved, and hence, the minimum device
lifetime of the network is increased.

In this chapter, we show a framework to increase the device lifetime by exploiting
cooperative diversity and leveraging both location and energy advantages in wireless
networks. The framework is based on the decode-and-forward (DF) cooperation pro-
tocol, which is well-suited for wireless LAN or cellular settings; nevertheless, other
cooperation protocols such as amplify-and-forward can be used as well. We first
describe a signal model for a non-cooperative network. Then, we present a signal model
for a cooperative networks employing the DF protocol. After that, we consider an opti-
mization problem with the goal of maximizing the minimum device lifetime under a bit
error rate (BER) constraint. Following this, we analyze the problem based on the use
of an M-ary phase shift keying (M-PSK) modulation scheme. From this, it becomes
possible to derive an analytical solution for a two-node cooperative network, which
provides some insights into the optimization problem. The challenge in this stage is
that the problem is N P hard. Based on the two-node solution, we consider a fast sub-
optimal algorithm to reduce the complexity of the formulated problem. Furthermore,
we consider device lifetime improvement by deploying additional relays over a net-
work with energy depleting nodes. This will lead into determining where to place the
relays and how much power should these relays use for cooperation in order to maxi-
mize the device lifetime. In addition, to reduce complexity of the optimization problem,
we restrict the number of relays per nodes to at most one, in which case we study an
efficient suboptimal algorithm.

18.2 System models

Consider a wireless network with N randomly deployed nodes as shown in Figure 18.1.
Each node knows its next node in a predetermined route that connects to the destina-
tion to deliver information. The destination node can be a base station or an access
point in wireless local area networks, a piconet coordinator in wireless personal area
network, or a data-gathering unit in wireless sensor networks. Next, we describe the sys-
tem model for a non-cooperative network and for a cooperative network in two separate
subsections, starting with the non-cooperative scenario.

18.2.1 Non-cooperative wireless networks

In a non-cooperative wireless network, each source node transmits only its own infor-
mation to the destination node through a predetermined route. Figure 18.1 shows an
example of a wireless network with several randomly deployed nodes. Suppose there
are N nodes in the network, and let x j denotes a symbol to be transmitted from node j to
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Fig. 18.1 An example of a wireless network with a destination (d) and N distributed nodes (N = 20).

its next node, defined as n j , in its predetermined route. The symbol x j can be the infor-
mation of node j itself, or it can be the information of other nodes that node j routes
through to the destination. The received signal at n j due to the transmitted information
from node j can be expressed as

y j,n j =
√

Pj h j,n j x j + w j,n j , (18.1)

where Pj is the transmit power of node j , h j,n j is the fading coefficient from node j to
n j , andw j,n j is an additive noise. The channel coefficient h j,n j is modeled as a complex
Gaussian random variable with zero mean and variance σ 2

j,n j
, i.e., CN (0, σ 2

j,n j
), and

w j,n j is CN (0, N0) distributed. The channel variance σ 2
j,n j

is modeled as

σ 2
j,n j

= ηD−αj,n j
, (18.2)

where D j,n j denotes the distance between node j and n j , α is the propagation loss
factor, and η is a constant whose value depends on the propagation environment. Con-
sidering an uncoded system and from Section 5.2.4, the average BER performance for
a non-cooperative node with M-PSK modulation is upper bounded by

BER j ≤ N0

4bPjσ
2
j,n j

log2 M
, (18.3)

where b = sin2(π/M).
Let the performance requirement of node j be BER j ≤ ε in which ε represents the

maximum allowable BER. We assume that ε is the same for every node. Accordingly,
the optimum transmit power of a non-cooperative node is given by

Pj = N0

4bεσ 2
j,n j

log2 M
. (18.4)

We denote E j as the initial battery energy for node j , and denote Ps as an amount of
processing power (i.e. power used for encoding information, collecting data, and etc.) at
the source node. Let λl, j (l = 1, 2, . . . , N and l �= j) be the data rate (symbol rate) that
node l sends information to node j , and λ j be a data rate that node j sends information
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to its next node n j . Assume that the symbol length is fixed and equal for all nodes in
the network and that the symbol length is normalized such that the energy required to
transmit a symbol is given by the transmit power. Furthermore assume that the symbol
rate generated at any node is low which is typical for most sensor networks applications.
Also assume in the analysis that the cumulative data rate that need to be transmitted at
any node (node’s own generated data plus the data being routed for other nodes) is lower
than the node’s service rate. This guarantees that any node’s buffer in the network does
not overflow.

The average power that node j uses to send information to n j is λ j Ps+∑N
l=1 λl, j Pj ,

where λ j Ps is the average processing power at node j , λ j Pj represents the average
power that node j sends its own formation, and

∑N
l=1,l �= j λl, j Pj corresponds to the

average power that node j routes information of other nodes. Accordingly, the lifetime
of node j can be determined as

Tj = E j

λ j Ps + Pj
∑N

l=1 λl, j
=

4bεσ 2
j,n j

E j log2 M

4bεσ 2
j,n j
λ j Ps log2 M + N0

∑N
l=1 λl, j

.

From this equation, we can see that the lifetime of each node relies on both the initial
energy and the geographical location of the node. Clearly, the node whose energy is
small and location is far away from its next node tends to have small lifetime. Such
node can result in small network lifetime. In the following subsection, we introduce the
use of cooperative communications to prolong the network lifetime.

18.2.2 Cooperative DF protocol

We consider a cooperative wireless network where all nodes can transmit information
cooperatively. Each node can be a source node that transmits its information or it can
be a relay node that helps forward information of other nodes. The cooperation strategy
is based on the DF protocol. We assume that each signal transmission is constrained to
half-duplex mode, the system is uncoded, and the source and the relay transmit signals
through orthogonal channels by using existing TDMA, FDMA, or CDMA schemes. For
subsequent derivations, we define a power allocation matrix P as an N × N matrix with
the following properties:

(i) Each element Pi, j ≥ 0, for i, j = 1, 2, . . . , N .
(ii) Pj represents a power that node j uses to transmit its own information to its next

node n j and the relays.
(iii) Pi, j represents a power that node i helps forward information of node j (informa-

tion of other nodes) to the next node n j .

Let us assume that all nodes have their information to be transmitted, then Pj > 0
for all j . Figure 18.2(a) illustrates a cooperative network with N = 4 nodes. Each
solid line represents a transmission link from a source node to its next node, and each
dash line represents a link from a source to a relay. In addition, Figure 18.2(b) shows
a power allocation matrix P which corresponds to the cooperative network in Figure
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P11 0
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Source–relay link
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3

1

2

4

nj

Fig. 18.2 Illustration of a cooperative wireless network: (a) a network with four nodes; (b) the
corresponding power allocation matrix.

18.2(a). Each nonzero diagonal element of P represents a transmit power of a source
node. In Figure 18.2(a), node 1 helps relay information of node 2 and 3 to their intended
destination. Therefore, P12 and P13 in the first row of P contains nonzero elements, they
represent power that node 1 helps node 2 and node 3, respectively. Similarly, P41 is a
nonzero element because node 4 helps forward information of node 1.

Suppose node j acts as a source (or a helped node) and node i acts as a relay (or a
helping node). When node j sends information to n j in phase 1, the received signal at
n j is given in (18.1). However, the received signal at the helping node i is given by

y j,i =
√

Pj h j,i x j + w j,i , (18.5)

where h j,i denotes a channel coefficient from node j to node i , and w j,i represents an
additive noise. In phase 2, the relay (node i in this case) forwards the information of
node j to n j only if the symbol is correctly decoded. The received signal at n j can be
expressed as

yi,n j =
√

P̃i, j hi,n j x j + wi,n j , (18.6)

where P̃i, j = Pi, j if the relay correctly decodes the symbol, and P̃i, j = 0 otherwise. In
(18.6), hi,n j and wi,n j are modeled as CN (0, σ 2

i,n j
) and CN (0, N0), respectively. After

that, the destination (n j in this case)uses a maximum ratio combiner (MRC) to combine
the signal received directly from the source in Phase 1 and that from the relay in Phase
2. Assuming that x j has unit energy, the instantaneous SNR at the MRC output of n j is
from (5.9)

γn j =
Pj |h j,n j |2 + P̃i, j |hi,n j |2

N0
. (18.7)

By taking into account the decoding result at the relay and averaging the conditional
BER over the Rayleigh distributed random variables, according to (5.15), the average
BER in case of M-PSK modulation can be expressed as
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BER j = 1

log2 M
F

(
1+

bPjσ
2
j,n j

N0 sin2 θ

)
· F

(
1+ bPjσ

2
j,i

N0 sin2 θ

)

+ 1

log2 M
F

((
1+

bPjσ
2
j,n j

N0 sin2 θ

)(
1+

bPi, jσ
2
i,n j

N0 sin2 θ

))

×
[

1− F

(
1+ bPjσ

2
j,i

N0 sin2 θ

)]
, (18.8)

where

F(x(θ)) = 1

π

∫ (M−1)π/M

0
[x(θ)]−1dθ (18.9)

and b is defined in (18.3). The first term on the right-hand-side of (18.8) corresponds
to an incorrect decoding at the relay whereas the second term corresponds to a correct
decoding at the relay. By assuming that all channel links are available, i.e., σ 2

j,n j
�= 0

and σ 2
j,i �= 0, the BER upper bound of (18.8) can be obtained by removing the negative

term and all one’s in (18.8), from Theorem 5.2.2, we have

BER j ≤ N 2
0

b2 log2 M
·

A2 Pi, jσ
2
i,n j
+ B Pjσ

2
j,i

P2
j Pi, jσ

2
j,n j
σ 2

j,iσ
2
i,n j

, (18.10)

where

A � M − 1

2M
+ sin(2π/M)

4π
, (18.11)

and

B � 3
M − 1

8M
+ sin(2π/M)

4π
− sin(4π/M)

32π
. (18.12)

We can see from (18.10) that cooperative transmission obtains a diversity order of two as
indicated in the power of N0. Hence, with cooperative diversity, the total power required
at the source and the relay is less than that required for non-cooperative transmission
in order to obtain the same BER performance. Therefore, by properly allocating the
transmit power at the source (Pj ) and the transmit power at the relay (Pi, j ), the lifetime
of the source can be significantly increased whereas the lifetime of the relay is slightly
decreased.

18.3 Lifetime maximization by employing a cooperative node

In this section, we aim to maximize the minimum device lifetime among all cooperative
nodes in the network. First, we formulate the lifetime maximization problem. Then,
an analytical solution is provided for a network with two cooperative nodes. After
that, based on the solution for the two-node network, a fast suboptimal algorithm is
developed to solve a problem for a network with multiple cooperative nodes.
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18.3.1 Problem formulation

As shown in the previous section, the cooperative scheme requires less power to achieve
the same performance as the non-cooperative scheme, thus it can be used to improve
the minimum device lifetime. Note that different nodes may have different remaining
energy, and they may contribute to different performance improvement due to their
different locations. So the nodes with energy or location advantages can help forward
information of other energy depleting nodes. In what follows, we formulate an opti-
mization problem to determine which node should be a helping node and how much
power should be allocated in order to efficiently increase the minimum device lifetime.

Let us first determine the device lifetime in a non-cooperative network. From Section
18.2.1, the non-cooperative device lifetime of node j is given by

Tj =
κεσ 2

j,n j
E j

(κεσ 2
j,n j
λ j Ps + N0

∑N
l=1 λl, j )

, (18.13)

where κ � 4b log2 M , and Ps represents the processing power. From (18.13), we can
see that the lifetime of each node depends on its initial energy and its geographical
location. Intuitively, the node whose energy is small and location is far away from its
next node tends to have small device lifetime.

In the case of a cooperative network, the overall transmit power of each node is a
summation of the power used by the node to transmit its own information and the power
used by the node to cooperatively help forward information of other nodes. Let Pr be
the processing power at each relay node, i.e., the power that the relay uses for decoding
and forwarding information. From the power allocation matrix P in Section 18.2.2, the
overall average transmit power of the cooperating node i is

Pi

N∑
l=1

λli +
N∑

j=1
j �=i

Pi, j

( N∑
l=1

λl, j

)
, (18.14)

and the overall average processing power of node i is

λi Ps +
N∑

j=1
j �=i

Pr sgn(Pi, j )
( N∑

l=1

λl, j

)
(18.15)

where sgn(Pi, j ) represents the sign function that returns 1 if Pi, j > 0, and 0 otherwise.
Therefore, the lifetime of the cooperative node i can be written as

Ti (P) = Ei

λi Ps + Pi
∑N

l=1 λli +�(Pr , Pi, j , λl, j )
, (18.16)

where

�(Pr , Pi, j , λl, j ) �
N∑

j=1
j �=i

(
Pr sgn(Pi, j )+ Pi, j

)( N∑
l=1

λl, j

)
, (18.17)
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and Ei is an initial energy of node i . Obviously, the lifetime of node i reduces if node i
helps transmit information of other nodes. However, the more the power Pi, j that node
i uses in helping forward the information of node j , the longer the lifetime of node j .
Therefore, it is crucial to properly design the power allocation matrix P such that the
minimum device lifetime is maximized.

With an objective to maximize the minimum device lifetime under the BER constraint
on each node, the optimization problem can be formulated as

max
P

min
i

Ti (P) (18.18)

s.t.

⎧⎨⎩
Performance: BERi ≤ ε, ∀i;
Power: 0 < Pi ≤ Pmax, ∀i;
Power: 0 ≤ Pi, j ≤ Pmax, ∀ j �= i,

where ε denotes a BER requirement. In (18.18), the first constraint is to satisfy the
BER requirement as specified in (18.8), the second constraint guarantees that each node
has information to be transmitted and the transmit power is no greater than Pmax and
the third constraint ensures that all the allocated power is nonnegative and no greater
than Pmax. Due to its assignment and combinatorial nature, the formulated problem
is N P hard. Even though each source–destination route is already known, this frame-
work needs to optimize the pairing between each source and its relay. This problem of
choosing relay is an assignment problem.

18.3.2 Analytical solution for a two-node wireless network

To get some insightful understanding on the formulated problem, we provide in this
section a closed-form analytical solution at high SNR scenario for a network with two
cooperative nodes (N = 2). Each node transmits its information directly to the des-
tination d . In this two-node network, there are three possible transmission strategies,
namely:

(i) each node transmits non-cooperatively;
(ii) one node helps forward information of the other;

(iii) both nodes help forward information of each other.

In the sequel, we will maximize the minimum device lifetime for each strategy. Without
loss of generality, we assume that the transmit power required for a non-cooperative
transmission is less than Pmax.

18.3.2.1 Non-cooperative transmission among nodes

Based on the discussion in Section 18.2.1, the optimum power allocation for non-
cooperative case is Pj = N0/(κεσ

2
jd) for j = 1, 2, and Pi, j = 0 for i �= j . Using

(18.13), the optimum device lifetime for this transmission strategy is given by

T ∗non-coop = min

[
κεσ 2

1d E1

λ11(κεσ
2
1d Ps + N0)

,
κεσ 2

2d E2

λ22(κεσ
2
2d Ps + N0)

]
. (18.19)
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18.3.2.2 Cooperative transmission when one node helps the other node
Without loss of generality, we will provide a solution for a case that node i helps relay
information of node j to the destination. In this case, the lifetimes of node i and node j
are given by

Ti = Ei

λi (Ps + Pi )+ λ j (Pr + Pi, j )
(18.20)

and

Tj = E j

λ j (Ps + Pj )
, (18.21)

respectively. Hence, appropriately choosing Pi , Pi, j , and Pj can improve the minimum
device lifetime while maintaining a specified BER requirement.

In order for node i to satisfy the BER requirement ε, the optimum transmit power of
node i is

Pi = N0

κεσ 2
id

.

To determine Pj and Pi, j , we first note that, according to the BER upper bound in
(18.10), Pj and Pi, j must satisfy

N 2
0 A2 Pi, jσ

2
id + N 2

0 B Pjσ
2
j,i

b2 log2(M)P
2
j Pi, jσ

2
jdσ

2
j,iσ

2
i

= ε. (18.22)

Then, we can express Pi, j in term of Pj as

Pi, j = Pj

Ci, j P2
j − Di, j

� f (Pj ), (18.23)

where

Ci, j =
εσ 2

idσ
2
jdb2 log2 M

BN 2
0

,

and

Di, j = A2σ 2
id

Bσ 2
j,i

.

From the expressions for Pi and Pi, j , we have

Ti = Ei

λi (Ps + N0
κεσ 2

id
)+ λ j (Pr + f (Pj ))

, (18.24)

which is a function of Pj . Therefore, the optimization problem (18.18) is simplified to

T ∗i-helps- j = max
Pj

⎡⎣min

⎛⎝ Ei

λi (Ps + N0
κεσ 2

id
)+ λ j (Pr + f (Pj ))

,

E j

λ j (Ps + Pj )

)]
. (18.25)
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Fig. 18.3 Lifetimes of the two cooperative nodes as functions of the transmit power of the helped
node (P22).

As an illustrative example, Figure 18.3 plots the lifetime Ti and Tj as functions of Pj

for a specific set of parameters. For unconstrained optimization of (18.25), Figure 18.3
shows that the optimum power Pj in (18.25) is the one that results when Ti = Tj .
Therefore, the optimum device lifetime in the case when node i helps node j is

T ∗i-helps- j =
Ei

λi

(
Ps + N0

κεσ 2
id

)
+ λ j (Pr + f (P∗j ))

= E j

λ j (Ps + P∗j )
, (18.26)

where P∗j is the solution to

Ci, j Eiλ j P3
j + KCi, j P2

j − (Di, jλ j Ei + λ j E j )Pj −ϒDi, j = 0

in which

ϒ = Eiλ j Ps − E jλi Ps − λ j E j Pr + (λi N0E j )/(κεσ
2
id).

Accordingly, we can find P∗i, j = f (P∗j ) from (18.23).
If the resulting P∗i, j is not larger than Pmax, then (18.26) is the optimum device life-

time for this scenario. Otherwise, let P∗i, j = Pmax and find P∗j that satisfies the BER
requirement (18.22). After some manipulations, we have

P∗j =
−Q1 +

√
Q2

1 + Q2Q3 P2
max

Q2 Pmax
, (18.27)
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where

Q1 = Bσ 2
j,i N 2

0

b2 log2 M
,

Q2 = 2εσ 2
idσ

2
j,iσ

2
jd ,

and

Q3 = 2A2σ 2
id N 2

0

b2 log2 M
.

Therefore, the lifetimes of nodes i and node j are T ∗i = Ei/(λi (Ps + Pi ) + λ j (Pr +
Pmax)) and T ∗j = E j/(λ j (Ps + P∗j )), respectively. Hence, the optimum device lifetime
when P∗i, j > Pmax is the minimum among T ∗i and T ∗j . As a result, the optimum device
lifetime when node i helps node j can be summarized as follows:

T ∗i-helps- j =
⎧⎨⎩

E j
λ j (Ps+P∗j )

, P∗i, j ≤ Pmax;
min{T ∗i , T ∗j }, T ∗i, j > Pmax.

(18.28)

18.3.2.3 Cooperative transmission when both nodes help each other
When both nodes help each other, Pi, j and Ti are given in (18.23) and (18.24), respec-
tively. The optimum device lifetime in this case can be obtained by finding P∗i and P∗j
that maximizes Ti (or Tj ) under the condition Ti = Tj , we have

T ∗both-help =
Ei

λi (Ps + P∗i )+ λ j

(
Pr + P∗j

Ci, j (P∗j )2−Di, j

)
= E j

λ j (Ps + P∗j )+ λi

(
Pr + P∗i

C j,i (P∗i )2−D j,i

) , (18.29)

where P∗i and P∗j are the solutions to:

arg max
Pi ,Pj

Ei

λid(Ps + Pi )+ λ j,i

(
Pr + Pj

Ci, j P2
j −Di, j

) (18.30)

s.t.

⎧⎪⎪⎨⎪⎪⎩
[
(λi Ps+λ j Pr+λi Pi )(Ci, j P2

j −Di, j )+λ j Pj

]
(C j,i P2

i −D j,i )[
(λ j Ps+λi Pr+λ j Pj )(C j,i P2

i −D j,i )+λi Pi
]
(Ci, j P2

j −Di, j )
= Ei

E j
;

Pj >

√
Di, j
Ci, j
, ∀ j �= i,

in which, the first constraint ensures that Ti = Tj , and the second constraint guarantees
that Pi, j = Pj/(Ci, j P2

j − Di, j ) > 0.
If P∗i, j ≤ Pmax and P∗j,i ≤ Pmax, then the solution to (18.29) is the optimum device

lifetime for this transmission strategy. Otherwise, the optimization problem is separated
into two subproblems:
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• In the first subproblem, we let P∗i, j = Pmax and find P∗j from (18.27). This leads to
both Ti and Tj being functions of Pi . Therefore, the optimum device lifetime for this
subproblem is to maximize min{Ti , Tj } over Pi .

• In the second subproblem, we let P∗j,i = Pmax and find P∗i from (18.27). In this case,
Ti and Tj are functions of Pj . The optimum device lifetime results from maximizing
min{Ti , Tj } over Pj .

After solving the two subproblems, the optimum device lifetime when P∗i, j > Pmax

or P∗j,i > Pmax is the maximum among the two solutions. Consequently, the optimum
device lifetime when both nodes help each other can be summarized as follows:

T ∗both-help =
{

Ti , P∗i, j and P∗j,i ≤ Pmax,

max (T (i i), T ( j j)), P∗i, j or P∗j,i > Pmax,
(18.31)

where

Ti � Ei

λi
(
Ps + P∗i )+ λ j (Pr + P∗j

Ci, j (P∗j )2−Di, j

) .
In (18.31), we denote

T (i i) � max
Pii

min{Ti , Tj },

and

T ( j j) � max
Pj j

min{Ti , Tj }.

Finally the optimum device lifetime for the two-node cooperative network is

T ∗D = max
{

T ∗non-coop, T
∗
1-helps-2, T

∗
2-helps-1, T

∗
both-help

}
, (18.32)

where T ∗D is the maximum among lifetime of these four possible transmission strategies.
Although the optimum solution can be obtained through a full search, it is computation-
ally expensive for a large cooperative network. To reduce complexity of the problem,
we will use next a greedy suboptimal algorithm to determine the power allocation and
the corresponding device lifetime.

18.3.3 Multi-node wireless network

The basic idea of the greedy suboptimal algorithm is to find with a step-by-step
approach a node to be helped and a helping node. In each step, the algorithm selects
a node to be helped as the one with minimum lifetime and that has never been helped
by others. Then, the algorithm chooses a helping node as the one that maximizes the
minimum device lifetime after the helped node has been served. In this way, the mini-
mum device lifetime can be increased step by step. The iteration stops when the device
lifetime cannot be significantly improved or all cooperative nodes have been helped. A
flowchart that summarizes the algorithm is shown in Figure 18.4. Note that the greedy
suboptimal approach can be applied to any multi-node cooperation strategy.



18.3 Lifetime maximization by employing a cooperative node 595

Find the helped
node

Find the helping
node

Update power
allocation matrix

Remove the
helped node from

the helped list

Helped list
empty?End

No

Yes

Initialization

Fig. 18.4 A flowchart illustrates the suboptimal algorithm.

In what follows, we first maximize the minimum device lifetime for a given pair of
helped and helping nodes, and then we describe the algorithm in details. For a given
pair of helped and helping nodes, their transmit power and the corresponding lifetime
can be determined in a similar way as those for the two-node network in the previous
subsection. Specifically, consider a two-node cooperation strategy, then the optimum
device lifetime when node i helps node j can be obtained by solving

T ∗i-helps- j = max
Pj

⎡⎢⎢⎢⎢⎢⎣min

⎛⎜⎜⎜⎜⎜⎝
Ei

�i + (Pr + f (Pj ))

N∑
l=1

λl, j

,
E j

� j + Pj

N∑
l=1

λl, j

⎞⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎦
(18.33)

where

�i = λi Ps + Pi

N∑
l=1

λli +
N∑

k=1
k �=i, j

(
Pr sgn(Pik)+ Pik

)( N∑
l=1

λlk

)
, (18.34)

and

� j = λ j Ps +
N∑

k=1
k �= j

(
Pr sgn(Pjk)+ Pjk

)( N∑
l=1

λlk

)
, (18.35)

in which�i and� j are constants that do not depend on Pj . Using the equality Ti = Tj ,
and after some manipulations, we can find that

T ∗i-helps- j =
E j

� j + P∗j
∑N

l=1 λl, j
, (18.36)

where P∗j is the solution to

Ci, j Ei 
N
l=1λl, j P3

j + GCi, j P2
j − (Di, j Ei + E j )(

N∑
l=1

λl, j )Pj − G Di, j = 0, (18.37)

in which G � Ei� j − E j�i − E j Pr
∑N

l=1 λl, j . If the resulting P∗i, j = f (P∗j ) is larger
than Pmax then the same calculation steps as in the previous subsection can be used to
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determine T ∗i-helps- j . This formulation is used to find the device lifetime at each step

in the algorithm.
Initially, the power allocation matrix P is assigned as a diagonal matrix with its

diagonal component

Pj = N0

κεσ 2
jd

,

that is, the initial scheme is the non-cooperative transmission scheme. The correspond-
ing lifetime of node j is Tj = E j/(λ j Ps + Pj 

N
l=1λl, j ). Next, construct a helped list,

which is a list of all possible nodes to be helped, Hlist = {1, 2, . . . , N }, by:

• First, the algorithm finds a helped node from the helped list by choosing the node who
has minimum lifetime, i.e., the helped node ĵ is given by

ĵ = arg min
j∈Hlist

Tj . (18.38)

• Second, the algorithm finds a node to help node ĵ from all nodes i , i = 1, 2, . . . , N
and i �= ĵ . For each possible helping node i , the algorithm uses (18.33) to find a
power allocation for the helping node i and the helped node ĵ .

• Thirdly, the algorithm determines T ∗D(i) as the minimum lifetime among cooperative
nodes after node i finishes helping node ĵ . The obtained T ∗D(i) from all possible
helping nodes are compared, and then the algorithm selects node î = arg maxi T ∗D(i)
as the one who helps node ĵ .

• Next, the algorithm updates P and the helped list by removing node ĵ from the helped
list.

• Then, the algorithm goes back to the first step. The iteration continues until all nodes
have been helped, i.e., the helped list is empty, or the device lifetime cannot be
significantly increased.

The resulting P is the optimum power allocation which gives answer to the ques-
tions: which node should help which node, and how much power should be used for
cooperation? The detailed algorithm is shown in Table 18.1.

Note that the algorithm is suboptimal. Even though it is based on a cooperation strat-
egy with only one relay (K =1), the algorithm significantly improves the device lifetime
as will be confirmed by simulation examples in Section 18.5. In terms of complexity of
the algorithm, it increases quadratically with the number of cooperative nodes. In addi-
tion, the minimum device lifetime can be further improved by a cooperation with more
than one relay; nevertheless, such lifetime improvement trades off with higher com-
plexity. Note also that all necessary computations can be performed offline. Once the
algorithm is executed, each cooperative node follows the determined power allocation
and cooperation strategy.

Since the algorithm allocates power based on the average channel realizations, it is
updated only when the network topology changes considerably. Furthermore, additional
overhead for the cooperation assignment is required only at the beginning of the trans-
mission. In (18.33), it is obvious that the helped node and the helping node should be
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Table 18.1 Suboptimal algorithm for maximizing the minimum device lifetime of a wireless network
with multiple cooperative nodes.

Initialization: Pj = N0/(κεσ
2
jd ), Tj = E j/λ j (Ps + Pj ),

T ∗D = min Tj , and Hlist = {1, 2, . . . , N }.
Iteration:
(1) Select the helped node with the minimum lifetime from the helped list:

ĵ = arg min j∈Hlist Tj ,
where Tj = E j/(λ j Ps + Pj

∑N
l=1 λl, j ).

(2) Select the helping node from φ ĵ = {1, 2, . . . , N } − { ĵ}.
• For each i ∈ φ ĵ , solve (18.25) for Ti and Tĵ , and then find the corresponding minimum

device lifetime T ∗D(i).
• Select î that results in maximum of minimum device lifetime, î = arg maxi∈φ ĵ

T ∗D(i), as

the helping node.
(3) Update power allocation matrix P and helped list Hlist. Go to (1).

End: If the helped list is empty: Hlist = ∅, or the device lifetime cannot be significantly increased.
return P.

close to each other. According to this observation, we can further reduce the complexity
of the algorithm by searching for a helping node among cooperative nodes that are in
the vicinity of the helped node. In this way, only local information is needed to compute
the power allocation matrix. Although this may lead to some performance degradations,
we will see in the computer simulations in Section 18.5 that such performance loss is
insignificant.

18.4 Deploying relays to improve device lifetime

In this section, we improve the device lifetime by exploiting cooperative diversity
through a deployment of cooperative relays in an energy depleting network. Each of
these relays does not have information to be transmitted; however, they help forward
information of all energy depleting nodes. The relay deployment reduces the need of
frequent battery changing for each node which in turn helps reduce maintenance cost.
In addition, the relay deployment does not require any modification in the cooperative
nodes. An additional implementation cost is installation cost of the relays. By using a
proper number of cooperative relays and placing these relays in appropriate locations,
the device lifetime can be greatly increased while the overall cost is minimized. In the
sequel, we determine location of each cooperative relay in the network with an objective
to maximize the minimum device lifetime.

We consider a wireless network with N randomly located nodes, K cooperative
relays, and a destination. The cooperative nodes are denoted as nodes 1, 2, . . . , N , and
the cooperative relays are represented by R1, R2, . . . , RK . Since there is no cooperation
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among the cooperative nodes, the power allocation matrix P as defined in Section 18.2.2
is an N × N diagonal matrix whose diagonal element, Pj , represents a power that node
j transmits information to its next node n j . We assume that all cooperative nodes have
information to be transmitted, i.e., Pj > 0 for all j . Hence, the lifetime of node j is
given by

Tj (P) = E j

λ j Ps + Pj 
N
l=1λl, j

. (18.39)

In addition, we also define a K × N relay power allocation matrix P̂ whose (i, j)th

element, P̂i, j , represents a power that the relay Ri helps the node j . We assume that each
relay does not have its own information to transmit; it only helps transmit information of
other cooperative nodes. By denoting ERi as an initial energy of a relay Ri , the lifetime
of Ri is

TRi (P̂) =
ERi∑N

j=1(Pr sgn(P̂i, j )+ P̂i, j )(
∑N

l=1 λl, j )
. (18.40)

Example 18.1 As an illustrative example, consider a wireless network with four coop-
erative nodes and two cooperative relays as depicted in Figure 18.5(a). In the figure,
the solid line represents a link from a node (source j or relay) to the next node n j ,
and the dashed line represents a link from a source to a relay. Figure 18.5(b) shows the
power allocation matrix P and the relay power allocation matrix P̂ which correspond to
the wireless network in Figure 18.5(a). Since all four cooperative nodes transmit their
information to n j , then all diagonal elements of P are nonzeros. As shown in Figure
18.5(a), solid lines with square (“	”) and circle (“◦”) represent the case when relay R1

helps transmit information of node 1 and node 2, respectively. Accordingly, P̂11 and P̂12
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Fig. 18.5 Cooperative wireless network with relay deployment: (a) one cluster with four nodes, two relays,
and one destination; (b) the corresponding power allocation matrices (P) and (P̂) for the nodes
and the relays, respectively.
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are nonzero elements in the first row of P̂ . Similarly, relay R2 helps transmit informa-
tion of node 3 and node 4 to the next node n j ; P̂23 and P̂24 are nonzero elements in the
second row of P̂ . �

Denote x j and y j as a location of node j on the x-axis and the y-axis, respectively. Then
we represent a location of node j in a vector form as D̄ j = [x j y j ]T. Accordingly, the
channel variance between node j and its next node n j is given by

σ 2
j,n j

= η‖D̄ j − D̄n j ‖−α,
where ‖ · ‖ denotes the Frobenius norm. The locations of the cooperative relays are
specified by a 2×K matrix DR = [D̄R1 D̄R2 · · · D̄RK ] in which the i th column indicates
the location of relay Ri , i.e., D̄Ri = [xRi yRi ]T is the location vector of the relay Ri .
Then, the channel variance between Ri and node n j is

σ 2
Ri ,n j

= η‖D̄Ri − D̄n j ‖−α,
and the channel variance between node j and Ri is

σ 2
j,Ri

= η‖D̄ j − D̄Ri ‖−α.
If node j is helped by Ri , then the BER of node j has a similar form as (18.8) with Pi, j

and σ 2
j,i replaced by P̂i, j and σ 2

j,Ri
, respectively. Our objective is to determine DR , P,

and P̂ such that the minimum device lifetime is maximized. The optimization problem
can formulated as

max
DR ,P,P̂

min
i, j

{
Tj (P), TRi (P̂)

}
(18.41)

s.t.

⎧⎨⎩
Performance: BER j ≤ ε, ∀ j;
Power: 0 < Pi ≤ Pmax, Pi, j = 0 ∀i, j �= i;
Power: 0 ≤ P̂i, j ≤ Pmax, ∀i, j.

In (18.41), the first constraint is to satisfy the BER requirement. The second constraint
guarantees that all nodes transmit their information with power no greater than Pmax and
there is no cooperation among nodes. The third constraint ensures that the power that
each cooperative relay helps a node is nonnegative and not greater than Pmax. Due to the
assignment and combinatorial nature of the formulated problem, the problem in (18.41)
is N P hard. Since it is computationally expensive to obtain the optimum solution to
(18.41), a fast suboptimal algorithm will be considered to solve the formulated problem.

The basic idea of the fast suboptimal algorithm is to add one cooperative relay at a
time into the network. Each time the optimum location of the added relay is chosen
as the one, among all possible locations, that maximizes the minimum device lifetime.
The algorithm stops when the device lifetime improvement is insignificant after adding
another cooperative relay or when the maximum number of relays is reached. In the
sequel, we first describe the algorithm to determine the device lifetime in each step, and
then we describe the algorithm in details.
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To maximize the minimum device lifetime when the number of relays and their loca-
tions are given, a step algorithm, similar to the one described in Figure 18.4 in Section
18.3.3, can be used:

• Initially, all nodes are sorted in ascending order according to their non-cooperative
lifetimes, as specified in (18.13), and then register them in a helped list Hlist.

• In each iteration, first, select the first node in the helped list as the one to be helped.
• Second, determine the minimum device lifetime after all of the cooperative relay Ri ’s

(i = 1, 2, . . . , K ) finish helping the selected node,
• Choose the relay Rî where î is the relay that maximizes the minimum device lifetime

to help the selected node.
• Update the power allocation matrices P and P̂, and remove the selected node in the

first step from the helped list.
• Continue the iteration until all nodes have been helped and the helped list is empty or

until the device lifetime improvement is insignificant.

The algorithm to find an optimum location of each cooperative relay is described as
follows:

• Denote Kmax as the maximum number of cooperative relays and denote �D as a set
of all possible relay locations.

• Initially, the number of relays is set to zero.
• In each iteration, the number of relay is increased by one, and the optimum relay

location D̂ is determined using one of the heuristic search methods (e.g., local search
or simulated annealing) together with the algorithm in Table 18.2.

• The location D̂ that results in the maximum of the minimum device lifetime is selected
as the optimum relay location and, then, the device lifetime is updated.

Table 18.2 Suboptimal algorithm to determine device lifetime when relay locations are fixed.

Initialization: Pj = N0
κεσ 2

jd
, Tj = E j

λ j (Ps+Pj )
, T ∗D = min Tj ,

Sort N nodes by their lifetimes in ascending order
and list in Hlist.

Iteration:
(1) Select the first node in the Hlist as the helped node.
(2) Select the helping relay Rî from the set of K relays.
• For each i , use the heuristic algorithm to maximize the minimum device lifetime, T ∗D(i).
• Select Rî that results in maximum of minimum device lifetime to help the node ĵ .

(3) Update Pĵ ĵ in P and update P̂î ĵ in P̂.

Set P̂i ĵ = 0 for all i �= î and set T ∗D = TD(î).

Remove node ĵ from the helped list Hlist. Go to (1).

End: If the helped list is empty: Hlist = ∅, or the device lifetime cannot be significantly
increased. Return P, P̂, T ∗D .
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Table 18.3 Algorithm to determine relay locations.

Initialization: q = 0

Iteration:
(1) Increase number of relays: q = q + 1
(2) For each location Dl ∈ �D . Set DRq = Dl .

Find T ∗D , P and P̂ using the algorithm in Table 18.2
Denote the obtained results by T ∗D(l), P(l) and P̂(l)

(3) Find the relay location Rq : DRq = Dl∗ , where l∗ = arg maxl T ∗D(l)
(4) Update P, P̂, and T ∗D . Go to (1).

End: If the device lifetime improvement is insignificant, or q = Kmax. Return P, P̂, T ∗D .

• Finally, the algorithm goes back to the first step.
• The algorithm stops if the device lifetime improvement is insignificant or the number

of relays reaches Kmax.

The detailed algorithm is presented in Table 18.3.
Note that the fast suboptimal algorithm allows at most one relay to help each node.

Although the algorithm is suboptimal, simulation example in Section 18.5 shows that
the algorithm significantly improves the device lifetime. In addition, all of the required
computations can be performed offline. In addition, the problems and algorithms in Sec-
tion 18.3 and Section 18.4 are closely related. Specifically, both sections aim to extend
the device lifetime by exploiting cooperative diversity. In Section 18.3, the cooperative
diversity is exploited by cooperation among devices. In Section 18.4, however, coop-
erative relays are deployed, and the cooperative diversity is exploited by cooperation
between each device and one of these additional cooperative relays. Therefore, the basic
algorithm of finding P and P̂ in Section 18.4 is similar to that in Section 18.3. The search
process of P and P̂ is done under the given locations of relays (i.e., for a fixed D̄); the
process is not affected by the method of finding D̄.

18.5 Simulation examples

In all examples, BPSK modulation is used in the system, the propagation loss factor is
α = 3, η = 1, and ε = 10−3 (unless stated otherwise). The processing power of each
node (Ps) is set at 25% of transmit power of the node whose location is at (10m, 0). The
processing power of each relay (Pr ) is set at 50% of Ps . All nodes are equipped with
equal initial energy of E j = 105. The noise variance is set at N0 = 10−2. The nodes
are randomly distributed based on uniform distribution and the destination is located in
the center of the area. Each node sends information to the destination via a route that is
determined by the Dijkstra’s algorithm.
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Fig. 18.6 Device lifetime in a two-node wireless network.

Example 18.2 Figure 18.6 considers a two-node wireless network where the destina-
tion is located at coordinate (0, 0). Node 1 is fixed at coordinate (0, 8m). The location
of node 2 varies from (0, 1) to (0, 30 m). We can see that the minimum device life-
time of the non-cooperative scheme is determined by the lifetime of the node who is
located farther from the destination as shown by the curve marked with circles (“◦”).
Under cooperative transmission, the minimum device lifetime is significantly increased,
especially when node 2 is located close to the destination.

The reason is that node 2 requires small transmit power to reach the destination,
after node 2 helps node 1, the transmit power of node 2 slightly increases, while the
transmit power of node 1 greatly reduces due to the cooperative diversity. With the
suboptimal algorithm (Table 18.1), the minimum device lifetime is improved to almost
the same as the lifetime of the node who is closer to the destination (see the curve
with rectangular “	” markers). By using the optimum power allocation obtained from
Section 18.3.2, the minimum device lifetime can be further increased (see the curve
with diamond “♦” markers) since both nodes take advantage of the cooperative diversity
while using smaller amount of their transmit power. �

Example 18.3 Figure 18.7 depicts the minimum device lifetime according to the den-
sity of cooperative nodes in a square area. The number of randomly located nodes vary
from 20 to 50 over an area of size 100 m × 100 m. In the simulation, we normalize
the transmission rate to be the same for all network sizes. For local search, the helping
node is chosen among the nodes whose distances from the source node are less than
20 m. From the figure, we can see that the minimum device lifetime of the cooperative
network is higher than that of the non-cooperative network for all network sizes. For
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Fig. 18.7 Minimum device lifetime with different numbers of randomly located nodes.

example, in the cooperative network the minimum device lifetime is twice that of the
non-cooperative network when there are 50 nodes in the network. Note that the perfor-
mance gain is calculated as Tcoop/Tnon−coop, where Tcoop and Tnon−coop represent the
lifetime of cooperative and non-cooperative networks, respectively.

From Figure 18.7, the cooperative scheme with local search yields similar perfor-
mance to the one with global search, especially when the node density is high. This
confirms our expectation that the helping node is chosen as the one that is located close
to the helped node. Note that the minimum device lifetimes for non-cooperative and
cooperative networks increase with the number of nodes because the chance of being
helped by a node with good location and high energy increases. �

Example 18.4 Figure 18.8 illustrates an improvement of minimum device lifetime
according to different BER requirements. We assume in the simulation that there are
30 randomly located cooperative nodes in an area of size 100 m × 100 m. We can see
from the figure that the minimum device lifetime is small at a BER requirement of
10−6 under both non-cooperative and cooperative networks. This is because each node
requires large transmit power to satisfy such small BER requirement. As the BER con-
straint increases, the minimum device lifetime also increases since the transmit power
required to satisfy the BER constraint decreases.

Note that the cooperative network achieves longer device lifetime than that for the
non-cooperative network over the entire range of BER requirement. For example,
the cooperative network achieves 125/49 = 2.6 times longer lifetime than the non-
cooperative network at a BER requirement of 10−3. However, both cooperative and
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non-cooperative networks yield almost the same device lifetime at a BER constraint
of 10−2. The reason is that the transmit power required to satisfy the BER of 10−2 is
much smaller than the processing power. The effect of processing power on the device
lifetime dominates that of transmit power in this case. �

Example 18.5 Figure 18.9 shows the minimum device lifetime for different relay loca-
tions. We consider a case where there are 20 randomly located nodes and a relay with
initial energy of ERi = 106 in area of 100 m × 100 m. In the figure, the node with a
circular (“◦”) marker represents a randomly-located node, and the node with a rectan-
gular (“%&”) marker shows the location of the destination. We vary the relay location in
a grid area of 100 m× 100 m. From the figure, the minimum device lifetime of the non-
cooperative network is the same for all possible relay locations (as indicated by a point
with “♦”). However, the minimum device lifetime of the cooperative network gradually
increases when the relay moves closer to the destination.

Specifically, the minimum device lifetime is the same as that of non-cooperative net-
work when the relay is far away from the destination. But the minimum device lifetime
further improves to 216/18 = 12 times longer than that of the non-cooperative network
when the relay is close to the center of the area. This is because the node that is near-
est to the destination tends to drain out its battery first, and its lifetime can be greatly
improved by placing the relay near the destination. �
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Example 18.6 Figure 18.10 shows the minimum devicelifetime according to the den-
sity of cooperative relays (i.e., the number of relays per square meter). We consider
a cooperative network with 20 randomly located nodes in an area of 100 m × 100 m.
The initial energy of each relay is 105. The minimum device lifetime of the cooperative
network with one randomly-added cooperative relay is about 28/11 = 2.55 times longer
than that of the non-cooperative network (as shown by the curve with the circular “◦”
marker). If the relay is placed at its optimum location, the minimum device lifetime (the
curve with the star “∗” marker) can be improved to 42/11 = 3.83 times longer than that
of the non-cooperative network. Furthermore, when two to four relays are added into
the network, the minimum device lifetime can be further increased under a case with
optimally-placed relays as well as a case with randomly-placed relays. However, the
minimum device lifetime is almost saturated when more than two relays are deployed
in the network. �

18.6 Chapter summary and bibliographical notes

This chapter considers lifetime maximization by employment of a cooperative-node
and the deployment of a relay. By introducing cooperation protocols among nodes, both
energy advantage and location advantage can be exploited such that the device lifetime
is improved. First, the decode-and-forward cooperation protocol is employed among
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nodes. We determined which nodes should cooperate and how much power should be
allocated for cooperation. An optimization problem is formulated with an aim to maxi-
mize the minimum device lifetime under a BER constraint. An analytical solution for a
two-node cooperative network is provided.

In the case of a multiple-node scenario, it turns out that the formulated problem is N P
hard. A suboptimal algorithm is developed to reduce the complexity of the formulated
problem. By using the suboptimal algorithm, simulation results show that the minimum
device lifetime of the two-node cooperative network can be increased to almost the same
as the lifetime of the node that is closer to the destination.

In the case of the multiple cooperative nodes, the minimum device lifetime of the
cooperative network is twice that of the non-cooperative network. Furthermore, we
considered device lifetime improvement by adding cooperative relays into an energy
depleting cooperative network. An optimization problem is formulated to determine the
power allocation as well as the relay locations. By optimally placing a cooperative relay
with energy 10 times higher than energy of the nodes, the device lifetime increases
12 times over that for the non-cooperative network. Furthermore, when the energy of
each cooperative relay is equal to the energy of each cooperating node, the algorithm
shows that only a few cooperative relays are required in order to improve the device
lifetime.

As mentioned at the beginning of the chapter, there is not a broadly accepted defini-
tion for network lifetime. A network lifetime is defined as the time until the first node
die in [190]. In [231] an alternative definition is considered where network lifetime is
the time until a certain percentage of nodes die. Also, in [23] network lifetime is defined
in terms of the packet delivery rate and in [18] in terms of the number of flows alive.
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The problem of network algorithm designs that are aware of network lifetime have
been the subject of some research interest. A data routing algorithm that aims at max-
imizing the minimum lifetime among nodes in wireless sensor networks was proposed
in [22]. Later, considerable research efforts have been devoted to maximize such min-
imum lifetime. For example, upper bounds on lifetime of various wireless networks
with energy-constrained nodes are derived in [12, 235, 76] and references therein. The
problem of finding an energy-efficient tree for network lifetime maximization has been
considered in [12, 132] for a broadcasting scenario, and in [39] for a multicasting
scenario. The works in [4, 21, 117] considered the problem of minimum-energy broad-
casting, which is proved to be N P-complete. In [133], a technique for network lifetime
maximization by employing a ccumulative broadcast strategy was considered. The pro-
posed work relies on the assumption that nodes cooperatively accumulate energy of
unreliable receptions over the relay channels. The work in [75] considered provisioning
additional energy on existing nodes and deploying relays to extend the network lifetime.

In terms of previous approaches to the problem tackled in this chapter, it is worth
noticing that the works in [109, 179, 180, 222, 79, 204, 57, 128] have proved the sig-
nificant potential of using cooperative diversity in wireless networks, but most focus on
improving physical layer performance or minimizing energy consumption. On the other
hand, note that there are many works on extending lifetime [22, 12, 235, 76, 132, 39,
4, 21, 117, 133, 75] but they all concentrate on settings with non-cooperative transmis-
sions. Cases of works that focus on lifetime maximization via cooperative nodes and
relay deployment are [64, 65].

Exercises

18.1 The device lifetime was derived in this chapter assuming MPSK modulation.
Assume that the nodes in the network use MQAM instead.

(a) Find the bit error rate performance for non-cooperative and cooperative
transmission for MQAM.

(b) Find the optimal power allocation for the two-node network scenario for the
three cases discussed in the chapter: no-cooperation; one node only helps;
both node help each other.

(c) Derive device lifetime in case of MQAM modulation and find optimum
lifetime for two-node wireless networks. Compare and discuss lifetime
improvement for cooperative nodes with MPSK or MQAM.

18.2 Show that T ∗i-helps- j can be expressed as in equation (18.28).

18.3 Derive the expression of T ∗both-helps as shown in equation (18.31).

18.4 An analytical solution for the two-node network scenario was discussed in this
chapter. Consider the three-node network scenario and denote the nodes by
{1, 2, 3}. Find the network lifetime for each one of the following scenarios:
(a) No cooperation.
(b) Node 1 helps both nodes 2 and 3.
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(c) Nodes 1 and 2 only help each other.
(d) Node 1 helps node 2; node 2 helps node 3; and node 3 helps node 1.

18.5 In the simulation examples in the chapter, all nodes were assumed to have the
same initial battery energy of E = 105. In practice, different nodes can have
different initial batteries.
Assume that the initial battery energy is a uniformly distributed random variable
that takes value between 103 and 105.

(a) Repeat Example 18.3 and write a program to find the minimum device life
time according to the density of the cooperative nodes. Compare to the
results in the chapter where all nodes have the same initial battery life.

(b) Repeat Example 18.6 and find the effect of the relay density. Assume that
the relays’ initial energy is fixed and equal to 105.

18.6 The modulation scheme used in the chapter was assumed to be always fixed to
MPSK whether the nodes cooperate or not. Assume that if a node cooperates it
has to transmit at twice the rate. Consider the two-node network model. Assume
that a non-cooperative node uses BPSK and a cooperative node uses QPSK. Find
the minimum device life time for the following cases.

(a) Both nodes do not cooperate.
(b) Node 1 helps node 2.
(c) Both nodes cooperate.

18.7 Prove the device lifetime expression in (18.36).
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